organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[2-(2,6-di­chloro­phen­yl)-4,5-di­phenyl-1H-imidazol-1-yl]propan-2-ol

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 31 March 2015; accepted 4 April 2015; online 9 April 2015)

The central imidazole ring of the title compound, C24H20Cl2N2O, is twisted with respect to with the planes of the 2,6-di­chloro­benzene and two phenyl rings, making dihedral angles of 74.06 (18), 28.52 (17) and 67.65 (18)°, respectively. The phenyl ring not adjacent to the N-bonded 2-hy­droxy­propyl group shows the greatest twist, presumably to minimize steric inter­actions. In the crystal, mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen-bond contacts into chains along the a-axis direction. The series of parallel chains form a two-dimensional sheet approximately parallel to the bc diagonal. In addition, C—H⋯π inter­actions are observed between the sheets. The atoms of the 2-hy­droxy­propyl group and the N atom of the 1H-imidazole ring to which it is bonded are disordered over two sets of sites, with an occupancy ratio of 0.722 (5):0.278 (5). The structure was refined as an inversion twin.

1. Related literature

For similar structures and background to the biological properties of imidazole derivatives, see: Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Fronczek, F. R., Marzouk, A. A. E. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2979-o2980.], 2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abdelhamid, A. A. & Santoyo-Gonzalez, F. (2013a). Acta Cryst. E69, o1105-o1106.],b[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013b). Acta Cryst. E69, o474-o475.]); Akkurt et al. (2013[Akkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013). Acta Cryst. E69, o527-o528.]); Jasinski et al. (2015[Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77-o78.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H20Cl2N2O

  • Mr = 423.32

  • Orthorhombic, P n a 21

  • a = 12.1468 (4) Å

  • b = 8.4194 (2) Å

  • c = 20.9636 (7) Å

  • V = 2143.92 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.86 mm−1

  • T = 173 K

  • 0.48 × 0.44 × 0.26 mm

2.2. Data collection

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.541, Tmax = 1.000

  • 16532 measured reflections

  • 4076 independent reflections

  • 3888 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.05

  • 4076 reflections

  • 278 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: refined as an inversion twin

  • Absolute structure parameter: 0.068 (18)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯N2i 0.84 2.02 2.8468 (1) 170
C14—H14⋯O1Bii 0.95 2.42 3.2107 (1) 141
C6B—H6B2⋯Cg3iii 0.98 2.78 3.6798 (1) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of an ongoing study on synthesis of imidazole based amino alcohols (Akkurt et al., 2013; Mohamed et al., 2013a,b; Jasinski et al., 2015) we report herein the synthesis and crystal structure of the title compound, 1-[2-(2,6-dichlorophenyl)-4,5-diphenyl-1H-imidazol-1-yl] propan-2-ol.

In the title compound, Fig. 1, the central 1H-imidazole ring (N1B/N2/C1—C3) is twisted with respect to with the planes of the benzene, C7–C12, and two phenyl, C13–C18 and C19–C24, rings, making dihedral angles of 74.06 (18), 28.52 (17) and 67.65 (18)°, respectively. The dihedral angle between the C13–C18 and C19–C24 phenyl rings is 69.15 (18)°. The C7–C12 benzene ring makes dihedral angles of 87.01 (18) and 52.65 (18)° with the phenyl rings, C13–C18 and C19–C24, respectively. The bond lengths are normal and comparable to those reported for similar compounds (Mohamed et al., 2012, 2013a,b; Akkurt et al., 2013; Jasinski et al., 2015).

In the crystal, O—H···N and C—H···O hydrogen bonds (Table 1) link molecules into chains along the a axis direction and the series of parallel chains displayed in Fig. 2 form a two-dimensional sheet approximately parallel to the bc diagonal. C—H···π interactions (Table 1) are also observed in the packing of the title compound.

Related literature top

For similar structures and background to the biological properties of imidazole derivatives, see: Mohamed et al. (2012, 2013a,b); Akkurt et al. (2013); Jasinski et al. (2015).

Experimental top

The title compound has been prepared according to our reported method (Jasinski et al., 2015). Irregular colourless blocks of (I) were obtained by the slow evaporation method using ethanol as a solvent. M.p. 455 K, yield, 94%.

Refinement top

The hydrogen atoms bonded to carbon atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 - 1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The hydroxyl H atoms were found in difference Fourier maps and were constrained with O—H = 0.82 ± 0.02 Å and U(H) = 1.5 Ueq(O). The N1 atom of the 1H-imidazole ring and the atoms (C4, C5, C6, O1) of the N1-bonded 2-hydroxypropyl group are disordered over two positions in a 0.722 (5):0.278 (5) ratio (N1A, N1B, C4A, C4B, C5A, C5B, C6A, C6B, O1A and O1B). Each pair of atoms in the disordered components N1A, N1B; C4A, C4B; C5A, C5B; C6A, C6B; O1A, O1B were constrained to be equal using the EADP instruction. In addition, the N1A and N1B atoms were set to occupy the same position by an EXYZ command. The (14 1 8), (14 0 - 4), (12 2 - 1), (13 1 3), (4 3 - 2), (14 2 - 4), (13 2 11), (12 3 - 2), (12 5 - 2), (11 6 4), (11 2 0) and (10 7 3) reflections were omitted owing to very bad agreement.

Structure description top

As part of an ongoing study on synthesis of imidazole based amino alcohols (Akkurt et al., 2013; Mohamed et al., 2013a,b; Jasinski et al., 2015) we report herein the synthesis and crystal structure of the title compound, 1-[2-(2,6-dichlorophenyl)-4,5-diphenyl-1H-imidazol-1-yl] propan-2-ol.

In the title compound, Fig. 1, the central 1H-imidazole ring (N1B/N2/C1—C3) is twisted with respect to with the planes of the benzene, C7–C12, and two phenyl, C13–C18 and C19–C24, rings, making dihedral angles of 74.06 (18), 28.52 (17) and 67.65 (18)°, respectively. The dihedral angle between the C13–C18 and C19–C24 phenyl rings is 69.15 (18)°. The C7–C12 benzene ring makes dihedral angles of 87.01 (18) and 52.65 (18)° with the phenyl rings, C13–C18 and C19–C24, respectively. The bond lengths are normal and comparable to those reported for similar compounds (Mohamed et al., 2012, 2013a,b; Akkurt et al., 2013; Jasinski et al., 2015).

In the crystal, O—H···N and C—H···O hydrogen bonds (Table 1) link molecules into chains along the a axis direction and the series of parallel chains displayed in Fig. 2 form a two-dimensional sheet approximately parallel to the bc diagonal. C—H···π interactions (Table 1) are also observed in the packing of the title compound.

For similar structures and background to the biological properties of imidazole derivatives, see: Mohamed et al. (2012, 2013a,b); Akkurt et al. (2013); Jasinski et al. (2015).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 30% probability displacement ellipsoids. Only the major disorder component is shown.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the b axis. H atoms not involved in the hydrogen bonding (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
1-[2-(2,6-Dichlorophenyl)-4,5-diphenyl-1H-imidazol-1-yl]propan-2-ol top
Crystal data top
C24H20Cl2N2OF(000) = 880
Mr = 423.32Dx = 1.311 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 7461 reflections
a = 12.1468 (4) Åθ = 4.2–71.3°
b = 8.4194 (2) ŵ = 2.86 mm1
c = 20.9636 (7) ÅT = 173 K
V = 2143.92 (11) Å3Irregular blocks, colourless
Z = 40.48 × 0.44 × 0.26 mm
Data collection top
Agilent Eos Gemini
diffractometer
4076 independent reflections
Radiation source: Enhance (Cu) X-ray Source3888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 4.2°
ω scansh = 1410
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1010
Tmin = 0.541, Tmax = 1.000l = 2525
16532 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.7142P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
4076 reflectionsΔρmin = 0.18 e Å3
278 parametersAbsolute structure: Refined as an inversion twin.
15 restraintsAbsolute structure parameter: 0.068 (18)
Crystal data top
C24H20Cl2N2OV = 2143.92 (11) Å3
Mr = 423.32Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 12.1468 (4) ŵ = 2.86 mm1
b = 8.4194 (2) ÅT = 173 K
c = 20.9636 (7) Å0.48 × 0.44 × 0.26 mm
Data collection top
Agilent Eos Gemini
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3888 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 1.000Rint = 0.033
16532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.18 e Å3
4076 reflectionsAbsolute structure: Refined as an inversion twin.
278 parametersAbsolute structure parameter: 0.068 (18)
15 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0230 (2)0.8162 (4)0.64803 (16)0.0295 (6)
C20.0445 (3)0.8711 (4)0.55579 (15)0.0277 (6)
C30.0249 (2)0.9942 (4)0.57117 (15)0.0268 (6)
C4A0.141 (2)1.064 (11)0.667 (5)0.030 (3)0.278 (5)
H4A10.12561.05180.71320.036*0.278 (5)
H4A20.12511.17580.65530.036*0.278 (5)
C5A0.2606 (16)1.0292 (18)0.6547 (8)0.0314 (11)0.278 (5)
H5A0.27621.03910.60800.038*0.278 (5)
C6A0.3335 (15)1.144 (3)0.6916 (10)0.057 (2)0.278 (5)
H6A10.32171.25240.67580.086*0.278 (5)
H6A20.41091.11480.68580.086*0.278 (5)
H6A30.31481.13950.73700.086*0.278 (5)
N1A0.0677 (2)0.9581 (3)0.63059 (12)0.0271 (5)0.278 (5)
O1A0.2788 (7)0.8724 (11)0.6741 (4)0.0378 (7)0.278 (5)
H1A0.31360.81780.65090.057*0.278 (5)
C4B0.1417 (10)1.055 (4)0.6701 (19)0.030 (3)0.722 (5)
H4B10.10981.06390.71340.036*0.722 (5)
H4B20.14501.16340.65180.036*0.722 (5)
C5B0.2591 (5)0.9909 (7)0.6759 (3)0.0314 (11)0.722 (5)
H5B0.25700.87790.69050.038*0.722 (5)
C6B0.3226 (5)1.0906 (10)0.7239 (4)0.057 (2)0.722 (5)
H6B10.32151.20220.71050.086*0.722 (5)
H6B20.39891.05330.72610.086*0.722 (5)
H6B30.28821.08070.76600.086*0.722 (5)
N1B0.0677 (2)0.9581 (3)0.63059 (12)0.0271 (5)0.722 (5)
O1B0.3065 (3)0.9989 (4)0.61501 (16)0.0378 (7)0.722 (5)
H1B0.35680.93080.61200.057*0.722 (5)
C70.0459 (3)0.7343 (4)0.70923 (16)0.0314 (7)
C80.0008 (3)0.7834 (4)0.76676 (18)0.0380 (7)
C90.0182 (3)0.7043 (5)0.82364 (19)0.0491 (9)
H90.01310.74260.86220.059*
C100.0821 (4)0.5684 (5)0.8233 (2)0.0505 (10)
H100.09430.51200.86190.061*
C110.1281 (3)0.5144 (4)0.7672 (2)0.0417 (8)
H110.17190.42100.76720.050*
C120.1104 (3)0.5963 (4)0.71118 (16)0.0341 (7)
C130.1113 (3)0.8452 (3)0.49796 (15)0.0277 (6)
C140.2071 (3)0.7556 (4)0.50122 (18)0.0333 (7)
H140.23070.71530.54130.040*
C150.2688 (3)0.7238 (4)0.44710 (19)0.0383 (8)
H150.33360.66120.45050.046*
C160.2374 (3)0.7820 (5)0.38861 (18)0.0437 (8)
H160.27980.75960.35160.052*
C170.1426 (3)0.8741 (5)0.38446 (18)0.0438 (9)
H170.12070.91640.34440.053*
C180.0797 (3)0.9048 (4)0.43837 (16)0.0351 (7)
H180.01460.96670.43480.042*
C190.0444 (3)1.1482 (4)0.53852 (15)0.0287 (6)
C200.0426 (3)1.2530 (4)0.53319 (17)0.0352 (7)
H200.11201.22610.55100.042*
C210.0295 (3)1.3975 (4)0.50194 (19)0.0428 (8)
H210.08951.46940.49870.051*
C220.0711 (4)1.4357 (4)0.47581 (19)0.0447 (9)
H220.08001.53380.45400.054*
C230.1579 (3)1.3342 (5)0.4809 (2)0.0479 (10)
H230.22721.36250.46320.057*
C240.1457 (3)1.1879 (4)0.51228 (18)0.0395 (8)
H240.20611.11670.51550.047*
N20.0448 (2)0.7612 (3)0.60455 (13)0.0300 (6)
Cl10.08462 (8)0.95060 (12)0.76765 (5)0.0517 (3)
Cl20.16981 (8)0.52689 (10)0.64134 (5)0.0454 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (15)0.0269 (14)0.0334 (15)0.0003 (11)0.0003 (13)0.0026 (13)
C20.0268 (15)0.0253 (14)0.0310 (15)0.0017 (11)0.0014 (12)0.0036 (12)
C30.0260 (15)0.0231 (13)0.0312 (15)0.0015 (11)0.0009 (12)0.0017 (11)
C4A0.0314 (17)0.028 (4)0.031 (4)0.0008 (14)0.0007 (14)0.005 (4)
C5A0.037 (2)0.030 (3)0.027 (3)0.003 (2)0.003 (3)0.004 (2)
C6A0.037 (3)0.078 (5)0.056 (4)0.011 (3)0.012 (3)0.034 (4)
N1A0.0272 (13)0.0249 (12)0.0291 (14)0.0018 (10)0.0007 (10)0.0006 (9)
O1A0.0399 (17)0.0390 (18)0.0345 (16)0.0115 (13)0.0053 (14)0.0003 (13)
C4B0.0314 (17)0.028 (4)0.031 (4)0.0008 (14)0.0007 (14)0.005 (4)
C5B0.037 (2)0.030 (3)0.027 (3)0.003 (2)0.003 (3)0.004 (2)
C6B0.037 (3)0.078 (5)0.056 (4)0.011 (3)0.012 (3)0.034 (4)
N1B0.0272 (13)0.0249 (12)0.0291 (14)0.0018 (10)0.0007 (10)0.0006 (9)
O1B0.0399 (17)0.0390 (18)0.0345 (16)0.0115 (13)0.0053 (14)0.0003 (13)
C70.0302 (16)0.0327 (16)0.0313 (15)0.0045 (13)0.0005 (12)0.0063 (13)
C80.0334 (17)0.0409 (18)0.0397 (17)0.0031 (14)0.0004 (15)0.0058 (15)
C90.055 (2)0.061 (2)0.0318 (17)0.004 (2)0.0061 (17)0.0057 (17)
C100.058 (2)0.057 (2)0.036 (2)0.002 (2)0.0035 (17)0.0211 (18)
C110.0415 (19)0.0391 (18)0.0446 (19)0.0017 (15)0.0024 (17)0.0121 (16)
C120.0340 (17)0.0329 (16)0.0355 (18)0.0038 (14)0.0000 (14)0.0046 (14)
C130.0290 (15)0.0204 (13)0.0339 (16)0.0038 (11)0.0016 (12)0.0001 (12)
C140.0337 (17)0.0268 (15)0.0393 (17)0.0011 (13)0.0016 (14)0.0041 (13)
C150.0308 (16)0.0301 (17)0.054 (2)0.0025 (14)0.0097 (15)0.0002 (15)
C160.047 (2)0.0452 (19)0.0389 (19)0.0057 (16)0.0130 (16)0.0091 (15)
C170.048 (2)0.053 (2)0.0306 (18)0.0016 (17)0.0005 (15)0.0008 (16)
C180.0340 (18)0.0373 (17)0.0339 (17)0.0003 (14)0.0011 (13)0.0025 (14)
C190.0353 (17)0.0216 (14)0.0292 (15)0.0027 (12)0.0020 (12)0.0003 (12)
C200.0369 (18)0.0308 (16)0.0378 (17)0.0030 (13)0.0021 (15)0.0044 (13)
C210.056 (2)0.0255 (16)0.047 (2)0.0066 (15)0.0072 (17)0.0030 (15)
C220.062 (3)0.0271 (17)0.045 (2)0.0137 (16)0.0128 (17)0.0107 (15)
C230.041 (2)0.050 (2)0.053 (2)0.0220 (18)0.0037 (17)0.0169 (18)
C240.0332 (18)0.0364 (18)0.049 (2)0.0033 (14)0.0011 (15)0.0087 (16)
N20.0269 (13)0.0278 (13)0.0353 (14)0.0028 (10)0.0018 (11)0.0046 (11)
Cl10.0463 (5)0.0579 (5)0.0509 (5)0.0193 (4)0.0084 (4)0.0049 (4)
Cl20.0586 (5)0.0359 (4)0.0416 (4)0.0092 (4)0.0054 (4)0.0020 (4)
Geometric parameters (Å, º) top
C1—N21.313 (4)C8—C91.382 (5)
C1—N1A1.362 (4)C8—Cl11.749 (4)
C1—C71.483 (4)C9—C101.382 (6)
C2—C31.374 (4)C9—H90.9500
C2—N21.379 (4)C10—C111.378 (6)
C2—C131.475 (4)C10—H100.9500
C3—N1A1.384 (4)C11—C121.379 (5)
C3—C191.485 (4)C11—H110.9500
C4A—N1A1.47 (3)C12—Cl21.734 (4)
C4A—C5A1.51 (3)C13—C141.388 (5)
C4A—H4A10.9900C13—C181.400 (5)
C4A—H4A20.9900C14—C151.386 (5)
C5A—O1A1.399 (15)C14—H140.9500
C5A—C6A1.52 (2)C15—C161.374 (6)
C5A—H5A1.0000C15—H150.9500
C6A—H6A10.9800C16—C171.391 (6)
C6A—H6A20.9800C16—H160.9500
C6A—H6A30.9800C17—C181.388 (5)
O1A—H1A0.7924C17—H170.9500
C4B—C5B1.530 (17)C18—H180.9500
C4B—H4B10.9900C19—C201.381 (5)
C4B—H4B20.9900C19—C241.388 (5)
C5B—O1B1.401 (6)C20—C211.391 (5)
C5B—C6B1.521 (7)C20—H200.9500
C5B—H5B1.0000C21—C221.377 (6)
C6B—H6B10.9800C21—H210.9500
C6B—H6B20.9800C22—C231.362 (6)
C6B—H6B30.9800C22—H220.9500
O1B—H1B0.8400C23—C241.404 (5)
C7—C81.388 (5)C23—H230.9500
C7—C121.402 (5)C24—H240.9500
N2—C1—N1A111.9 (3)C9—C8—Cl1118.0 (3)
N2—C1—C7123.7 (3)C7—C8—Cl1118.9 (3)
N1A—C1—C7124.4 (3)C8—C9—C10118.7 (4)
C3—C2—N2109.5 (3)C8—C9—H9120.7
C3—C2—C13130.0 (3)C10—C9—H9120.7
N2—C2—C13120.5 (3)C11—C10—C9120.3 (3)
C2—C3—N1A106.0 (3)C11—C10—H10119.8
C2—C3—C19130.4 (3)C9—C10—H10119.8
N1A—C3—C19123.2 (3)C10—C11—C12119.9 (3)
N1A—C4A—C5A112 (2)C10—C11—H11120.1
N1A—C4A—H4A1109.2C12—C11—H11120.1
C5A—C4A—H4A1109.2C11—C12—C7121.8 (3)
N1A—C4A—H4A2109.2C11—C12—Cl2119.1 (3)
C5A—C4A—H4A2109.2C7—C12—Cl2119.2 (2)
H4A1—C4A—H4A2107.9C14—C13—C18117.9 (3)
O1A—C5A—C4A107 (5)C14—C13—C2120.1 (3)
O1A—C5A—C6A111.1 (14)C18—C13—C2122.0 (3)
C4A—C5A—C6A110.4 (17)C15—C14—C13121.2 (3)
O1A—C5A—H5A109.6C15—C14—H14119.4
C4A—C5A—H5A109.6C13—C14—H14119.4
C6A—C5A—H5A109.6C16—C15—C14120.7 (3)
C5A—C6A—H6A1109.5C16—C15—H15119.6
C5A—C6A—H6A2109.5C14—C15—H15119.6
H6A1—C6A—H6A2109.5C15—C16—C17119.0 (3)
C5A—C6A—H6A3109.5C15—C16—H16120.5
H6A1—C6A—H6A3109.5C17—C16—H16120.5
H6A2—C6A—H6A3109.5C18—C17—C16120.6 (3)
C1—N1A—C3106.5 (3)C18—C17—H17119.7
C1—N1A—C4A129 (5)C16—C17—H17119.7
C3—N1A—C4A124 (5)C17—C18—C13120.6 (3)
C5A—O1A—H1A116.9C17—C18—H18119.7
C5B—C4B—H4B1108.6C13—C18—H18119.7
C5B—C4B—H4B2108.6C20—C19—C24119.5 (3)
H4B1—C4B—H4B2107.6C20—C19—C3118.2 (3)
O1B—C5B—C6B111.6 (5)C24—C19—C3122.3 (3)
O1B—C5B—C4B107.1 (17)C19—C20—C21120.6 (3)
C6B—C5B—C4B109.3 (6)C19—C20—H20119.7
O1B—C5B—H5B109.6C21—C20—H20119.7
C6B—C5B—H5B109.6C22—C21—C20119.6 (3)
C4B—C5B—H5B109.6C22—C21—H21120.2
C5B—C6B—H6B1109.5C20—C21—H21120.2
C5B—C6B—H6B2109.5C23—C22—C21120.6 (3)
H6B1—C6B—H6B2109.5C23—C22—H22119.7
C5B—C6B—H6B3109.5C21—C22—H22119.7
H6B1—C6B—H6B3109.5C22—C23—C24120.3 (4)
H6B2—C6B—H6B3109.5C22—C23—H23119.8
C5B—O1B—H1B109.5C24—C23—H23119.8
C8—C7—C12116.2 (3)C19—C24—C23119.4 (3)
C8—C7—C1122.6 (3)C19—C24—H24120.3
C12—C7—C1121.0 (3)C23—C24—H24120.3
C9—C8—C7123.1 (3)C1—N2—C2106.0 (3)
N2—C2—C3—N1A0.0 (3)C1—C7—C12—C11176.8 (3)
C13—C2—C3—N1A179.2 (3)C8—C7—C12—Cl2180.0 (3)
N2—C2—C3—C19172.4 (3)C1—C7—C12—Cl23.4 (4)
C13—C2—C3—C198.4 (6)C3—C2—C13—C14152.9 (3)
N1A—C4A—C5A—O1A61 (9)N2—C2—C13—C1428.0 (4)
N1A—C4A—C5A—C6A178 (6)C3—C2—C13—C1828.9 (5)
N2—C1—N1A—C30.4 (4)N2—C2—C13—C18150.2 (3)
C7—C1—N1A—C3179.3 (3)C18—C13—C14—C150.9 (5)
N2—C1—N1A—C4A175.3 (18)C2—C13—C14—C15177.3 (3)
C7—C1—N1A—C4A3.6 (19)C13—C14—C15—C160.7 (5)
C2—C3—N1A—C10.2 (3)C14—C15—C16—C170.3 (6)
C19—C3—N1A—C1173.3 (3)C15—C16—C17—C181.0 (6)
C2—C3—N1A—C4A175.8 (18)C16—C17—C18—C130.8 (6)
C19—C3—N1A—C4A2.7 (19)C14—C13—C18—C170.2 (5)
C5A—C4A—N1A—C192 (8)C2—C13—C18—C17178.0 (3)
C5A—C4A—N1A—C393 (8)C2—C3—C19—C2062.2 (5)
N2—C1—C7—C8103.3 (4)N1A—C3—C19—C20109.1 (4)
N1A—C1—C7—C875.4 (5)C2—C3—C19—C24116.4 (4)
N2—C1—C7—C1273.1 (4)N1A—C3—C19—C2472.3 (4)
N1A—C1—C7—C12108.2 (4)C24—C19—C20—C210.1 (5)
C12—C7—C8—C90.9 (5)C3—C19—C20—C21178.7 (3)
C1—C7—C8—C9177.4 (3)C19—C20—C21—C220.4 (6)
C12—C7—C8—Cl1177.8 (3)C20—C21—C22—C230.8 (6)
C1—C7—C8—Cl11.2 (5)C21—C22—C23—C240.8 (6)
C7—C8—C9—C101.1 (6)C20—C19—C24—C230.2 (5)
Cl1—C8—C9—C10177.6 (3)C3—C19—C24—C23178.7 (3)
C8—C9—C10—C110.6 (6)C22—C23—C24—C190.5 (6)
C9—C10—C11—C120.0 (6)N1A—C1—N2—C20.4 (4)
C10—C11—C12—C70.2 (6)C7—C1—N2—C2179.3 (3)
C10—C11—C12—Cl2179.6 (3)C3—C2—N2—C10.2 (4)
C8—C7—C12—C110.2 (5)C13—C2—N2—C1179.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1B—H1B···N2i0.842.022.8468 (1)170
C4B—H4B1···Cl10.992.793.5382 (1)133
C14—H14···O1Bii0.952.423.2107 (1)141
C6B—H6B2···Cg3iii0.982.783.6798 (1)154
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z; (iii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1B—H1B···N2i0.842.022.8468 (1)170
C14—H14···O1Bii0.952.423.2107 (1)141
C6B—H6B2···Cg3iii0.982.783.6798 (1)154
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z; (iii) x1/2, y+1/2, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer. SKM would like to thank Keene State College for providing all the X-ray data.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAkkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013). Acta Cryst. E69, o527–o528.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77–o78.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Fronczek, F. R., Marzouk, A. A. E. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2979–o2980.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013b). Acta Cryst. E69, o474–o475.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abdelhamid, A. A. & Santoyo-Gonzalez, F. (2013a). Acta Cryst. E69, o1105–o1106.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds