Download citation
Download citation
link to html
This article presents the main technical features and performance of the upgraded beamline ID02 at the ESRF. The beamline combines different small-angle X-ray scattering techniques in one unique instrument, enabling static and kinetic investigations from ångström to micrometre size scales and time resolution down to the sub-millisecond range. The main component of the instrument is an evacuated detector tube of length 34 m and diameter 2 m. Several different detectors are housed inside a motorized wagon that travels along a rail system, allowing an automated change of the sample–detector distance from about 1 to 31 m as well as selection of the desired detector. For optional combined wide-angle scattering measurements, a wide-angle detector is installed at the entrance cone of the tube. A scattering vector (of magnitude q) range of 0.002 ≤ q ≤ 50 nm−1 is covered with two sample–detector distances and a single-beam setting for an X-ray wavelength of 1 Å. In the high-resolution mode, two-dimensional ultra-small-angle X-ray scattering patterns down to q < 0.001 nm−1 can be recorded, and the resulting one-dimensional profiles have superior quality as compared to those measured with an optimized Bonse–Hart instrument. In the highest-resolution mode, the beam is nearly coherent, thereby permitting multispeckle ultra-small-angle X-ray photon correlation spectroscopy measurements. The main applications of the instrument include the elucidation of static and transient hierarchical structures, and nonequilibrium dynamics in soft matter and biophysical systems.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds