organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Dimeth­­oxy­phen­yl)-4,5-di­phenyl-1-(prop-2-en-1-yl)-1H-imidazole

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 5 September 2012; accepted 17 September 2012; online 22 September 2012)

In the title compound, C26H24N2O2, the planar 1H-imidazole ring makes dihedral angles of 35.78 (4), 26.35 (5) and 69.75 (5)°, respectively, with the dimeth­oxy­phenyl ring and the phenyl rings in the 4- and 5-positions. In the crystal, C—H⋯O hydrogen bonds connect neighbouring mol­ecules, forming infinite chains running along the b axis. Furthermore, the crystal structure exhibits a C—H-⋯π inter­action between a methyl H atom and a phenyl ring from an adjacent mol­ecule.

Related literature

For the synthesis of imidazole compounds, see: Shalini et al. (2010[Shalini, K., Sharma, P. K. & Kumar, N. (2010). Chem. Sin. 1, 36-47.]). For the medicinal properties of imidazole derivatives, see: Adams et al. (2001[Adams, J. L., Boehm, J. C., Gallagher, T. F., Kassis, S., Webb, E. F., Hall, R., Sorenson, M., Garigipati, R., Don, E., Griswold, D. E. & Lee, J. C. (2001). Bioorg. Med. Chem. Lett. 11, 2867-2870.]); Nakamura et al. (2004[Nakamura, T., Kakinuma, H., Umemiya, H., Amada, H., Miyata, N., Taniguchi, K., Bando, K. & Sato, M. (2004). Bioorg. Med. Chem. Lett. 14, 333-336.]); Venkatesan et al. (2008[Venkatesan, A. M., Agarwal, A., Abe, T., Ushirogochi, H. O., Santos, D., Li, Z., Francisco, G., Lin, Y. I., Peterson, P. J., Yang, Y., Weiss, W. J., Shales, D. M. & Mansour, T. S. (2008). Bioorg. Med. Chem. 16, 1890-1902.]); Nanterment et al. (2004[Nanterment, P. G., Barrow, J. C., Lindsley, S. R., Young, M., Mao, S., Carroll, S., Bailey, C., Bosserman, M., Colussi, D., McMasters, D. R., Vacca, J. P. & Selnick, H. G. (2004). Bioorg. Med. Chem. Lett. 14, 2141-2145.]); Roman et al. (2007[Roman, G., Riley, J. G., Vlahakis, J. Z., Kinobe, R. T., Brien, J. F., Nakatsu, K. & Szarek, W. A. (2007). Bioorg. Med. Chem. 15, 3225-3234.]); Congiu et al. (2008[Congiu, C., Cocco, M. T. & Onnis, V. (2008). Bioorg. Med. Chem. Lett. 18, 989-993.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O2

  • Mr = 396.47

  • Triclinic, [P \overline 1]

  • a = 8.9683 (4) Å

  • b = 10.7916 (5) Å

  • c = 11.7219 (5) Å

  • α = 110.174 (2)°

  • β = 106.267 (2)°

  • γ = 91.991 (3)°

  • V = 1011.32 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.36 × 0.12 × 0.06 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.995

  • 17346 measured reflections

  • 6149 independent reflections

  • 4408 reflections with I > 2σ(I)

  • Rint = 0.039

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.02

  • 6149 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C15–C20 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H9B⋯O1i 0.96 2.57 3.515 (2) 170
C8—H8BCg3ii 0.96 2.98 3.8316 (17) 149
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]).

Supporting information


Comment top

The high therapeutic properties of the imidazole related drugs have encouraged the medicinal chemists to synthesize a large number of novel chemotherapeutic agents incorporating the imidazole nucleus (Shalini et al., 2010). The broad medicinal properties of imidazole drugs include anticancer, β-lactamase inhibitors, 20-HETE (20-hydroxy-5,8,11,14-eicosatetraenoic acid) synthase inhibitors, carboxypeptidase inhibitors, hemeoxygenase inhibitors, anti-aging agents, anticoagulants, anti-inflammatory, antibacterial, antifungal, antiviral, anti-tubercular, anti-diabetic and antimalarial (Congiu et al., 2008; Venkatesan et al., 2008; Nakamura et al., 2004; Roman et al., 2007; Nanterment et al., 2004 and Adams et al., 2001). In this respect and in continuation of our on-going study for synthesis of bioactive molecules, we herein report synthesis and crystal structure of the title compound (I) among series of other imidazole derivatives.

The molecular structure of (I), (Fig. 1), has not a planar conformation. The (N1/N2/C9—C11) 1H-imidazole ring which is planar [maximum deviation = 0.005 (1) Å for C11] forms dihedral angles of 35.78 (4), 26.35 (5) and 69.75 (5)°, respectively, with the C1–C6 benzene ring and the C15–20 and C21–C26 phenyl rings. The plane of the allyl group makes a dihedral angle of 82.09 (12)° with the plane of the 1H-imidazole ring.

In (I), all bond lengths and bond angles are within normal range (Allen et al., 1987). The C3–C4–O1–C8 and C4–C3–O2–C7 torsion angles are 171.98 (13) and -176.30 (13)°, respectively.

In the crystal packing, molecules are linked by C—H···O hydrogen bonds, forming infinite chains running along the b axis (Table 1, Figs. 2 & 3). In addition, a C–H···π interaction is observed between the (C8)H8B methyl H atom and the C15–C20 phenyl ring of the adjacent molecule (Table 1).

Related literature top

For the synthesis of imidazole compounds, see: Shalini et al. (2010). For the medicinal properties of imidazole derivatives, see: Adams et al. (2001); Nakamura et al. (2004); Venkatesan et al. (2008); Nanterment et al. (2004); Roman et al. (2007); Congiu et al. (2008). For geometric data, see: Allen et al. (1987).

Experimental top

A mixture of 25 ml. of dimethyl sulfoxide and 2.4 g. (40 mmol) of potassium hydroxide was added in a 50-ml. volumetric flask equipped with a magnetic stirring bar. The mixture was stirred at room temperature for 5 minutes before adding of 3.26 g. (10 mmole) of 2-(3,4-dimethoxyphenyl)-4,5-diphenyl-1H-imidazole. Stirring was continued for 45 minutes, then 4.80 g. (20 mmol) of allylbromide was added. After being stirred for an additional 45 minutes the mixture was diluted with 20 ml. of water. The organic product was extracted with three 20-ml. portions of diethyl ether, and each ether layer was washed with three 10-ml. portions of water. The combined ether layers were dried over calcium chloride, and the solvent was removed at slightly reduced pressure. The excess allyl bromide was removed by distillation at approximately 15 mm. The residue was solidified upon cooling and scratching to furnish the title compound (3.22 g; 88%). Mono crystals suitable for X-ray analyses were obtained by slow evaporation method from ethanol at room temperature. M.p. 486 – 488 K.

Refinement top

Hydrogen atoms were located geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso =1.2Ueq(C) or 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate but not to tip.

Structure description top

The high therapeutic properties of the imidazole related drugs have encouraged the medicinal chemists to synthesize a large number of novel chemotherapeutic agents incorporating the imidazole nucleus (Shalini et al., 2010). The broad medicinal properties of imidazole drugs include anticancer, β-lactamase inhibitors, 20-HETE (20-hydroxy-5,8,11,14-eicosatetraenoic acid) synthase inhibitors, carboxypeptidase inhibitors, hemeoxygenase inhibitors, anti-aging agents, anticoagulants, anti-inflammatory, antibacterial, antifungal, antiviral, anti-tubercular, anti-diabetic and antimalarial (Congiu et al., 2008; Venkatesan et al., 2008; Nakamura et al., 2004; Roman et al., 2007; Nanterment et al., 2004 and Adams et al., 2001). In this respect and in continuation of our on-going study for synthesis of bioactive molecules, we herein report synthesis and crystal structure of the title compound (I) among series of other imidazole derivatives.

The molecular structure of (I), (Fig. 1), has not a planar conformation. The (N1/N2/C9—C11) 1H-imidazole ring which is planar [maximum deviation = 0.005 (1) Å for C11] forms dihedral angles of 35.78 (4), 26.35 (5) and 69.75 (5)°, respectively, with the C1–C6 benzene ring and the C15–20 and C21–C26 phenyl rings. The plane of the allyl group makes a dihedral angle of 82.09 (12)° with the plane of the 1H-imidazole ring.

In (I), all bond lengths and bond angles are within normal range (Allen et al., 1987). The C3–C4–O1–C8 and C4–C3–O2–C7 torsion angles are 171.98 (13) and -176.30 (13)°, respectively.

In the crystal packing, molecules are linked by C—H···O hydrogen bonds, forming infinite chains running along the b axis (Table 1, Figs. 2 & 3). In addition, a C–H···π interaction is observed between the (C8)H8B methyl H atom and the C15–C20 phenyl ring of the adjacent molecule (Table 1).

For the synthesis of imidazole compounds, see: Shalini et al. (2010). For the medicinal properties of imidazole derivatives, see: Adams et al. (2001); Nakamura et al. (2004); Venkatesan et al. (2008); Nanterment et al. (2004); Roman et al. (2007); Congiu et al. (2008). For geometric data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing and hydrogen bonding of (I) down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. View of the crystal packing and hydrogen bonding of (I) down the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(3,4-Dimethoxyphenyl)-4,5-diphenyl-1-(prop-2-en-1-yl)-1H-imidazole top
Crystal data top
C26H24N2O2Z = 2
Mr = 396.47F(000) = 420
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9683 (4) ÅCell parameters from 3877 reflections
b = 10.7916 (5) Åθ = 2.2–30.5°
c = 11.7219 (5) ŵ = 0.08 mm1
α = 110.174 (2)°T = 90 K
β = 106.267 (2)°Needle, colourless
γ = 91.991 (3)°0.36 × 0.12 × 0.06 mm
V = 1011.32 (8) Å3
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6149 independent reflections
Radiation source: sealed tube4408 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.039
φ and ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.971, Tmax = 0.995k = 1515
17346 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.309P]
where P = (Fo2 + 2Fc2)/3
6149 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H24N2O2γ = 91.991 (3)°
Mr = 396.47V = 1011.32 (8) Å3
Triclinic, P1Z = 2
a = 8.9683 (4) ÅMo Kα radiation
b = 10.7916 (5) ŵ = 0.08 mm1
c = 11.7219 (5) ÅT = 90 K
α = 110.174 (2)°0.36 × 0.12 × 0.06 mm
β = 106.267 (2)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6149 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4408 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.995Rint = 0.039
17346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
6149 reflectionsΔρmin = 0.25 e Å3
273 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60501 (12)0.92104 (10)0.24135 (9)0.0174 (3)
O20.57242 (12)0.86263 (10)0.00369 (9)0.0180 (3)
N10.72481 (13)0.48753 (11)0.32705 (10)0.0136 (3)
N20.88572 (13)0.40893 (11)0.21328 (10)0.0135 (3)
C10.70264 (16)0.55194 (14)0.03650 (12)0.0160 (4)
C20.65044 (16)0.64264 (14)0.02155 (12)0.0163 (4)
C30.62078 (15)0.76560 (13)0.04910 (12)0.0144 (3)
C40.63977 (16)0.79788 (13)0.18038 (12)0.0141 (3)
C50.69306 (15)0.70881 (13)0.23773 (12)0.0138 (3)
C60.72605 (15)0.58461 (13)0.16638 (12)0.0134 (3)
C70.5608 (2)0.83768 (15)0.12690 (13)0.0229 (4)
C80.64201 (19)0.96524 (14)0.37715 (13)0.0205 (4)
C90.77680 (15)0.49333 (13)0.23350 (12)0.0129 (3)
C100.80286 (15)0.39533 (13)0.36895 (12)0.0125 (3)
C110.90182 (15)0.34498 (13)0.29931 (12)0.0129 (3)
C120.97719 (16)0.39151 (14)0.12516 (13)0.0162 (4)
C130.91694 (18)0.26993 (15)0.00627 (13)0.0207 (4)
C140.7876 (2)0.18741 (17)0.02524 (15)0.0277 (5)
C150.77327 (15)0.36358 (12)0.47378 (12)0.0127 (3)
C160.62980 (16)0.38237 (13)0.49728 (12)0.0146 (3)
C170.59989 (16)0.36083 (14)0.59963 (13)0.0167 (4)
C180.71297 (17)0.31669 (14)0.67889 (13)0.0172 (4)
C190.85580 (17)0.29638 (14)0.65568 (13)0.0167 (4)
C200.88689 (16)0.32016 (13)0.55478 (12)0.0150 (3)
C210.99892 (16)0.23750 (13)0.30191 (12)0.0139 (3)
C220.92335 (17)0.10790 (14)0.26220 (14)0.0180 (4)
C231.00989 (18)0.00593 (14)0.27258 (14)0.0207 (4)
C241.17247 (17)0.03201 (14)0.32038 (13)0.0181 (4)
C251.24860 (16)0.16004 (14)0.35776 (13)0.0175 (4)
C261.16261 (16)0.26308 (14)0.34948 (13)0.0162 (3)
H10.721800.469300.012000.0190*
H20.635500.620000.108400.0200*
H50.707300.731100.324500.0170*
H8A0.577900.908900.398300.0310*
H8B0.622301.055600.410100.0310*
H8C0.750700.960900.414300.0310*
H9A0.661900.825700.138400.0340*
H9B0.525400.912100.148300.0340*
H9C0.487400.758500.181600.0340*
H12A1.084800.386800.169000.0190*
H12B0.978000.469300.101700.0190*
H130.975400.250800.050300.0250*
H14A0.725800.203000.028700.0330*
H14B0.758100.113600.101400.0330*
H160.552700.409900.443400.0170*
H170.504600.375900.614900.0200*
H180.693400.300800.746900.0210*
H190.931500.266500.708400.0200*
H200.983400.307200.541100.0180*
H220.814500.089600.228600.0220*
H230.958700.080100.247400.0250*
H241.230200.036400.327300.0220*
H251.357700.177200.388500.0210*
H261.214200.349200.375700.0190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (5)0.0137 (5)0.0147 (4)0.0065 (4)0.0063 (4)0.0060 (4)
O20.0244 (5)0.0182 (5)0.0155 (4)0.0069 (4)0.0064 (4)0.0108 (4)
N10.0149 (5)0.0132 (5)0.0146 (5)0.0035 (4)0.0050 (4)0.0068 (4)
N20.0159 (5)0.0133 (5)0.0135 (5)0.0036 (4)0.0061 (4)0.0064 (4)
C10.0183 (7)0.0148 (6)0.0152 (6)0.0045 (5)0.0061 (5)0.0052 (5)
C20.0192 (7)0.0179 (7)0.0128 (6)0.0030 (5)0.0054 (5)0.0064 (5)
C30.0138 (6)0.0155 (6)0.0155 (6)0.0023 (5)0.0034 (5)0.0085 (5)
C40.0143 (6)0.0132 (6)0.0154 (6)0.0022 (5)0.0048 (5)0.0057 (5)
C50.0146 (6)0.0154 (6)0.0126 (5)0.0024 (5)0.0039 (5)0.0067 (5)
C60.0132 (6)0.0140 (6)0.0144 (6)0.0024 (5)0.0042 (5)0.0069 (5)
C70.0328 (8)0.0236 (8)0.0159 (6)0.0058 (6)0.0071 (6)0.0117 (6)
C80.0295 (8)0.0180 (7)0.0150 (6)0.0078 (6)0.0081 (6)0.0058 (5)
C90.0130 (6)0.0123 (6)0.0130 (5)0.0026 (5)0.0035 (5)0.0047 (5)
C100.0134 (6)0.0113 (6)0.0132 (5)0.0024 (5)0.0039 (5)0.0050 (5)
C110.0144 (6)0.0112 (6)0.0133 (5)0.0022 (5)0.0043 (5)0.0046 (5)
C120.0178 (6)0.0171 (7)0.0176 (6)0.0054 (5)0.0094 (5)0.0078 (5)
C130.0272 (8)0.0202 (7)0.0177 (6)0.0065 (6)0.0123 (6)0.0063 (6)
C140.0337 (9)0.0261 (8)0.0203 (7)0.0011 (7)0.0109 (7)0.0032 (6)
C150.0153 (6)0.0100 (6)0.0128 (5)0.0015 (5)0.0047 (5)0.0041 (5)
C160.0157 (6)0.0138 (6)0.0158 (6)0.0043 (5)0.0056 (5)0.0067 (5)
C170.0171 (6)0.0170 (7)0.0184 (6)0.0033 (5)0.0086 (5)0.0071 (5)
C180.0230 (7)0.0157 (6)0.0146 (6)0.0016 (5)0.0070 (5)0.0069 (5)
C190.0197 (7)0.0150 (6)0.0150 (6)0.0033 (5)0.0030 (5)0.0070 (5)
C200.0148 (6)0.0145 (6)0.0164 (6)0.0038 (5)0.0052 (5)0.0060 (5)
C210.0168 (6)0.0133 (6)0.0134 (5)0.0048 (5)0.0064 (5)0.0056 (5)
C220.0151 (6)0.0157 (7)0.0229 (7)0.0029 (5)0.0051 (5)0.0072 (6)
C230.0237 (7)0.0124 (6)0.0264 (7)0.0040 (6)0.0082 (6)0.0073 (6)
C240.0219 (7)0.0167 (7)0.0187 (6)0.0097 (6)0.0084 (5)0.0079 (5)
C250.0143 (6)0.0200 (7)0.0188 (6)0.0053 (5)0.0045 (5)0.0083 (6)
C260.0170 (6)0.0134 (6)0.0175 (6)0.0022 (5)0.0053 (5)0.0051 (5)
Geometric parameters (Å, º) top
O1—C41.3685 (18)C22—C231.388 (2)
O1—C81.4286 (17)C23—C241.387 (2)
O2—C31.3618 (18)C24—C251.384 (2)
O2—C71.4321 (17)C25—C261.390 (2)
N1—C91.3250 (18)C1—H10.9300
N1—C101.3835 (19)C2—H20.9300
N2—C91.3721 (19)C5—H50.9300
N2—C111.3854 (18)C7—H9A0.9600
N2—C121.4583 (18)C7—H9B0.9600
C1—C21.398 (2)C7—H9C0.9600
C1—C61.3899 (18)C8—H8A0.9600
C2—C31.381 (2)C8—H8B0.9600
C3—C41.4134 (18)C8—H8C0.9600
C4—C51.379 (2)C12—H12A0.9700
C5—C61.406 (2)C12—H12B0.9700
C6—C91.470 (2)C13—H130.9300
C10—C111.3721 (19)C14—H14A0.9300
C10—C151.4712 (19)C14—H14B0.9300
C11—C211.478 (2)C16—H160.9300
C12—C131.491 (2)C17—H170.9300
C13—C141.318 (3)C18—H180.9300
C15—C161.397 (2)C19—H190.9300
C15—C201.3991 (19)C20—H200.9300
C16—C171.391 (2)C22—H220.9300
C17—C181.389 (2)C23—H230.9300
C18—C191.392 (2)C24—H240.9300
C19—C201.390 (2)C25—H250.9300
C21—C221.393 (2)C26—H260.9300
C21—C261.396 (2)
C4—O1—C8116.86 (11)C1—C2—H2120.00
C3—O2—C7116.81 (12)C3—C2—H2120.00
C9—N1—C10105.70 (12)C4—C5—H5120.00
C9—N2—C11106.90 (11)C6—C5—H5120.00
C9—N2—C12128.55 (12)O2—C7—H9A109.00
C11—N2—C12124.46 (12)O2—C7—H9B109.00
C2—C1—C6120.37 (13)O2—C7—H9C110.00
C1—C2—C3120.52 (12)H9A—C7—H9B109.00
O2—C3—C2125.76 (12)H9A—C7—H9C109.00
O2—C3—C4114.84 (12)H9B—C7—H9C109.00
C2—C3—C4119.40 (13)O1—C8—H8A109.00
O1—C4—C3114.91 (12)O1—C8—H8B109.00
O1—C4—C5125.16 (12)O1—C8—H8C109.00
C3—C4—C5119.92 (13)H8A—C8—H8B110.00
C4—C5—C6120.68 (12)H8A—C8—H8C109.00
C1—C6—C5119.06 (13)H8B—C8—H8C109.00
C1—C6—C9123.53 (13)N2—C12—H12A109.00
C5—C6—C9117.34 (11)N2—C12—H12B109.00
N1—C9—N2111.38 (12)C13—C12—H12A109.00
N1—C9—C6122.61 (13)C13—C12—H12B109.00
N2—C9—C6125.96 (12)H12A—C12—H12B108.00
N1—C10—C11110.18 (12)C12—C13—H13117.00
N1—C10—C15120.50 (12)C14—C13—H13117.00
C11—C10—C15129.32 (13)C13—C14—H14A120.00
N2—C11—C10105.85 (12)C13—C14—H14B120.00
N2—C11—C21124.07 (12)H14A—C14—H14B120.00
C10—C11—C21129.91 (13)C15—C16—H16119.00
N2—C12—C13113.96 (13)C17—C16—H16119.00
C12—C13—C14125.34 (15)C16—C17—H17120.00
C10—C15—C16119.34 (12)C18—C17—H17120.00
C10—C15—C20122.15 (13)C17—C18—H18120.00
C16—C15—C20118.45 (12)C19—C18—H18120.00
C15—C16—C17121.38 (13)C18—C19—H19120.00
C16—C17—C18119.72 (14)C20—C19—H19120.00
C17—C18—C19119.41 (13)C15—C20—H20120.00
C18—C19—C20120.92 (14)C19—C20—H20120.00
C15—C20—C19120.11 (14)C21—C22—H22120.00
C11—C21—C22118.45 (13)C23—C22—H22120.00
C11—C21—C26122.14 (13)C22—C23—H23120.00
C22—C21—C26119.31 (14)C24—C23—H23120.00
C21—C22—C23120.26 (14)C23—C24—H24120.00
C22—C23—C24120.17 (15)C25—C24—H24120.00
C23—C24—C25119.91 (15)C24—C25—H25120.00
C24—C25—C26120.24 (14)C26—C25—H25120.00
C21—C26—C25120.08 (14)C21—C26—H26120.00
C2—C1—H1120.00C25—C26—H26120.00
C6—C1—H1120.00
C8—O1—C4—C3171.98 (13)C5—C6—C9—N2143.78 (14)
C8—O1—C4—C56.6 (2)C1—C6—C9—N1143.64 (15)
C7—O2—C3—C4176.30 (13)C5—C6—C9—N133.3 (2)
C7—O2—C3—C24.1 (2)N1—C10—C11—N20.70 (15)
C10—N1—C9—N20.18 (15)C11—C10—C15—C2028.2 (2)
C9—N1—C10—C110.34 (15)N1—C10—C15—C20152.15 (13)
C10—N1—C9—C6177.67 (12)C11—C10—C15—C16154.50 (15)
C9—N1—C10—C15179.97 (11)C15—C10—C11—C215.1 (2)
C12—N2—C11—C218.3 (2)N1—C10—C15—C1625.13 (19)
C11—N2—C9—C6178.00 (13)N1—C10—C11—C21174.60 (13)
C9—N2—C11—C21174.87 (13)C15—C10—C11—N2179.65 (13)
C12—N2—C11—C10176.06 (12)N2—C11—C21—C22109.09 (16)
C11—N2—C9—N10.61 (15)C10—C11—C21—C26110.82 (18)
C12—N2—C9—N1176.05 (13)N2—C11—C21—C2674.64 (18)
C11—N2—C12—C1381.73 (17)C10—C11—C21—C2265.5 (2)
C9—N2—C12—C13102.15 (17)N2—C12—C13—C144.5 (2)
C9—N2—C11—C100.78 (15)C10—C15—C16—C17176.38 (13)
C12—N2—C9—C61.3 (2)C20—C15—C16—C171.0 (2)
C2—C1—C6—C9178.37 (14)C10—C15—C20—C19177.46 (13)
C2—C1—C6—C51.4 (2)C16—C15—C20—C190.2 (2)
C6—C1—C2—C30.3 (2)C15—C16—C17—C181.5 (2)
C1—C2—C3—C41.6 (2)C16—C17—C18—C190.9 (2)
C1—C2—C3—O2178.77 (14)C17—C18—C19—C200.3 (2)
C2—C3—C4—C52.4 (2)C18—C19—C20—C150.8 (2)
O2—C3—C4—O10.68 (19)C11—C21—C22—C23174.93 (13)
O2—C3—C4—C5177.97 (13)C26—C21—C22—C231.5 (2)
C2—C3—C4—O1178.96 (13)C11—C21—C26—C25175.78 (13)
C3—C4—C5—C61.2 (2)C22—C21—C26—C250.5 (2)
O1—C4—C5—C6179.74 (13)C21—C22—C23—C241.2 (2)
C4—C5—C6—C10.7 (2)C22—C23—C24—C250.0 (2)
C4—C5—C6—C9177.80 (13)C23—C24—C25—C261.0 (2)
C1—C6—C9—N239.2 (2)C24—C25—C26—C210.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is a centroid of the C15–C20 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C7—H9B···O1i0.962.573.515 (2)170
C14—H14A···N20.932.532.859 (2)101
C8—H8B···Cg3ii0.962.983.8316 (17)149
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H24N2O2
Mr396.47
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.9683 (4), 10.7916 (5), 11.7219 (5)
α, β, γ (°)110.174 (2), 106.267 (2), 91.991 (3)
V3)1011.32 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.12 × 0.06
Data collection
DiffractometerBruker Kappa APEXII DUO
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.971, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
17346, 6149, 4408
Rint0.039
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.02
No. of reflections6149
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PARST (Nardelli, 1983).

Hydrogen-bond geometry (Å, º) top
Cg3 is a centroid of the C15–C20 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C7—H9B···O1i0.962.573.515 (2)170
C8—H8B···Cg3ii0.962.983.8316 (17)149
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and Louisiana State University are gratefully acknowledged for supporting this study.

References

First citationAdams, J. L., Boehm, J. C., Gallagher, T. F., Kassis, S., Webb, E. F., Hall, R., Sorenson, M., Garigipati, R., Don, E., Griswold, D. E. & Lee, J. C. (2001). Bioorg. Med. Chem. Lett. 11, 2867–2870.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCongiu, C., Cocco, M. T. & Onnis, V. (2008). Bioorg. Med. Chem. Lett. 18, 989–993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNakamura, T., Kakinuma, H., Umemiya, H., Amada, H., Miyata, N., Taniguchi, K., Bando, K. & Sato, M. (2004). Bioorg. Med. Chem. Lett. 14, 333–336.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNanterment, P. G., Barrow, J. C., Lindsley, S. R., Young, M., Mao, S., Carroll, S., Bailey, C., Bosserman, M., Colussi, D., McMasters, D. R., Vacca, J. P. & Selnick, H. G. (2004). Bioorg. Med. Chem. Lett. 14, 2141–2145.  Web of Science PubMed Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationRoman, G., Riley, J. G., Vlahakis, J. Z., Kinobe, R. T., Brien, J. F., Nakatsu, K. & Szarek, W. A. (2007). Bioorg. Med. Chem. 15, 3225–3234.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShalini, K., Sharma, P. K. & Kumar, N. (2010). Chem. Sin. 1, 36-47.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatesan, A. M., Agarwal, A., Abe, T., Ushirogochi, H. O., Santos, D., Li, Z., Francisco, G., Lin, Y. I., Peterson, P. J., Yang, Y., Weiss, W. J., Shales, D. M. & Mansour, T. S. (2008). Bioorg. Med. Chem. 16, 1890–1902.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds