Download citation
Download citation
link to html
The title polysubstituted pyridines, ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)pyridine-3-carboxylate, C26H21NO3S, (I), and ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-(4-methylphenylsulfanyl)pyridine-3-carboxylate, C27H21F2NO3S, (II), adopt nearly planar structures. The crystal structure of (I) is stabilized by inter­molecular C—H...O and C—H...π inter­actions. The C—H...O hydrogen bonds generate rings of motifs R22(14) and R22(20). The crystal structure of (II) is stabilized by inter­molecular C—H...F and C—H...π inter­actions. The C—H...F bond generates a linear chain of motif C(14). In addition, in (I) and (II), intra­molecular O—H...O inter­actions generating a graph-set motif S(6) are found. No significant aryl–aryl or π–π inter­actions exist in these structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107000224/dn3034sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107000224/dn3034Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107000224/dn3034IIsup3.hkl
Contains datablock II

CCDC references: 638337; 638338

Comment top

Pyridines are of great interest because of the occurrence of their saturated and partially saturated derivatives in biologically active compounds and natural products such as NAD nucleotides, pyridoxol (vitamin B6) and pyridine alkaloids (Balasubramanian & Keay, 1996). Substituted pyridines have also found a number of applications, such as anticorrosion agents, insecticides and as potential drug substances (Keney, 1968; Goodhue, 1967; Cooke et al., 1998). In this context, the synthesis of polysubstituted pyridines has been an active research area for many years in our laboratory. The present work reports the X-ray crystallographic study of two such substituted pyridines, (I) and (II).

The molecular structures of (I) and (II) are shown in Fig. 1 and Fig. 2, respectively, and selected geometric parameters are given in Tables 1 and 3, respectively. In (I) and (II), the pyridine heterocycles are planar; the displacements of the atoms from their mean planes do not exceed 0.043 (2) Å. None of the substituted groups forming a plane is either coplanar with or orthogonal to the pyridine ring. The dihedral angles of the phenylsulfanyl group at C5, the ethoxycarbonyl group at C3 and the phenyl ring at C2 with the pyridine ring are 76.2, 37.8 and 43.7°, respectively, in (I), and 83.6 (1), 46.4 (1) and 39.2 (1)°, respectively, in (II). The phenylsulfanyl group is cis to the phenyl ring at C6, with dihedral angles of 62.6 (1)° in (I) and 70.5 (2)° in (II). The C5—S1 bond [1.769 Å in (I) and 1.770 Å in (II)] is slightly shorter than the C51—S1 bond [1.782 Å in (I) and 1.778 Å in (II)], which may be due to the conjugation of atom S1 with the pyridine ring. Similarly, the C7—O3 bond [1.335 Å in (I) and 1.332 Å in (II)] is longer than the C7—O2 bond [1.222 Å in (I) and 1.203 Å in (II)] and considerably shorter than C8—O3 [1.462 Å in (I) and 1.468 Å in (II)], which demonstrates the conjugation of atom O3 with C7—O2.

The crystal structure of (I) is stabilized by weak C—H···O interactions. The C26—H26···O2 and C65—H65···O3 interactions form cyclic dimers, generating rings of graph-set motifs R22(14) and R22(20), respectively (Etter et al., 1990) (Table 2 and Fig. 3). The intramolecular hydrogen bond found between the hydroxyl and carboxylate moieties (O1—H1···O2) (Table 2 and Fig. 3) generates a graph-set motif S(6). Two weak C—H···π interactions, viz. C22—H22···Cg1i and C8—H8B···Cg2ii (Cg1 and Cg2 are the centroids of rings C51—C56 and C61—C66, respectively; symmetry codes are given in Table 2) are observed. No ππ interactions or significant aryl–aryl interactions are observed. The molecular packing in the unit cell is shown in Fig. 4.

The crystal structure of (II) is stabilized by a weak C—H···F interaction. This C57—H57C···F1 interaction (Table 4 and Fig. 5) forms a linear chain generating a graph-set motif C(14). The intramolecular hydrogen bond found between the hydroxyl and carboxylate moieties (O1—H1···O2) (Table 4 and Fig. 5) generates a graph-set motif S(6). The supramolecular aggregation is completed by the presence of a weak C—H···π interaction (Table 4; Cg1 is the centroid of the C51–C56 ring). The molecular packing in the unit cell is shown in Fig. 6. The geometry of the C—H···π interaction was obtained from PLATON (Spek, 2003)

Related literature top

For related literature, see: Balasubramanian & Keay (1996); Cooke et al. (1998); Etter et al. (1990); Goodhue (1967); Keney (1968); Spek (2003).

Experimental top

The preparation of (I) was carried out as follows. To a solution of ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)-1,2,5,6-tetrahydro-3-pyridine carboxylate (0.1 g, 0.2 mmol) in benzene (10 ml), dichlorodicyanobenzoquinone (0.105 g, 0.4 mmol) was added and the mixture was refluxed in a water bath for 30 min. The precipitated DDQ-H2 was filtered off and the filtrate evaporated under vaccum. The residue was recrystallized from ethanol to give the product, (I) (yield 0.072 g, 73%; m.p. 421–422 K).

The preparation of (II) was carried out as follows. To a solution of ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-[(4-methylphenyl)sulfanyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylate (0.1 g, 0.2 mmol) in benzene (10 ml), dichlorodicyanobenzoquinone (0.094 g, 0.4 mmol) was added and the mixture was refluxed in a water bath for 30 min. The precipitated DDQ-H2 was filtered off and the filtrate evaporated under vaccum. The residue was recrystallized from ethanol to give the product, (II) (yield 0.071 g, 72%; m.p. 380–381 K).

Refinement top

H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93–0.97 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) for CH2 and CH groups, 1.5Ueq for CH3 groups and 1.5Ueq(O)for OH groups.

Computing details top

Data collection: SMART (Bruker, 2001) for (I); CAD-4 EXPRESS (Enraf–Nonius, 1994) for (II). Cell refinement: SAINT (Bruker, 2001) for (I); CAD-4 EXPRESS for (II). Data reduction: SAINT (Bruker, 2001) for (I); XCAD4 (Harms & Wocadlo, 1996) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A partial packing view, showing the intermolecular C—H···O hydrogen bonding (dashed lines) in compound (I). H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. [Symmetry codes: (i) -x, y - 1/2, 1/2 - z; (ii) -x, -y, -z; (iii) 1 - x, -y, 1 - z.]
[Figure 4] Fig. 4. The packing of the molecules of (I), showing the C—H··· π interactions (dashed lines) within the unit cell, viewed down the a axis. H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity.
[Figure 5] Fig. 5. A partial packing view, showing the intermolecular C—H···F hydrogen bonding (dashed lines) in compound (II). H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. [Symmetry codes: (i) x - 1/2, -y + 3/2, z - 1/2.]
[Figure 6] Fig. 6. The packing of the molecules of (II), showing the C—H··· π interactions (dashed lines) within the unit cell, viewed down the b axis. H atoms are shown as small spheres of arbitrary radii. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity.
(I) Ethyl 4-hydroxy-2,6-diphenyl-5-(phenylsulfanyl)pyridine-3-carboxylate top
Crystal data top
C26H21NO3SF(000) = 896
Mr = 427.50Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1024 reflections
a = 10.3728 (2) Åθ = 2.1–28.3°
b = 17.1008 (4) ŵ = 0.18 mm1
c = 12.9444 (3) ÅT = 105 K
β = 111.041 (1)°Block, colourless
V = 2143.02 (8) Å30.28 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5325 independent reflections
Radiation source: fine-focus sealed tube4855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 2222
Tmin = 0.97, Tmax = 0.979l = 1717
32101 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0504P)2 + 1.7947P]
where P = (Fo2 + 2Fc2)/3
5325 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.84 e Å3
1 restraintΔρmin = 0.78 e Å3
Crystal data top
C26H21NO3SV = 2143.02 (8) Å3
Mr = 427.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3728 (2) ŵ = 0.18 mm1
b = 17.1008 (4) ÅT = 105 K
c = 12.9444 (3) Å0.28 × 0.14 × 0.12 mm
β = 111.041 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4855 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.979Rint = 0.043
32101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.84 e Å3
5325 reflectionsΔρmin = 0.78 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53613 (3)0.111038 (19)0.24647 (3)0.01821 (10)
O30.04370 (10)0.00306 (6)0.22688 (8)0.0178 (2)
O20.03086 (10)0.06894 (6)0.08528 (8)0.0208 (2)
N10.35713 (11)0.08449 (6)0.30626 (9)0.0151 (2)
C40.26934 (14)0.06118 (7)0.20182 (10)0.0152 (2)
C50.41167 (13)0.04426 (8)0.25795 (11)0.0155 (2)
C20.22209 (13)0.06883 (7)0.25484 (10)0.0139 (2)
O10.23038 (13)0.13075 (7)0.14915 (11)0.0320 (3)
H10.14580.13310.12260.048*
C60.44965 (13)0.02807 (8)0.31048 (11)0.0148 (2)
C70.02297 (13)0.02565 (7)0.16414 (11)0.0150 (2)
C210.13040 (13)0.13751 (7)0.24604 (11)0.0147 (2)
C30.17215 (13)0.00395 (7)0.20649 (10)0.0140 (2)
C520.46664 (15)0.18705 (9)0.41216 (12)0.0223 (3)
H520.40670.14610.40990.027*
C610.59700 (13)0.05049 (8)0.36987 (11)0.0168 (3)
C510.54401 (14)0.18656 (8)0.34340 (11)0.0167 (2)
C550.64774 (16)0.30974 (9)0.42023 (12)0.0239 (3)
H550.70860.35040.42340.029*
C220.15448 (14)0.18766 (8)0.33627 (11)0.0187 (3)
H220.22400.17630.40350.022*
C260.02641 (15)0.15553 (8)0.14508 (11)0.0194 (3)
H260.00980.12240.08470.023*
C620.64739 (15)0.11835 (8)0.33759 (13)0.0214 (3)
H620.58870.14950.28150.026*
C660.68497 (15)0.00516 (9)0.45660 (12)0.0223 (3)
H660.65190.03980.47900.027*
C630.78557 (16)0.13937 (9)0.38927 (15)0.0279 (3)
H630.81950.18370.36620.033*
C560.63519 (15)0.24782 (8)0.34790 (12)0.0211 (3)
H560.68730.24710.30250.025*
C230.07422 (16)0.25479 (9)0.32540 (13)0.0232 (3)
H230.08950.28770.38580.028*
C90.28237 (16)0.02996 (11)0.10367 (15)0.0313 (3)
H9A0.37640.01380.08650.047*
H9B0.27290.08400.12530.047*
H9C0.25740.02350.03960.047*
C80.18861 (14)0.01925 (9)0.19726 (12)0.0209 (3)
H8A0.19960.07390.17560.025*
H8B0.21520.01330.26140.025*
C250.05231 (16)0.22294 (9)0.13464 (12)0.0244 (3)
H250.12110.23480.06720.029*
C540.56959 (17)0.31116 (9)0.48794 (12)0.0247 (3)
H540.57700.35310.53550.030*
C530.48040 (17)0.24970 (9)0.48418 (13)0.0262 (3)
H530.42930.25040.53030.031*
C240.02860 (16)0.27258 (9)0.22460 (13)0.0245 (3)
H240.08140.31760.21740.029*
C640.87261 (16)0.09418 (10)0.47512 (14)0.0301 (3)
H640.96460.10850.50970.036*
C650.82238 (16)0.02752 (10)0.50947 (13)0.0277 (3)
H650.88050.00220.56780.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01923 (17)0.01681 (17)0.02316 (17)0.00354 (12)0.01313 (13)0.00145 (12)
O30.0130 (4)0.0218 (5)0.0196 (4)0.0026 (3)0.0071 (4)0.0037 (4)
O20.0196 (5)0.0209 (5)0.0213 (5)0.0040 (4)0.0068 (4)0.0060 (4)
N10.0146 (5)0.0142 (5)0.0171 (5)0.0002 (4)0.0062 (4)0.0006 (4)
C40.0180 (6)0.0137 (6)0.0158 (6)0.0003 (5)0.0082 (5)0.0012 (4)
C50.0160 (6)0.0152 (6)0.0177 (6)0.0022 (5)0.0088 (5)0.0010 (5)
C20.0146 (6)0.0142 (6)0.0141 (5)0.0001 (4)0.0065 (4)0.0003 (4)
O10.0310 (6)0.0260 (6)0.0392 (7)0.0017 (5)0.0129 (5)0.0063 (5)
C60.0149 (6)0.0160 (6)0.0151 (5)0.0004 (5)0.0074 (5)0.0012 (4)
C70.0161 (6)0.0128 (6)0.0165 (6)0.0000 (4)0.0063 (5)0.0015 (4)
C210.0138 (5)0.0123 (5)0.0188 (6)0.0008 (4)0.0070 (5)0.0001 (4)
C30.0146 (6)0.0137 (6)0.0146 (6)0.0005 (4)0.0062 (5)0.0002 (4)
C520.0221 (7)0.0219 (7)0.0269 (7)0.0051 (5)0.0136 (6)0.0031 (5)
C610.0143 (6)0.0193 (6)0.0172 (6)0.0011 (5)0.0062 (5)0.0034 (5)
C510.0160 (6)0.0158 (6)0.0180 (6)0.0005 (5)0.0057 (5)0.0017 (5)
C550.0279 (7)0.0190 (7)0.0231 (7)0.0071 (5)0.0070 (6)0.0010 (5)
C220.0171 (6)0.0175 (6)0.0198 (6)0.0006 (5)0.0045 (5)0.0029 (5)
C260.0222 (6)0.0172 (6)0.0176 (6)0.0018 (5)0.0056 (5)0.0008 (5)
C620.0174 (6)0.0187 (6)0.0271 (7)0.0001 (5)0.0068 (5)0.0024 (5)
C660.0203 (7)0.0279 (7)0.0187 (6)0.0034 (5)0.0072 (5)0.0002 (5)
C630.0206 (7)0.0231 (7)0.0398 (9)0.0060 (6)0.0107 (6)0.0087 (6)
C560.0230 (7)0.0206 (7)0.0218 (6)0.0043 (5)0.0105 (5)0.0013 (5)
C230.0247 (7)0.0184 (6)0.0260 (7)0.0024 (5)0.0085 (6)0.0059 (5)
C90.0184 (7)0.0366 (9)0.0355 (9)0.0019 (6)0.0053 (6)0.0044 (7)
C80.0134 (6)0.0248 (7)0.0251 (7)0.0033 (5)0.0077 (5)0.0019 (5)
C250.0261 (7)0.0211 (7)0.0219 (7)0.0067 (6)0.0039 (6)0.0025 (5)
C540.0302 (8)0.0203 (7)0.0216 (7)0.0007 (6)0.0070 (6)0.0031 (5)
C530.0278 (7)0.0279 (8)0.0273 (7)0.0020 (6)0.0153 (6)0.0048 (6)
C240.0255 (7)0.0173 (6)0.0297 (7)0.0072 (5)0.0087 (6)0.0003 (5)
C640.0157 (6)0.0372 (9)0.0338 (8)0.0016 (6)0.0044 (6)0.0146 (7)
C650.0200 (7)0.0390 (9)0.0199 (7)0.0077 (6)0.0022 (5)0.0045 (6)
Geometric parameters (Å, º) top
S1—C51.7693 (13)C22—H220.9300
S1—C511.7819 (14)C26—C251.3909 (19)
O3—C71.3350 (16)C26—H260.9300
O3—C81.4622 (16)C62—C631.394 (2)
O2—C71.2216 (16)C62—H620.9300
N1—C21.3444 (16)C66—C651.395 (2)
N1—C61.3480 (17)C66—H660.9300
C4—O11.3586 (17)C63—C641.388 (2)
C4—C51.4216 (18)C63—H630.9300
C4—C31.4218 (17)C56—H560.9300
C5—C61.3984 (18)C23—C241.390 (2)
C2—C31.4059 (17)C23—H230.9300
C2—C211.4896 (17)C9—C81.509 (2)
O1—H10.8200C9—H9A0.9600
C6—C611.4935 (18)C9—H9B0.9600
C7—C31.4911 (17)C9—H9C0.9600
C21—C221.3973 (18)C8—H8A0.9700
C21—C261.3979 (18)C8—H8B0.9700
C52—C531.393 (2)C25—C241.390 (2)
C52—C511.3963 (19)C25—H250.9300
C52—H520.9300C54—C531.390 (2)
C61—C621.397 (2)C54—H540.9300
C61—C661.3994 (19)C53—H530.9300
C51—C561.3985 (19)C24—H240.9300
C55—C561.388 (2)C64—C651.391 (3)
C55—C541.391 (2)C64—H640.9300
C55—H550.9300C65—H650.9300
C22—C231.3951 (19)
C5—S1—C51105.01 (6)C63—C62—H62120.0
C7—O3—C8116.93 (10)C61—C62—H62120.0
C2—N1—C6118.53 (11)C65—C66—C61119.93 (14)
O1—C4—C5120.13 (12)C65—C66—H66120.0
O1—C4—C3122.44 (12)C61—C66—H66120.0
C5—C4—C3117.41 (12)C64—C63—C62120.12 (15)
C6—C5—C4119.21 (12)C64—C63—H63119.9
C6—C5—S1121.68 (10)C62—C63—H63119.9
C4—C5—S1118.75 (10)C55—C56—C51119.85 (13)
N1—C2—C3123.27 (12)C55—C56—H56120.1
N1—C2—C21113.82 (11)C51—C56—H56120.1
C3—C2—C21122.75 (11)C24—C23—C22120.24 (13)
C4—O1—H1109.5C24—C23—H23119.9
N1—C6—C5122.77 (12)C22—C23—H23119.9
N1—C6—C61114.79 (11)C8—C9—H9A109.5
C5—C6—C61122.34 (12)C8—C9—H9B109.5
O2—C7—O3123.36 (12)H9A—C9—H9B109.5
O2—C7—C3124.10 (12)C8—C9—H9C109.5
O3—C7—C3112.38 (11)H9A—C9—H9C109.5
C22—C21—C26119.50 (12)H9B—C9—H9C109.5
C22—C21—C2120.16 (12)O3—C8—C9111.76 (12)
C26—C21—C2120.16 (12)O3—C8—H8A109.3
C2—C3—C4118.35 (12)C9—C8—H8A109.3
C2—C3—C7123.49 (11)O3—C8—H8B109.3
C4—C3—C7118.11 (11)C9—C8—H8B109.3
C53—C52—C51119.13 (13)H8A—C8—H8B107.9
C53—C52—H52120.4C24—C25—C26120.24 (13)
C51—C52—H52120.4C24—C25—H25119.9
C62—C61—C66119.60 (13)C26—C25—H25119.9
C62—C61—C6118.88 (12)C53—C54—C55119.73 (14)
C66—C61—C6121.52 (12)C53—C54—H54120.1
C52—C51—C56120.26 (13)C55—C54—H54120.1
C52—C51—S1124.17 (11)C54—C53—C52120.80 (14)
C56—C51—S1115.57 (10)C54—C53—H53119.6
C56—C55—C54120.22 (13)C52—C53—H53119.6
C56—C55—H55119.9C25—C24—C23119.87 (13)
C54—C55—H55119.9C25—C24—H24120.1
C23—C22—C21119.97 (13)C23—C24—H24120.1
C23—C22—H22120.0C63—C64—C65120.10 (14)
C21—C22—H22120.0C63—C64—H64119.9
C25—C26—C21120.17 (13)C65—C64—H64119.9
C25—C26—H26119.9C64—C65—C66120.12 (15)
C21—C26—H26119.9C64—C65—H65119.9
C63—C62—C61120.10 (14)C66—C65—H65119.9
O1—C4—C5—C6179.22 (12)N1—C6—C61—C6253.60 (17)
C3—C4—C5—C62.66 (18)C5—C6—C61—C62122.86 (14)
O1—C4—C5—S16.01 (17)N1—C6—C61—C66126.42 (14)
C3—C4—C5—S1175.87 (9)C5—C6—C61—C6657.13 (18)
C51—S1—C5—C6106.18 (11)C53—C52—C51—C560.7 (2)
C51—S1—C5—C480.79 (11)C53—C52—C51—S1179.42 (12)
C6—N1—C2—C30.96 (19)C5—S1—C51—C521.27 (14)
C6—N1—C2—C21174.60 (11)C5—S1—C51—C56178.87 (11)
C2—N1—C6—C53.98 (19)C26—C21—C22—C230.5 (2)
C2—N1—C6—C61179.58 (11)C2—C21—C22—C23175.69 (13)
C4—C5—C6—N13.05 (19)C22—C21—C26—C250.1 (2)
S1—C5—C6—N1169.95 (10)C2—C21—C26—C25175.10 (13)
C4—C5—C6—C61179.23 (12)C66—C61—C62—C632.0 (2)
S1—C5—C6—C616.23 (18)C6—C61—C62—C63178.01 (13)
C8—O3—C7—O20.29 (19)C62—C61—C66—C650.6 (2)
C8—O3—C7—C3175.85 (11)C6—C61—C66—C65179.39 (13)
N1—C2—C21—C2242.75 (17)C61—C62—C63—C641.9 (2)
C3—C2—C21—C22141.67 (13)C54—C55—C56—C510.2 (2)
N1—C2—C21—C26132.38 (13)C52—C51—C56—C550.7 (2)
C3—C2—C21—C2643.20 (18)S1—C51—C56—C55179.47 (11)
N1—C2—C3—C46.59 (19)C21—C22—C23—C240.9 (2)
C21—C2—C3—C4168.58 (11)C7—O3—C8—C981.25 (15)
N1—C2—C3—C7170.70 (12)C21—C26—C25—C240.3 (2)
C21—C2—C3—C714.13 (19)C56—C55—C54—C531.0 (2)
O1—C4—C3—C2174.79 (12)C55—C54—C53—C520.9 (2)
C5—C4—C3—C27.13 (18)C51—C52—C53—C540.1 (2)
O1—C4—C3—C77.77 (18)C26—C25—C24—C230.0 (2)
C5—C4—C3—C7170.30 (11)C22—C23—C24—C250.6 (2)
O2—C7—C3—C2147.73 (14)C62—C63—C64—C650.4 (2)
O3—C7—C3—C236.75 (17)C63—C64—C65—C661.0 (2)
O2—C7—C3—C434.98 (19)C61—C66—C65—C640.9 (2)
O3—C7—C3—C4140.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.042.7450 (16)144
C23—H23···O2i0.932.593.3168 (18)136
C26—H26···O2ii0.932.463.3446 (17)158
C65—H65···O3iii0.932.593.4008 (18)146
C22—H22···Cg1iii0.932.893.6647 (15)142
C8—H8B···Cg2iv0.972.753.6458 (16)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
(II) ethyl 2,6-bis(4-fluorophenyl)-4-hydroxy-5-(4-methylphenylsulfanyl)pyridine-3- carboxylate top
Crystal data top
C27H21F2NO3SF(000) = 992
Mr = 477.52Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.092 (1) Åθ = 2.1–25°
b = 10.489 (1) ŵ = 0.18 mm1
c = 18.496 (2) ÅT = 293 K
β = 94.78 (1)°Block, colourless
V = 2337.7 (4) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Nonius MACH3 four-circle
diffractometer
2764 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 112
Tmin = 0.992, Tmax = 0.995l = 2121
4815 measured reflections3 standard reflections every 60 min
4099 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.8462P]
where P = (Fo2 + 2Fc2)/3
4097 reflections(Δ/σ)max = 0.011
310 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C27H21F2NO3SV = 2337.7 (4) Å3
Mr = 477.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.092 (1) ŵ = 0.18 mm1
b = 10.489 (1) ÅT = 293 K
c = 18.496 (2) Å0.18 × 0.16 × 0.12 mm
β = 94.78 (1)°
Data collection top
Nonius MACH3 four-circle
diffractometer
2764 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.992, Tmax = 0.9953 standard reflections every 60 min
4815 measured reflections intensity decay: none
4099 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
4097 reflectionsΔρmin = 0.41 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69276 (6)0.63200 (6)0.45788 (4)0.0499 (2)
F11.08865 (15)0.96844 (16)0.58697 (11)0.0812 (6)
F20.95802 (16)0.01595 (18)0.83625 (9)0.0817 (6)
N10.86681 (16)0.43305 (18)0.61503 (10)0.0400 (5)
O10.59470 (19)0.3728 (2)0.46464 (13)0.0836 (7)
H10.55910.31080.47660.125*
O20.57232 (17)0.14879 (19)0.54263 (16)0.0892 (8)
O30.74442 (15)0.07179 (15)0.55407 (10)0.0515 (4)
C20.81170 (19)0.3213 (2)0.61398 (12)0.0384 (5)
C30.72390 (19)0.2931 (2)0.56223 (13)0.0417 (6)
C40.68499 (19)0.3899 (2)0.51355 (13)0.0428 (6)
C50.7451 (2)0.5055 (2)0.51411 (12)0.0409 (5)
C60.83688 (19)0.5205 (2)0.56465 (12)0.0378 (5)
C70.6708 (2)0.1651 (2)0.55316 (15)0.0508 (6)
C80.7021 (3)0.0583 (2)0.54160 (17)0.0632 (8)
H8A0.75960.11050.52300.076*
H8B0.63950.05620.50530.076*
C90.6671 (3)0.1159 (3)0.60874 (19)0.0764 (9)
H9A0.72730.11210.64600.115*
H9B0.64670.20330.59970.115*
H9C0.60460.07000.62420.115*
C210.8496 (2)0.2321 (2)0.67337 (12)0.0406 (5)
C220.9622 (2)0.2186 (2)0.69426 (14)0.0504 (6)
H221.01350.26650.67110.060*
C230.9993 (2)0.1350 (3)0.74914 (15)0.0594 (7)
H231.07460.12550.76270.071*
C240.9219 (3)0.0670 (3)0.78258 (13)0.0558 (7)
C250.8109 (2)0.0782 (3)0.76490 (14)0.0559 (7)
H250.76040.03080.78900.067*
C260.7751 (2)0.1618 (2)0.71021 (13)0.0515 (6)
H260.69940.17110.69780.062*
C510.7413 (2)0.5993 (2)0.37167 (14)0.0459 (6)
C520.7051 (3)0.6812 (3)0.31585 (16)0.0638 (8)
H520.65570.74640.32430.077*
C530.7421 (3)0.6664 (3)0.24784 (17)0.0693 (8)
H530.71700.72220.21100.083*
C540.8155 (2)0.5708 (3)0.23299 (15)0.0605 (7)
C550.8507 (2)0.4909 (3)0.28892 (15)0.0578 (7)
H550.90030.42600.28040.069*
C560.8147 (2)0.5037 (2)0.35770 (14)0.0525 (6)
H560.84000.44770.39440.063*
C570.8556 (3)0.5580 (4)0.15784 (17)0.0901 (11)
H57A0.90100.48320.15600.135*
H57B0.89830.63190.14730.135*
H57C0.79290.55080.12270.135*
C610.90526 (19)0.6398 (2)0.56882 (13)0.0394 (5)
C620.9225 (2)0.7023 (2)0.63465 (14)0.0509 (6)
H620.89230.66890.67520.061*
C630.9842 (2)0.8139 (3)0.64111 (16)0.0588 (7)
H630.99470.85660.68520.071*
C641.0288 (2)0.8590 (2)0.58089 (17)0.0556 (7)
C651.0169 (2)0.7993 (3)0.51554 (15)0.0541 (7)
H651.05010.83160.47590.065*
C660.9536 (2)0.6888 (2)0.50955 (14)0.0463 (6)
H660.94370.64710.46510.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0554 (4)0.0366 (3)0.0570 (4)0.0085 (3)0.0009 (3)0.0011 (3)
F10.0786 (12)0.0498 (10)0.1151 (15)0.0265 (9)0.0062 (10)0.0027 (9)
F20.0986 (14)0.0750 (12)0.0688 (11)0.0021 (10)0.0099 (10)0.0303 (9)
N10.0436 (11)0.0365 (10)0.0406 (11)0.0033 (9)0.0074 (8)0.0032 (9)
O10.0730 (15)0.0713 (15)0.1023 (18)0.0107 (12)0.0170 (13)0.0001 (13)
O20.0464 (12)0.0508 (12)0.166 (2)0.0123 (10)0.0206 (13)0.0153 (13)
O30.0536 (11)0.0336 (9)0.0675 (12)0.0044 (8)0.0065 (8)0.0055 (8)
C20.0389 (13)0.0343 (12)0.0432 (13)0.0011 (10)0.0095 (10)0.0022 (10)
C30.0387 (13)0.0353 (12)0.0512 (14)0.0030 (10)0.0054 (11)0.0026 (11)
C40.0387 (13)0.0409 (14)0.0483 (14)0.0004 (10)0.0006 (11)0.0046 (11)
C50.0436 (13)0.0351 (12)0.0438 (13)0.0010 (10)0.0032 (10)0.0016 (10)
C60.0429 (13)0.0330 (12)0.0388 (12)0.0006 (10)0.0105 (10)0.0032 (10)
C70.0494 (16)0.0400 (14)0.0619 (17)0.0049 (12)0.0025 (12)0.0064 (12)
C80.074 (2)0.0335 (14)0.082 (2)0.0104 (13)0.0028 (16)0.0039 (13)
C90.076 (2)0.0472 (17)0.108 (3)0.0061 (15)0.0181 (19)0.0077 (17)
C210.0476 (14)0.0348 (12)0.0398 (12)0.0032 (10)0.0067 (10)0.0060 (10)
C220.0498 (15)0.0475 (14)0.0529 (15)0.0121 (12)0.0014 (12)0.0063 (12)
C230.0533 (16)0.0584 (16)0.0640 (17)0.0048 (14)0.0097 (13)0.0095 (14)
C240.077 (2)0.0460 (15)0.0428 (14)0.0009 (14)0.0026 (13)0.0066 (12)
C250.0662 (19)0.0534 (15)0.0503 (15)0.0020 (14)0.0177 (13)0.0104 (13)
C260.0512 (15)0.0554 (16)0.0494 (15)0.0022 (13)0.0132 (12)0.0058 (12)
C510.0454 (14)0.0402 (13)0.0505 (14)0.0035 (11)0.0059 (11)0.0017 (11)
C520.0641 (18)0.0580 (17)0.0684 (19)0.0127 (15)0.0009 (15)0.0128 (15)
C530.073 (2)0.077 (2)0.0564 (18)0.0022 (17)0.0029 (15)0.0220 (15)
C540.0522 (16)0.0721 (19)0.0569 (17)0.0122 (15)0.0026 (13)0.0020 (15)
C550.0550 (16)0.0576 (17)0.0599 (17)0.0016 (14)0.0008 (13)0.0040 (14)
C560.0593 (16)0.0424 (14)0.0542 (15)0.0051 (12)0.0055 (12)0.0016 (12)
C570.087 (2)0.120 (3)0.065 (2)0.003 (2)0.0163 (18)0.010 (2)
C610.0370 (12)0.0327 (12)0.0487 (13)0.0013 (10)0.0040 (10)0.0023 (10)
C620.0533 (15)0.0480 (15)0.0519 (15)0.0085 (12)0.0085 (12)0.0043 (12)
C630.0610 (17)0.0513 (16)0.0635 (18)0.0106 (14)0.0016 (14)0.0172 (14)
C640.0476 (15)0.0361 (13)0.083 (2)0.0083 (12)0.0029 (14)0.0009 (14)
C650.0520 (16)0.0463 (15)0.0653 (18)0.0035 (12)0.0129 (13)0.0085 (13)
C660.0489 (14)0.0415 (13)0.0494 (14)0.0018 (11)0.0087 (11)0.0012 (11)
Geometric parameters (Å, º) top
S1—C51.770 (2)C24—C251.360 (4)
S1—C511.778 (3)C25—C261.380 (4)
F1—C641.356 (3)C25—H250.9300
F2—C241.364 (3)C26—H260.9300
N1—C61.336 (3)C51—C561.378 (4)
N1—C21.347 (3)C51—C521.386 (4)
O1—C41.371 (3)C51—CG11.397 (3)
O1—H10.8200C52—C531.379 (4)
O2—C71.203 (3)C52—H520.9300
O3—C71.322 (3)C53—C541.382 (4)
O3—C81.468 (3)C53—H530.9300
C2—C31.401 (3)C54—C551.371 (4)
C2—C211.486 (3)C54—CG11.405 (3)
C3—C41.411 (3)C54—C571.516 (4)
C3—C71.492 (3)C55—C561.385 (4)
C4—C51.413 (3)C55—H550.9300
C5—C61.399 (3)C56—H560.9300
C6—C611.499 (3)C57—H57A0.9600
C8—C91.475 (4)C57—H57B0.9600
C8—H8A0.9700C57—H57C0.9600
C8—H8B0.9700C61—C621.383 (3)
C9—H9A0.9600C61—C661.384 (3)
C9—H9B0.9600C62—C631.387 (4)
C9—H9C0.9600C62—H620.9300
C21—C261.387 (3)C63—C641.363 (4)
C21—C221.391 (3)C63—H630.9300
C22—C231.388 (4)C64—C651.358 (4)
C22—H220.9300C65—C661.388 (4)
C23—C241.364 (4)C65—H650.9300
C23—H230.9300C66—H660.9300
C5—S1—C51104.69 (11)C21—C26—H26119.3
C6—N1—C2118.8 (2)C56—C51—C52118.7 (3)
C4—O1—H1109.5C56—C51—CG159.50 (16)
C7—O3—C8117.4 (2)C52—C51—CG159.19 (17)
N1—C2—C3122.6 (2)C56—C51—S1125.1 (2)
N1—C2—C21114.5 (2)C52—C51—S1116.2 (2)
C3—C2—C21122.8 (2)CG1—C51—S1174.78 (18)
C2—C3—C4118.5 (2)C53—C52—C51120.2 (3)
C2—C3—C7124.1 (2)C53—C52—H52119.9
C4—C3—C7117.3 (2)C51—C52—H52119.9
O1—C4—C3122.1 (2)C52—C53—C54121.7 (3)
O1—C4—C5119.9 (2)C52—C53—H53119.1
C3—C4—C5117.9 (2)C54—C53—H53119.1
C6—C5—C4118.7 (2)C55—C54—C53117.2 (3)
C6—C5—S1122.22 (18)C55—C54—CG158.63 (17)
C4—C5—S1118.73 (18)C53—C54—CG158.61 (18)
N1—C6—C5122.9 (2)C55—C54—C57122.3 (3)
N1—C6—C61114.9 (2)C53—C54—C57120.4 (3)
C5—C6—C61122.1 (2)CG1—C54—C57178.8 (3)
O2—C7—O3123.6 (2)C54—C55—C56122.1 (3)
O2—C7—C3123.8 (2)C54—C55—H55118.9
O3—C7—C3112.5 (2)C56—C55—H55118.9
O3—C8—C9111.7 (2)C51—C56—C55120.0 (2)
O3—C8—H8A109.3C51—C56—H56120.0
C9—C8—H8A109.3C55—C56—H56120.0
O3—C8—H8B109.3C54—C57—H57A109.5
C9—C8—H8B109.3C54—C57—H57B109.5
H8A—C8—H8B107.9H57A—C57—H57B109.5
C8—C9—H9A109.5C54—C57—H57C109.5
C8—C9—H9B109.5H57A—C57—H57C109.5
H9A—C9—H9B109.5H57B—C57—H57C109.5
C8—C9—H9C109.5C62—C61—C66118.6 (2)
H9A—C9—H9C109.5C62—C61—C6118.9 (2)
H9B—C9—H9C109.5C66—C61—C6122.5 (2)
C26—C21—C22118.1 (2)C61—C62—C63121.1 (2)
C26—C21—C2121.7 (2)C61—C62—H62119.5
C22—C21—C2120.3 (2)C63—C62—H62119.5
C23—C22—C21121.1 (2)C64—C63—C62118.0 (3)
C23—C22—H22119.5C64—C63—H63121.0
C21—C22—H22119.5C62—C63—H63121.0
C24—C23—C22118.0 (3)F1—C64—C65118.7 (3)
C24—C23—H23121.0F1—C64—C63118.1 (3)
C22—C23—H23121.0C65—C64—C63123.2 (2)
C25—C24—C23123.1 (3)C64—C65—C66118.3 (2)
C25—C24—F2118.7 (3)C64—C65—H65120.9
C23—C24—F2118.2 (3)C66—C65—H65120.9
C24—C25—C26118.3 (2)C61—C66—C65120.9 (2)
C24—C25—H25120.9C61—C66—H66119.6
C26—C25—H25120.9C65—C66—H66119.6
C25—C26—C21121.4 (3)C51—CG1—C54179.74 (18)
C25—C26—H26119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.092.782 (3)142
C57—H57C···F1i0.962.513.393 (4)153
C22—H22···Cg1ii0.932.973.749 (3)143
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+2, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H21NO3SC27H21F2NO3S
Mr427.50477.52
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)105293
a, b, c (Å)10.3728 (2), 17.1008 (4), 12.9444 (3)12.092 (1), 10.489 (1), 18.496 (2)
β (°) 111.041 (1) 94.78 (1)
V3)2143.02 (8)2337.7 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.180.18
Crystal size (mm)0.28 × 0.14 × 0.120.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Nonius MACH3 four-circle
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
ψ scan
(North et al., 1968)
Tmin, Tmax0.97, 0.9790.992, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
32101, 5325, 4855 4815, 4099, 2764
Rint0.0430.020
(sin θ/λ)max1)0.6670.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.02 0.043, 0.128, 1.01
No. of reflections53254097
No. of parameters280310
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.780.34, 0.41

Computer programs: SMART (Bruker, 2001), CAD-4 EXPRESS (Enraf–Nonius, 1994), SAINT (Bruker, 2001), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected bond lengths (Å) for (I) top
S1—C51.7693 (13)O3—C81.4622 (16)
S1—C511.7819 (14)O2—C71.2216 (16)
O3—C71.3350 (16)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.042.7450 (16)144
C23—H23···O2i0.932.593.3168 (18)136
C26—H26···O2ii0.932.463.3446 (17)158
C65—H65···O3iii0.932.593.4008 (18)146
C22—H22···Cg1iii0.932.893.6647 (15)142
C8—H8B···Cg2iv0.972.753.6458 (16)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
Selected bond lengths (Å) for (II) top
S1—C51.770 (2)O3—C71.322 (3)
S1—C511.778 (3)O3—C81.468 (3)
O2—C71.203 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.092.782 (3)141.7
C57—H57C···F1i0.962.513.393 (4)152.7
C22—H22···Cg1ii0.932.973.749 (3)142.8
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds