research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-2-amino-4-(2,6-di­chloro­phen­yl)-5-(1-hy­dr­oxy­ethyl­­idene)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198 , Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by C. Schulzke, Universität Greifswald, Germany (Received 6 July 2021; accepted 3 August 2021; online 10 August 2021)

The mol­ecular conformation of the title compound, C20H15Cl2N3O2, is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif. The central pyridine ring is almost planar [maximum deviation = 0.074 (3) Å]. It subtends dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the phenyl and di­chloro­phenyl rings, which are at an angle of 21.28 (15)° to each other. The =C(—OH)CH3 group is coplanar. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π inter­actions, forming a three-dimensional network. The most important contributions to the crystal packing are from H⋯H (33.1%), C⋯H/H⋯C (22.5%), Cl⋯H/H⋯Cl (14.1%), O⋯H/H⋯O (11.9%) and N⋯H/H⋯N (9.7%) inter­actions.

1. Chemical context

The development of effective methods for the construction of small-sized mol­ecules bearing a nitro­gen heterocycle is a very important proposition in organic synthesis and catalysis (Abdel-Hafiz et al., 2012[Abdel-Hafiz, I. S., Ramiz, M. M. M. & Elian, M. A. (2012). J. Chem. Sci. 124, 647-655.]; Gurbanov et al., 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). As members of this family, pyridine derivatives play a key role in flavor chemistry, crystal engineering, and the development of biologically active compounds (Adams & De Kimpe, 2006[Adams, A. & De Kimpe, N. (2006). Chem. Rev. 106, 2299-2319.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Mamedov et al., 2020[Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]). The pyridine core is a key bioactive fragment of diverse natural products (niacin, pyridoxine, nicotine, NADP+) and series of derivatives constitute promising drugs in medicinal chemistry (Mohsin & Ahmad, 2018[Mohsin, N. & Ahmad, M. (2018). Turk. J. Chem. 42, 1191-1216.]).

[Scheme 1]

In this study, in the framework of our ongoing structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.], 2021a[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195-199.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512-515.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, (Z)-2-amino-4-(2,6-di­chloro­phen­yl)-5-(1-hy­droxy­ethyl­idene)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile, prev­iously mistakenly reported in the E isomeric form (Maharramov et al., 2018[Maharramov, A. M., Naghiyev, F. N., Asgerova, A. R., Guseynov, E. Z. & Mamedov, I. G. (2018). Azerbaijan Chem. J. 4, 33-38.]). This compound was also previously mentioned as transient inter­mediate but neither isolated nor characterized (Naghiyeva et al., 2019[Naghiyev, F. N., Maharramov, A. M., Asadov, K. A. & Mamedov, I. G. (2019). Russ. J. Org. Chem. 55, 388-391.]).

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with Z = 4, in which the asymmetric unit comprises one mol­ecule. In the mol­ecule (Fig. 1[link]), the central pyridine ring (N1/C2–C6) is almost planar with a maximum deviation of 0.074 (3) Å for C4. The phenyl (C7–C12) and di­chloro­phenyl (C14–C19) rings are at an angle of 21.28 (15)°. They form dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the central pyridine ring. The =C(—OH)CH3 group is nearly coplanar with the pyridine ring with C2—C3—C1—O2 and C4—C3—C1—C13 torsion angles of only 5.5 (5) and 3.3 (5)°, respectively. A strong intra­molecular O2—H2⋯O1 hydrogen bond (Fig. 1[link], Table 1[link]) stabilizes the mol­ecular conformation of the title mol­ecule, creating an S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.86 (4) 1.72 (4) 2.514 (3) 153 (4)
N3—H3A⋯N2i 0.86 (4) 2.22 (4) 3.032 (4) 159 (3)
C16—H16⋯N2ii 0.95 2.62 3.308 (4) 129
N3—H3BCg2 0.88 (4) 2.88 (4) 3.581 (3) 138 (3)
C9—H9⋯Cg2iii 0.95 2.70 3.564 (4) 151
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+2, -y+1, -z+2]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

Inter­molecular N3—H3A⋯N2 hydrogen bonds, which form an R22(12) ring motif between pairs of mol­ecules along the b-axis direction and an R22(16) ring motif between pairs of mol­ecules along the a-axis direction, together with N3—H3BCg2 and C9—H9⋯Cg2 inter­actions (Fig. 2[link], Tables 1[link] and 2[link]; Cg2 is the centroid of the C7–C12 phenyl ring) create a three-dimensional network in the crystal (Figs. 2[link] and 3[link]).

Table 2
Inter­atomic contacts of the title compound (Å)

Contact Distance Symmetry operation
Cl1⋯Cl1 3.6744 (14) 2 − x, 1 − y, 1 − z
H4⋯C20 2.77 1 − x, 1 − y, 1 − z
O1⋯H9 2.54 x, [{1\over 2}] − y, −[{1\over 2}] + z
N2⋯H13C 2.81 x, y, 1 + z
H3A⋯N2 2.22 (4) 1 − x, 1 − y, 2 − z
H16⋯N2 2.62 2 − x, 1 − y, 2 − z
H11⋯H13B 2.54 −1 + x, y, z
H17⋯H3B 2.54 1 + x, y, z
H12⋯C18 2.93 −1 + x, y, −1 + z
[Figure 2]
Figure 2
A general view of the intra- and inter­molecular O—H⋯O, N—H⋯N hydrogen bonding and N—H⋯π and C—H⋯π inter­actions in the title compound. Symmetry codes: (a) 1 − x, 1 − y, 2 − z; (b) 2 − x, 1 − y, 2 − z; (c) x, [{1\over 2}] − y, [{1\over 2}] + z.
[Figure 3]
Figure 3
A view down the a axis of the crystal packing of the title compound based on the inter­molecular inter­actions shown in Fig. 2[link].

The Hirshfeld surfaces were calculated and the two-dimensional fingerprint plots generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The use of various hues and intensities to represent short and long contacts, as well as the relative intensity of the connections, allows Hirshfeld surfaces to depict inter­molecular inter­actions. Fig. 4[link] shows the three-dimensional Hirshfeld surfaces of the title compound plotted over dnorm (normalized contact distance) in the range of −0.4290 to 1.5192 a.u. The red patches that appear around N2 are caused by the inter­molecular N3—H3A⋯N2 and C16—H16⋯N2 inter­actions, which are important in the packing of the title mol­ecule. Bright red dots near N2 and amine hydrogen atoms H3A and H3B highlight their functions as hydrogen-bonding acceptors and donors, respectively; these also appear as blue and red areas on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) in Fig. 5[link], corresponding to positive and negative potentials. Positive electrostatic potential (hydrogen-bond donors) is shown in blue, whereas negative electrostatic potential is indicated in red (hydrogen-bond acceptors).

[Figure 4]
Figure 4
Hirshfeld surface of the title compound mapped with dnorm.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.

In Fig. 6[link], the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and N⋯H/H⋯N contacts, as well as their relative contributions to the Hirshfeld surface, are presented, while details of the various contacts are given in Table 2[link]. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H (33.1%; Fig. 6[link]b), C⋯H/H⋯C (22.5%; Fig. 6[link]c), Cl⋯H/H⋯Cl (14.1%; Fig. 6[link]d), O⋯H/H⋯O (11.9%; Fig. 6[link]e) and N⋯H/H⋯N (9.7%; Fig. 6[link]f). Other Cl⋯C/C⋯Cl, C⋯C, Cl⋯O/O⋯Cl, Cl⋯N/N⋯Cl, N⋯C/C⋯N, O⋯N/N⋯O, Cl⋯Cl, O⋯C/C⋯O and N⋯N contacts contribute less than 2.1% to Hirshfeld surface mapping and have little directional influence on mol­ecular packing (Table 3[link]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 33.1
C⋯H/H⋯C 22.5
Cl⋯H/H⋯Cl 14.1
O⋯H/H⋯O 11.9
N⋯H/H⋯N 9.7
Cl⋯C/C⋯Cl 2.1
C⋯C 1.4
Cl⋯O/O⋯Cl 1.2
Cl⋯N/N⋯Cl 1.1
N⋯C/C⋯N 1.0
O⋯N/N⋯O 0.6
Cl⋯Cl 0.6
O⋯C/C⋯O 0.5
N⋯N 0.1
[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) O⋯H/H⋯O and (f) N⋯H/H⋯N inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for the tetra­hydro­pyridine unit revealed 1339 hits. Some inter­esting structures related to the title compound based on their tetra­hydro­pyridine moieties include: ethyl 4-hy­droxy-2,6-diphenyl-5-(phenyl­sulfan­yl)pyri­dine-3-carboxyl­ate (refcode SETWOE: Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]), ethyl 2,6-bis­(4-fluoro­phen­yl)-4-hy­droxy-5-(4-methyl­phenyl­sulfan­yl)pyridine-3-carboxyl­ate (SETWUK: Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]), 2,6-di­amino-4-chloro­pyrimidin-1-ium 2-carb­oxy-3-nitro­benzoate (JEBRAM: Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]) and 2,6-di­amino-4-chloro­pyrimidin-1-ium 4-methyl­benzene-1-sulfonate monohydrate (JEBREQ: Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]).

The polysubstituted pyridines, SETWOE (space group: P21/c) and SETWUK (space group: P21/n), adopt nearly planar structures. The crystal structure of SETWOE is stabil­ized by inter­molecular C—H⋯O and C—H⋯π inter­actions. The C—H⋯O hydrogen bonds generate rings with R22(14) and R22(20) motifs. The crystal structure of SETWUK is stabilized by inter­molecular C—H⋯F and C—H⋯π inter­actions. The C—H⋯F bond generates a linear chain with a C(14) motif. In addition, in SETWOE and SETWUK, intra­molecular O—H⋯O inter­actions are found, which generate an S(6) graph-set motif. No significant ar­yl–aryl or ππ inter­actions exist in these structures. All this bears some resemblance to the title compound.

In both the related salts, JEBRAM (space group: P[\overline{1}]) and JEBREQ (space group: P[\overline{1}]) , the N atom in the 1-position of the pyrimidine ring is protonated. In JEBRAM, the protonated N atom and the amino group of the pyrimidinium cation inter­act with the carboxyl­ate group of the anion through N—H⋯O hydrogen bonds, forming a heterosynthon with an R22(8) ring motif. In the hydrated salt JEBREQ, the presence of the water mol­ecule prevents the formation of the familiar R22(8) ring motif. Instead, an expanded ring [i.e. R32(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water mol­ecule. Both salts form a supra­molecular homosynthon [ R22(8) ring motif] through N—H⋯N hydrogen bonds. The mol­ecular structures are further stabilized by ππ stacking, and C=O⋯π, C—H⋯O and C—H⋯Cl inter­actions. None of these are found in the crystal packing of the title compound. It appears that the protonation state of the pyrimidine ring influences the inter­molecular inter­actions within the crystal lattices to a substantial extent.

5. Synthesis and crystallization

The title compound was synthesized using our previously reported procedure (Maharramov et al., 2018[Maharramov, A. M., Naghiyev, F. N., Asgerova, A. R., Guseynov, E. Z. & Mamedov, I. G. (2018). Azerbaijan Chem. J. 4, 33-38.]), and colorless prisms were obtained upon recrystallization from its methanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The positional parameters of the H atoms of the hy­droxy and amine groups were determined from difference electron-density maps and were refined freely [O2—H2 = 0.86 (4) Å, N3—H3A = 0.86 (4) Å and N3—H3B = 0.88 (4) Å]. Their isotropic displacement parameters were refined using a riding model with Uiso(H) set to either 1.2Ueq(N) for the NH2 group or 1.5Ueq(O) for the OH group. The C-bound H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C20H15Cl2N3O2
Mr 400.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.662 (1), 27.010 (3), 7.4782 (8)
β (°) 111.571 (2)
V3) 1814.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.24 × 0.21 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.864, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 27440, 4180, 2631
Rint 0.099
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.126, 1.01
No. of reflections 4180
No. of parameters 255
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.37
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(Z)-2-Amino-4-(2,6-dichlorophenyl)-5-(1-hydroxyethylidene)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile top
Crystal data top
C20H15Cl2N3O2F(000) = 824
Mr = 400.25Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.662 (1) ÅCell parameters from 2887 reflections
b = 27.010 (3) Åθ = 2.3–25.6°
c = 7.4782 (8) ŵ = 0.38 mm1
β = 111.571 (2)°T = 100 K
V = 1814.9 (3) Å3Plate, colourless
Z = 40.24 × 0.21 × 0.02 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
2631 reflections with I > 2σ(I)
φ and ω scansRint = 0.099
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.3°
Tmin = 0.864, Tmax = 0.986h = 1212
27440 measured reflectionsk = 3535
4180 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.0157P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4180 reflectionsΔρmax = 0.50 e Å3
255 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0024 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86090 (9)0.51416 (3)0.60657 (12)0.0256 (2)
Cl20.73128 (9)0.32459 (3)0.75788 (12)0.0262 (2)
O10.3936 (2)0.32320 (9)0.2910 (3)0.0280 (5)
O20.5668 (3)0.34472 (9)0.1210 (3)0.0286 (6)
H20.502 (4)0.3295 (15)0.155 (6)0.043*
N10.3832 (3)0.36887 (10)0.5389 (4)0.0190 (6)
N20.6028 (3)0.51570 (10)0.8819 (4)0.0213 (6)
N30.3468 (3)0.41829 (11)0.7719 (4)0.0216 (6)
H3A0.376 (4)0.4411 (13)0.857 (5)0.026*
H3B0.275 (4)0.3976 (13)0.763 (5)0.026*
C10.6193 (3)0.38087 (12)0.2516 (4)0.0222 (7)
C20.4484 (3)0.35814 (12)0.4048 (4)0.0215 (7)
C30.5700 (3)0.38792 (12)0.3994 (4)0.0190 (7)
C40.6393 (3)0.42841 (12)0.5454 (4)0.0185 (7)
H40.64020.45920.47170.022*
C50.5438 (3)0.43903 (11)0.6633 (4)0.0178 (6)
C60.4288 (3)0.40975 (12)0.6622 (4)0.0190 (6)
C70.2636 (3)0.33754 (11)0.5457 (4)0.0182 (6)
C80.2954 (3)0.29874 (12)0.6757 (4)0.0225 (7)
H80.39540.29230.75720.027*
C90.1808 (4)0.26931 (12)0.6866 (5)0.0247 (7)
H90.20180.24280.77620.030*
C100.0355 (4)0.27893 (12)0.5655 (5)0.0254 (7)
H100.04310.25880.57220.030*
C110.0039 (3)0.31762 (12)0.4351 (5)0.0233 (7)
H110.09590.32390.35260.028*
C120.1182 (3)0.34720 (12)0.4251 (4)0.0219 (7)
H120.09700.37390.33620.026*
C130.7339 (4)0.41270 (13)0.2175 (5)0.0262 (7)
H13A0.75880.39880.11210.039*
H13B0.82350.41390.33460.039*
H13C0.69430.44620.18340.039*
C140.8003 (3)0.41904 (12)0.6829 (4)0.0168 (6)
C150.9070 (3)0.45717 (12)0.7254 (4)0.0206 (7)
C161.0502 (3)0.45270 (13)0.8591 (5)0.0237 (7)
H161.11770.47970.88510.028*
C171.0934 (3)0.40785 (13)0.9546 (4)0.0252 (7)
H171.19150.40411.04690.030*
C180.9949 (3)0.36865 (13)0.9164 (5)0.0238 (7)
H181.02550.33780.97930.029*
C190.8510 (3)0.37491 (12)0.7852 (4)0.0194 (7)
C200.5773 (3)0.48144 (12)0.7841 (4)0.0190 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0223 (4)0.0243 (4)0.0291 (4)0.0013 (3)0.0083 (3)0.0025 (4)
Cl20.0236 (4)0.0258 (4)0.0260 (4)0.0006 (3)0.0056 (3)0.0049 (4)
O10.0271 (12)0.0342 (14)0.0240 (12)0.0085 (11)0.0108 (10)0.0124 (11)
O20.0296 (13)0.0394 (15)0.0171 (12)0.0043 (11)0.0091 (10)0.0072 (11)
N10.0169 (13)0.0243 (15)0.0161 (13)0.0028 (11)0.0063 (10)0.0035 (11)
N20.0213 (14)0.0210 (14)0.0200 (14)0.0026 (11)0.0058 (11)0.0030 (12)
N30.0199 (14)0.0270 (15)0.0196 (14)0.0071 (12)0.0095 (11)0.0081 (12)
C10.0210 (16)0.0286 (18)0.0135 (15)0.0038 (13)0.0022 (12)0.0012 (14)
C20.0200 (15)0.0275 (18)0.0160 (15)0.0009 (13)0.0053 (12)0.0023 (14)
C30.0174 (15)0.0225 (17)0.0152 (15)0.0002 (12)0.0038 (12)0.0001 (13)
C40.0157 (15)0.0228 (17)0.0166 (15)0.0014 (12)0.0055 (12)0.0020 (13)
C50.0172 (15)0.0207 (16)0.0139 (15)0.0005 (12)0.0037 (12)0.0014 (13)
C60.0162 (14)0.0237 (17)0.0135 (15)0.0036 (12)0.0012 (12)0.0002 (13)
C70.0175 (15)0.0185 (16)0.0184 (15)0.0037 (12)0.0062 (12)0.0048 (13)
C80.0201 (16)0.0264 (18)0.0174 (16)0.0015 (13)0.0026 (13)0.0003 (14)
C90.0275 (17)0.0219 (17)0.0254 (18)0.0030 (14)0.0106 (14)0.0049 (14)
C100.0228 (16)0.0245 (18)0.0310 (19)0.0028 (14)0.0124 (14)0.0042 (15)
C110.0177 (15)0.0259 (18)0.0223 (17)0.0019 (13)0.0024 (13)0.0013 (14)
C120.0230 (16)0.0224 (17)0.0177 (16)0.0031 (13)0.0044 (13)0.0001 (13)
C130.0264 (17)0.033 (2)0.0206 (17)0.0037 (15)0.0107 (14)0.0041 (15)
C140.0152 (14)0.0241 (16)0.0126 (14)0.0025 (12)0.0070 (11)0.0011 (12)
C150.0200 (15)0.0254 (17)0.0179 (16)0.0040 (13)0.0088 (13)0.0024 (14)
C160.0185 (15)0.0315 (19)0.0222 (17)0.0020 (13)0.0089 (13)0.0035 (14)
C170.0162 (15)0.042 (2)0.0173 (16)0.0027 (14)0.0063 (13)0.0010 (15)
C180.0219 (16)0.0307 (19)0.0196 (16)0.0047 (14)0.0087 (13)0.0047 (14)
C190.0174 (15)0.0266 (17)0.0150 (15)0.0009 (13)0.0066 (12)0.0022 (13)
C200.0110 (14)0.0270 (18)0.0193 (16)0.0044 (12)0.0058 (12)0.0062 (14)
Geometric parameters (Å, º) top
Cl1—C151.751 (3)C7—C121.387 (4)
Cl2—C191.747 (3)C8—C91.390 (4)
O1—C21.250 (4)C8—H80.9500
O2—C11.342 (4)C9—C101.387 (4)
O2—H20.86 (4)C9—H90.9500
N1—C21.397 (4)C10—C111.385 (5)
N1—C61.401 (4)C10—H100.9500
N1—C71.448 (4)C11—C121.387 (4)
N2—C201.149 (4)C11—H110.9500
N3—C61.354 (4)C12—H120.9500
N3—H3A0.86 (4)C13—H13A0.9800
N3—H3B0.88 (4)C13—H13B0.9800
C1—C31.368 (4)C13—H13C0.9800
C1—C131.496 (4)C14—C191.404 (4)
C2—C31.437 (4)C14—C151.408 (4)
C3—C41.516 (4)C15—C161.382 (4)
C4—C51.519 (4)C16—C171.390 (5)
C4—C141.538 (4)C16—H160.9500
C4—H41.0000C17—C181.382 (5)
C5—C61.361 (4)C17—H170.9500
C5—C201.421 (4)C18—C191.386 (4)
C7—C81.385 (4)C18—H180.9500
C1—O2—H2105 (3)C8—C9—H9120.3
C2—N1—C6121.3 (3)C11—C10—C9120.6 (3)
C2—N1—C7118.7 (2)C11—C10—H10119.7
C6—N1—C7120.0 (2)C9—C10—H10119.7
C6—N3—H3A118 (2)C10—C11—C12120.0 (3)
C6—N3—H3B118 (2)C10—C11—H11120.0
H3A—N3—H3B123 (3)C12—C11—H11120.0
O2—C1—C3122.6 (3)C11—C12—C7119.5 (3)
O2—C1—C13113.5 (3)C11—C12—H12120.2
C3—C1—C13123.8 (3)C7—C12—H12120.2
O1—C2—N1117.1 (3)C1—C13—H13A109.5
O1—C2—C3123.3 (3)C1—C13—H13B109.5
N1—C2—C3119.6 (3)H13A—C13—H13B109.5
C1—C3—C2118.4 (3)C1—C13—H13C109.5
C1—C3—C4119.4 (3)H13A—C13—H13C109.5
C2—C3—C4122.1 (3)H13B—C13—H13C109.5
C3—C4—C5110.7 (2)C19—C14—C15114.7 (3)
C3—C4—C14115.6 (2)C19—C14—C4124.6 (3)
C5—C4—C14108.9 (2)C15—C14—C4120.5 (3)
C3—C4—H4107.1C16—C15—C14123.7 (3)
C5—C4—H4107.1C16—C15—Cl1116.4 (3)
C14—C4—H4107.1C14—C15—Cl1120.0 (2)
C6—C5—C20117.8 (3)C15—C16—C17118.7 (3)
C6—C5—C4123.7 (3)C15—C16—H16120.7
C20—C5—C4118.4 (3)C17—C16—H16120.7
N3—C6—C5123.7 (3)C18—C17—C16120.5 (3)
N3—C6—N1114.8 (3)C18—C17—H17119.8
C5—C6—N1121.4 (3)C16—C17—H17119.8
C8—C7—C12120.6 (3)C17—C18—C19119.2 (3)
C8—C7—N1119.5 (3)C17—C18—H18120.4
C12—C7—N1119.9 (3)C19—C18—H18120.4
C7—C8—C9119.9 (3)C18—C19—C14123.2 (3)
C7—C8—H8120.1C18—C19—Cl2115.9 (3)
C9—C8—H8120.1C14—C19—Cl2120.9 (2)
C10—C9—C8119.5 (3)N2—C20—C5179.2 (3)
C10—C9—H9120.3
C6—N1—C2—O1174.8 (3)C6—N1—C7—C886.5 (4)
C7—N1—C2—O13.5 (4)C2—N1—C7—C1286.2 (4)
C6—N1—C2—C33.4 (4)C6—N1—C7—C1292.2 (3)
C7—N1—C2—C3178.2 (3)C12—C7—C8—C90.4 (5)
O2—C1—C3—C25.5 (5)N1—C7—C8—C9178.3 (3)
C13—C1—C3—C2173.5 (3)C7—C8—C9—C100.5 (5)
O2—C1—C3—C4177.7 (3)C8—C9—C10—C110.3 (5)
C13—C1—C3—C43.3 (5)C9—C10—C11—C120.1 (5)
O1—C2—C3—C16.4 (5)C10—C11—C12—C70.3 (5)
N1—C2—C3—C1171.7 (3)C8—C7—C12—C110.0 (5)
O1—C2—C3—C4176.9 (3)N1—C7—C12—C11178.7 (3)
N1—C2—C3—C45.0 (4)C3—C4—C14—C1948.4 (4)
C1—C3—C4—C5165.1 (3)C5—C4—C14—C1976.9 (4)
C2—C3—C4—C511.6 (4)C3—C4—C14—C15136.5 (3)
C1—C3—C4—C1470.5 (4)C5—C4—C14—C1598.2 (3)
C2—C3—C4—C14112.8 (3)C19—C14—C15—C161.0 (4)
C3—C4—C5—C611.6 (4)C4—C14—C15—C16174.6 (3)
C14—C4—C5—C6116.5 (3)C19—C14—C15—Cl1179.1 (2)
C3—C4—C5—C20169.4 (3)C4—C14—C15—Cl15.3 (4)
C14—C4—C5—C2062.5 (4)C14—C15—C16—C171.4 (5)
C20—C5—C6—N31.3 (5)Cl1—C15—C16—C17178.7 (2)
C4—C5—C6—N3177.7 (3)C15—C16—C17—C180.0 (5)
C20—C5—C6—N1176.3 (3)C16—C17—C18—C191.7 (5)
C4—C5—C6—N14.7 (5)C17—C18—C19—C142.2 (5)
C2—N1—C6—N3174.1 (3)C17—C18—C19—Cl2176.1 (2)
C7—N1—C6—N34.2 (4)C15—C14—C19—C180.8 (4)
C2—N1—C6—C53.6 (4)C4—C14—C19—C18176.2 (3)
C7—N1—C6—C5178.0 (3)C15—C14—C19—Cl2177.3 (2)
C2—N1—C7—C895.1 (3)C4—C14—C19—Cl21.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.86 (4)1.72 (4)2.514 (3)153 (4)
N3—H3A···N2i0.86 (4)2.22 (4)3.032 (4)159 (3)
C16—H16···N2ii0.952.623.308 (4)129
N3—H3B···Cg20.88 (4)2.88 (4)3.581 (3)138 (3)
C9—H9···Cg2iii0.952.703.564 (4)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x, y1/2, z1/2.
Interatomic contacts of the title compound (Å) top
ContactDistanceSymmetry operation
Cl1···Cl13.6744 (14)2 - x, 1 - y, 1 - z
H4···C202.771 - x, 1 - y, 1 - z
O1···H92.54x, 1/2 - y, -1/2 + z
N2···H13C2.81x, y, 1 + z
H3A···N22.22 (4)1 - x, 1 - y, 2 - z
H16···N22.622 - x, 1 - y, 2 - z
H11···H13B2.54-1 + x, y, z
H17···H3B2.541 + x, y, z
H12···C182.93-1 + x, y, -1 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H33.1
C···H/H···C22.5
Cl···H/H···Cl14.1
O···H/H···O11.9
N···H/H···N9.7
Cl···C/C···Cl2.1
C···C1.4
Cl···O/O···Cl1.2
Cl···N/N···Cl1.1
N···C/C···N1.0
O···N/N···O0.6
Cl···Cl0.6
O···C/C···O0.5
N···N0.1
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, AVP and AAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.

Funding information

This work was supported by Baku State University and RUDN University Strategic Academic Leadership Program.

References

First citationAbdel-Hafiz, I. S., Ramiz, M. M. M. & Elian, M. A. (2012). J. Chem. Sci. 124, 647–655.  Google Scholar
First citationAdams, A. & De Kimpe, N. (2006). Chem. Rev. 106, 2299–2319.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Naghiyev, F. N., Asgerova, A. R., Guseynov, E. Z. & Mamedov, I. G. (2018). Azerbaijan Chem. J. 4, 33–38.  CrossRef Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  Web of Science CrossRef CAS Google Scholar
First citationMohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohsin, N. & Ahmad, M. (2018). Turk. J. Chem. 42, 1191–1216.  Web of Science CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Maharramov, A. M., Asadov, K. A. & Mamedov, I. G. (2019). Russ. J. Org. Chem. 55, 388–391.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds