research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of tetra­kis­(μ-3-nitro­benzoato-κ2O1:O1′)bis­­[(N,N-di­methyl­formamide-κO)copper(II)] di­methyl­formamide disolvate

crossmark logo

aInstitute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, 100125, Mirzo Ulugbek Str.,83, Tashkent, Uzbekistan
*Correspondence e-mail: mavlonbek.z@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 September 2021; accepted 20 October 2021; online 26 October 2021)

The title compound, [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2, is a binuclear copper(II) complex located on an inversion center midway between the two copper(II) cations. The asymmetric unit consists of one CuII cation, two 3-nitro­benzoato ligands, and two di­methyl­formamide (DMF) mol­ecules, one of which coordinates to the CuII cation and one is a solvate mol­ecule. The carboxyl­ate groups of the ligands bridge two CuII cations with a Cu—Cu distance of 2.6554 (6) Å, completing a distorted octa­hedral O5Cu coordination environment. The dihedral angles between the carboxyl­ate and the aromatic ring planes of the two independent ligands are different from one another, viz. 5.2 (3) and 23.9 (3)°. The three-dimensional structure is consolidated by weak C—H⋯O inter­actions and stabilized by ππ stacking inter­actions between the aromatic rings. The complex and the free ligand were further characterized by Fourier-transform infrared spectroscopy (FT–IR), and the energies of the frontier mol­ecular orbitals of the complex were determined by DFT calculations at the B3LYP/def2-TZVP level of theory.

1. Chemical context

Copper complexes have been explored extensively due to the fact that copper is a bio-essential element responsible for numerous bioactivities in living organisms (Tapiero & Tew, 2003[Tapiero, H. & Tew, K. D. (2003). Biomed. Pharmacother. 57, 399-411.]). Moreover, it is well known that CuII complexation plays an important role in the pharmacological profile of anti­microbial activities (Haiduc & Silvestru, 1989[Haiduc, I. & Silvestru, C. (1989). Organometallics in Cancer Chemotherapy. Boston: CRS, Press.]; Linder & Goode, 1991[Linder, M. C. & Goode, C. A. (1991). Biochemistry of Copper. New York: Plenum.]). The first syn–syn bridged binuclear structure of a large number of copper(II) carboxyl­ates with general formula [Cu(RCOO)2(L)]2 (L = co-ligand), was reported for simple copper(II) acetate monohydrate (Van Niekerk & Schoening, 1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]). This classical structure consists of a binuclear [Cu2O8] unit in which each copper(II) atom is surrounded by four oxygen atoms of carboxyl­ate groups in an almost square-planar coordination. An additional ligand, here the O atom of a water mol­ecule, is attached in an apical position at longer Cu—O distances. The Cu—Cu contact completes a distorted octa­hedral coordination sphere around each copper(II) atom. This motif is also observed in polymeric copper(II) carboxyl­ates, where the apical ligand has two coordination centers and links dimeric units (Rao et al., 1983[Rao, V. M., Sathyanarayana, D. N. & Manohar, H. J. (1983). J. Chem. Soc. Dalton Trans. pp. 2167-2173.]; Zhu et al., 2003[Zhu, L.-G., Kitagawa, S., Miyasaka, H. & Chang, H.-C. (2003). Inorg. Chim. Acta, 355, 121-126.]). In the situation where the apical ligand is absent, a zigzag polymeric structure is formed with direct bonding between [Cu2O8] units via the metal and one of the basal oxygen atoms of the neighbouring unit (Drożdżewski et al., 2004[Drożdżewski, P., Brożyna, A. & Kubiak, M. (2004). Polyhedron, 23, 1785-1792.]).

[Scheme 1]

Copper(II) carboxyl­ates, including copper(II) benzoates have been studied extensively from different points of view, because the carboxyl­ato ligands exhibit different binding modes that are related to their properties, e.g. the basicity of the anion or the position of substituents on the aromatic ring. A bulky benzene ring substituent in an ortho position to the carboxyl­ate group is believed to prefer the dimeric copper(II) benzoate structure (Harrison et al., 1972[Harrison, W., Rettig, S. & Trotter, J. J. (1972). J. Chem. Soc. Dalton Trans. pp. 1852-1856.]; Ueyama et al., 1996[Ueyama, N., Yamada, Y., Takeda, J., Okamura, T., Mori, W. & Nakamura, A. (1996). Chem. Commun. pp. 1377-1378.]). In general, copper(II) carboxyl­ates exhibit a dimeric paddle-wheel cage structure. More than 500 crystal structures containing the Cu2(OOCR)4 core have been determined on the basis of X-ray data and can be found in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), of which more than 250 are of the type [Cu2(OOCR)4(L)2], where L is an apical ligand with an oxygen, a nitro­gen, a chlorine or a phospho­rus donor atom. We report here on the mol­ecular and crystal structure of a similar binuclear copper(II) complex, [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2, further characterized by infrared spectroscopy and DFT calculations.

2. Structural commentary

[Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2 crystallizes as a di­methyl­formamide disolvate (Fig. 1[link]). The neutral [Cu2(C7H4NO4)4(C3H7NO)2] complex is centrosymmetric, with the inversion center located midway between the two CuII cations. The asymmetric unit comprises one CuII cation, two 3-nitro­benzoato ligands and two di­methyl­formamide mol­ecules, one ligating and one as a solvent. The complex displays a paddle-wheel-shaped binuclear structure. Each CuII cation is coordinated by four carboxyl­ate oxygen atoms, forming the base of a slightly distorted square pyramid supplemented by a fifth oxygen atom of the di­methyl­formamide mol­ecule at the apical position (Fig. 1[link]). The overall distorted octa­hedral coordination environment is completed by the neighbouring CuII cation with a Cu—Cu distance of 2.6554 (6) Å. This distance is close to that reported for similar binuclear complexes (Wang et al., 2018[Wang, J., Su, F. & Shi, L. (2018). Acta Cryst. E74, 691-694.]).

[Figure 1]
Figure 1
Mol­ecular structure of [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as spheres of arbitrary radius. [Symmetry code: (i) −x + 1, −y + 1, −z + 1]

In the binuclear complex, the carboxyl­ate groups of the 3-nitro­benzoato ligands link the two CuII cations with short Cu—O distances [from 1.9620 (17) to 1.9751 (16) Å; Table 1[link]] whereas the distance to the O atom of the di­methyl­formamide ligand is elongated [2.1453 (17) Å] . The carboxyl­ate groups of the 3-nitro­benzoato ligands adopt a bidentate syn–syn bridging mode (Su et al., 2015[Su, F., Lu, L., Feng, S., Zhu, M., Gao, Z. & Dong, Y. (2015). Dalton Trans. 44, 7213-7222.]; Wang et al., 2018[Wang, J., Su, F. & Shi, L. (2018). Acta Cryst. E74, 691-694.]), with dihedral angles between the carboxyl­ate planes and the aromatic rings of 5.2 (3) and 23.9 (3)°, respectively.

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9620 (17) Cu1—O4i 1.9751 (16)
Cu1—O3 1.9650 (16) Cu1—O5 2.1453 (17)
Cu1—O2i 1.9719 (18) Cu1—Cu1i 2.6554 (6)
Symmetry code: (i) [-x+1, -y+1, -z+1].

3. Supra­molecular features

The binuclear complex mol­ecules are allocated with their central parts parallel to (200). The crystal packing shows slipped ππ stacking inter­actions between the aromatic rings of symmetry-related 3-nitro­benzoato ligands [Cg1⋯Cg1(−x + 2, −y + 1, −z + 1) = 4.117 (2) Å where Cg1 is the centroid of the C9–C14 phenyl ring; slippage 2.202 Å]. The nitro group of the second 3-nitro­benzoato ligand weakly inter­acts by O⋯C contacts [O7⋯C17(−x + 1, y + [{1\over 2}], −z + [{3\over 2}]) = 3.087 (3) Å] with the coordinating di­methyl­formamide mol­ecule, forming zigzag chains parallel to [01[\overline{1}]]. Through these inter­actions, the complex mol­ecules form a channel-like structure with the channels, in which the di­methyl­formamide solvate mol­ecules are located, extending parallel to [010]. They inter­act via weak amide-π inter­actions [N4⋯Cg1 = 3.597 (3) Å] and weak C—H⋯O(nitro group) hydrogen bonds (Fig. 2[link], Table 2[link]). The latter inter­actions cause a greater rotation [23.9 (3)°] of the aromatic ring relative to the carboxyl­ate group in the second 3-nitro­benzoato ligand.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4ii 0.93 2.47 3.360 (4) 161
C15—H15⋯O1 0.93 2.50 3.100 (4) 123
C16—H16C⋯O5 0.96 2.40 2.770 (4) 102
C19—H19A⋯O10 0.96 2.35 2.753 (8) 104
C20—H20C⋯O10iii 0.96 2.59 3.503 (7) 160
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Non-aromatic–aromatic–aromatic inter­actions between adjacent binuclear metal units.

4. Hirshfeld surface analysis

Intra­molecular and inter­molecular inter­actions of [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2 were qu­anti­fied by Hirshfeld surface analysis using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]). The presence of strong inter­actions on the Hirshfeld surface is indicated by red spots, while the blue areas indicate weak inter­actions, as shown in Fig. 3[link]. Two-dimensional fingerprint plots with all inter­actions and delineated into individual inter­actions together with their relative contributions are displayed in Fig. 4[link]. The most important inter­molecular inter­actions are O⋯H/H⋯O (38.9%), followed by H⋯H (33.3%), C⋯H/H⋯C (12.7%) and O⋯C/C⋯O (5.9%). Other inter­actions contribute less than 5% to the overall Hirshfeld surface.

[Figure 3]
Figure 3
Three-dimensional Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
Two-dimensional fingerprint plot of [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2 showing all inter­actions (top left) and delineated in individual contacts with relative contributions.

5. DFT calculations

Theoretical calculations were carried out by the hybrid density functional theory (DFT) at the B3LYP level of theory (Becke, 1988[Becke, A. D. (1988). Phys. Rev. A, 38, 3098-3100.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, G. (1988). Phys. Rev. B, 37, 785-789.]) using Aldrich's def2-TZVP basis set, which has been successfully tested in one of our previous studies (Ibragimov et al., 2021[Ibragimov, A. B., Ashurov, J. M., Ibragimov, A. B. & Eshimbetov, A. G. (2021). J. Chem. Crystallogr. 51, 405-417.]). Input files for the DFT calculations using the ORCA 4.2.0 program package (Neese, 2012[Neese, F. (2012). WIREs Comput. Mol. Sci. 2, 73-78.]) were generated by Avogadro (Hanwell et al., 2012[Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminform, 4, 1-17.]) using the CIF of the title compound. Results of these calculations were analyzed with the aid of Avogadro and Multiwfn (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]).

Homonuclear CuII complexes form a closed system in which [Ar]d9 electrons of two neighbouring CuII cations are paired with each other. Such a system is usually characterized by a singlet ground state. However, triplet and quintet electronic states are also possible, depending on the nature of the ligand mol­ecules. The bond lengths and angles of the complex were therefore fully optimized in the singlet, triplet and quintet electronic spin states with the result that the singlet electronic state was found to be the energetically optimal structure. Calculated and experimentally determined bond lengths and angles are compared in Tables S1 and S2 in the supporting information, and mean absolute errors (MAE), largest errors (LE) and the correlation coefficients R2 were determined. The very low values of MAE and LE, and also the high R2 coefficient of 0.997 reveal the suitability of the applied method for calculation of the electronic structure parameters of the complex.

Calculations of electron densities on atoms in the highest occupied (HOMO) and lowest unoccupied (LUMO) mol­ecular orbitals (MO), as well as the energies of the frontier MOs (FMO) were carried out. The charge distributions on atoms and on the FMOs, as well as the energy of FMOs are one of the main parameters of the electronic structure of chemical compounds (Karelson et al., 1996[Karelson, M., Lobanov, V. S. & Katritzky, A. R. (1996). Chem. Rev. 96, 1027-1044.]; Rauk, 2001[Rauk, A. (2001). Orbital interaction. Theory of Organic Chemistry. New York: Wiley-Interscience.]; Miar et al., 2021[Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R. & Hatamjafari, F. (2021). J. Chem. Res. 45, 147-158.]). The energy of the HOMO is related to the electron-donating ability of a mol­ecule and the energy of the LUMO is related to the electron-accepting ability of a mol­ecule. The parameter for chemical hardness (η) is calculated based on the HOMO–LUMO energy gap (η = ΔE/2). The shape of the FMOs and the HOMO–LUMO energy gap of the complex are displayed in Fig. 5[link]. The contribution of both CuII d orbitals in the HOMO and LUMO are 58.14% and 52.72%, respectively. The contribution of the p orbitals of the eight oxygen atoms of the 3-nitro­benzoate ligands in the HOMO and LUMO are 37.15% and 38.06%, respectively. A higher contribution of CuII d electrons (56.74%) was observed in the case of second occupied MO (EHOMO–1 = −7.0 eV), and the next unoccupied MO (ELUMO+1 = −2.74 eV) consists of the anti­bonding p orbitals of the 3-nitro­benzoate fragment.

[Figure 5]
Figure 5
HOMO–LUMO energy diagram of [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2.

The complex has a very low HOMO–LUMO energy gap, which can be seen from Fig. 5[link] and also from the total density of state diagram (TDOS, Fig. S1) of the complex. The low energy gap is caused by a significant decreasing of the energy level of the LUMO of the complex. In other words, the electron accepting ability of the complex is very high and thus the mol­ecule becomes more susceptible to nucleophile attack which makes this complex inter­esting in chemistry and physics due to its electrical properties and light absorption at a low energy level.

Atomic charge analysis (Fig. S2) shows that the largest negative charges and the largest positive charges are located on oxygen atoms and carbon atoms of the carb­oxy­lic group, respectively.

6. FT–IR analysis

The FT–IR (ATR) spectrum of di­methyl­formamide (see Fig. S1) comprises the following absorption bands (cm−1): 2926, 2856 (–CH, NCH3), 2780 (C–H, CHO), 1662 (C=O), 1384 (CH, NCH3), 1089 (C—N). The FTIR (ATR) spectrum of 3-nitro­benzoic acid (Fig. 6[link]) comprises the following absorption bands (cm−1): 3095 (C—H, Ar), 2500–3000 (OH, dimeric form), 1689 (C=O), 1614, 1583 (Ar), 1525, 1350 (–NO2), 1288 (C—O, COOH). The FTIR (ATR) spectrum of the title complex (Fig. 6[link]) comprises the following absorption bands (cm−1): 3095 (C—H, Ar), 1600 (C=O), 1556 (Ar), 1514, 1348 (–NO2), 1396 (CH, NCH3).

[Figure 6]
Figure 6
FT–IR (ATR) spectrum of [Cu2(C7H4NO4)4(C3H7NO)2]·(C3H7NO)2 (a) and the starting compounds 3-nitro­benzoic acid (b), di­methyl­formamide (c) and aqueous CuSO4 solution (d).

Analysis of the IR spectra of the starting compounds and the product shows significant changes in the wavenumbers of absorption bands of characteristic groups in the IR spectrum of the product. Upon complexation, some absorption bands disappear, and some of them undergo a high-frequency or low-frequency shift.

For example, the C=O band of 3-nitro­benzoic (1689 cm−1) and di­methyl­formamide (1662 cm−1) shifts to the low-frequency region and is observed at 1600 cm−1. Likewise, the absorption band of the nitro group (1525, 1350 cm−1) of 3-nitro­benzoic acid is shifted to the low-frequency region (1514, 1348 cm−1) after complexation. At the same time, the absorption band of the –CH3 groups of di­methyl­formamide at 1384 cm−1 undergoes a high-frequency shift and is observed at 1396 cm−1. On the other hand, the absorption band of the C—O group at 1288 cm−1 of 3-nitro­benzoic acid does not occur in the IR spectrum of the complex.

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 2020.1 including the update of January 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of binuclear copper(II) complexes comprising benzoate ligands with an o-nitro group gave nine hits, with an m-nitro group gave four hits [FAZXUA (Kabbani et al., 2004[Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 34, 749-756.]), KELXEF (Stachová et al., 2006[Stachová, P., Moncol, J., Valigura, D. & Lis, T. (2006). Acta Cryst. C62, m375-m377.]), NIDSEY (Hökelek et al., 1998[Hökelek, T., Mert, Y. & Ünalerouğlu, C. (1998). Acta Cryst. C54, 310-313.]) and PABNEP (Xu et al., 2020[Xu, D., Gao, J. & Long, S. (2020). IUCrData, 5, x200801.])], and with a p-nitro group also gave four hits [AQNBCU (Usubaliev et al., 1980[Usubaliev, B. T., Movsumov, E. M., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Dokl. Nat. Akad. Nauk Azerbauidzhana, 36, 40.]), BOVPIN (Jassal et al., 2015[Jassal, A. K., Sharma, S., Hundal, G. & Hundal, M. S. (2015). Cryst. Growth Des. 15, 79-93.]), QIXQIX01 (Li & Zhou, 2010[Li, J. & Zhou, H. (2010). Nat. Chem. 2, 893-898.]) and VIHNAD (Song et al., 2013[Song, S., Cui, J., Li, Z. & Nie, F. (2013). Z. Krist. New Cryst. Struct. 228, 199-200.])]. In the di­nitro­benzoate complex NIDSEY, [Cu3{(NO2)2C6H3COO}6(CH3-OH)2], comprising three copper(II) atoms, two of them are five-coordinate, being surrounded by square-pyramids of carboxyl­ate O atoms and forming a paddle-wheel-shaped binuclear structure, whereas the third copper(II) ion has a square-planar environment.

8. Synthesis and crystallization

The crystals were grown from low-cost standard materials. 3-Nitro­benzoic acid (20.0 mg, 0.12 mmol) and CuSO4·5H2O (20 mg, 0.056 mmol) were mixed and stirred at room temperature for 1 h. Then, in a gradual way, di­methyl­formamide (DMF; 0.78 mmol) was added dropwise to the stirred mixture throughout 60 min at 303 K, immediately after which the solution was cooled down and kept for several hours. Darkish blue single crystals suitable for X-ray analysis were grown by slow evaporation at ambient temperature for one week and collected by filtration. They were finally washed with pure DMF. Yield: 70%.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined to ride on their parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C7H4NO4)4(C3H7NO)2]·2C3H7NO
Mr 1083.91
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.5657 (4), 10.4851 (3), 19.7258 (5)
β (°) 91.581 (3)
V3) 2391.19 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.84
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku OD, Yarnton, England.])
Tmin, Tmax 0.366, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17186, 4940, 4016
Rint 0.041
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections 4940
No. of parameters 320
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.66
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku OD, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(µ-3-nitrobenzoato-κ2O1:O1')bis[(N,N-dimethylformamide-κO)copper(II)] dimethylformamide disolvate top
Crystal data top
[Cu2(C7H4NO4)4(C3H7NO)2]·2C3H7NOF(000) = 1116
Mr = 1083.91Dx = 1.505 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.5657 (4) ÅCell parameters from 5941 reflections
b = 10.4851 (3) Åθ = 4.2–75.5°
c = 19.7258 (5) ŵ = 1.84 mm1
β = 91.581 (3)°T = 293 K
V = 2391.19 (12) Å3Plate, blue
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Xcalibur, Ruby
diffractometer
4940 independent reflections
Radiation source: Enhance (Cu) X-ray Source4016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.2576 pixels mm-1θmax = 76.2°, θmin = 3.8°
wσcansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1312
Tmin = 0.366, Tmax = 1.000l = 2416
17186 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.9153P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4940 reflectionsΔρmax = 0.38 e Å3
320 parametersΔρmin = 0.65 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.52536 (3)0.37834 (3)0.48912 (2)0.03259 (12)
O10.67889 (15)0.43281 (17)0.52255 (9)0.0438 (4)
O20.63778 (15)0.63846 (16)0.54126 (9)0.0442 (4)
O30.48321 (16)0.35248 (16)0.58396 (8)0.0447 (4)
O40.43655 (16)0.55704 (16)0.60163 (8)0.0438 (4)
O50.57752 (17)0.18687 (16)0.46685 (9)0.0474 (4)
O60.2420 (2)0.6543 (3)0.81319 (13)0.0853 (8)
O70.2426 (3)0.5167 (3)0.89371 (12)0.0977 (10)
O81.1930 (2)0.3843 (3)0.60860 (15)0.0927 (9)
O91.0475 (2)0.2614 (3)0.59089 (17)0.1004 (10)
N10.7192 (2)0.0413 (2)0.45278 (11)0.0533 (6)
N20.2717 (2)0.5527 (3)0.83778 (12)0.0612 (7)
N31.0906 (2)0.3660 (3)0.59792 (14)0.0659 (8)
C10.4512 (2)0.4433 (2)0.62026 (11)0.0376 (5)
C20.4313 (2)0.4157 (2)0.69403 (11)0.0376 (5)
C30.4849 (3)0.3128 (3)0.72534 (13)0.0509 (7)
H30.53050.25810.70040.061*
C40.4709 (3)0.2912 (3)0.79400 (15)0.0614 (8)
H40.50920.22330.81500.074*
C50.4012 (3)0.3685 (3)0.83118 (13)0.0543 (7)
H50.39090.35340.87710.065*
C60.3469 (2)0.4689 (3)0.79880 (12)0.0445 (6)
C70.3616 (2)0.4953 (2)0.73090 (12)0.0411 (6)
H70.32530.56510.71050.049*
C80.7049 (2)0.5442 (2)0.54082 (11)0.0373 (5)
C90.8275 (2)0.5637 (2)0.56579 (12)0.0398 (5)
C100.8687 (3)0.6832 (3)0.58268 (15)0.0547 (7)
H100.81970.75340.57940.066*
C110.9830 (3)0.6997 (3)0.60457 (18)0.0701 (9)
H111.00980.78070.61610.084*
C121.0562 (3)0.5977 (3)0.60927 (17)0.0654 (9)
H121.13320.60840.62310.078*
C131.0132 (2)0.4784 (3)0.59303 (14)0.0504 (7)
C140.9006 (2)0.4592 (3)0.57205 (12)0.0449 (6)
H140.87360.37760.56220.054*
C150.6799 (3)0.1556 (3)0.46790 (13)0.0482 (6)
H150.73410.21740.48030.058*
C160.6410 (4)0.0611 (3)0.4369 (2)0.0850 (12)
H16A0.63310.11430.47610.128*
H16B0.67070.11070.40040.128*
H16C0.56680.02680.42360.128*
C170.8432 (3)0.0129 (4)0.4595 (2)0.0837 (12)
H17A0.88330.08580.47790.126*
H17B0.87260.00690.41570.126*
H17C0.85480.05870.48920.126*
O101.0396 (3)0.4379 (4)0.7733 (2)0.1376 (14)
N40.8658 (3)0.5366 (3)0.76200 (16)0.0773 (8)
C180.9808 (5)0.5333 (5)0.7716 (2)0.0941 (13)
H181.01880.61090.77740.113*
C190.8031 (6)0.4220 (6)0.7556 (3)0.145 (2)
H19A0.85540.35320.74690.217*
H19B0.74770.42920.71870.217*
H19C0.76360.40560.79680.217*
C200.8067 (5)0.6575 (5)0.7589 (2)0.1113 (16)
H20A0.75870.66610.79760.167*
H20B0.75940.66160.71820.167*
H20C0.86240.72530.75890.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0397 (2)0.02672 (19)0.03118 (18)0.00108 (14)0.00230 (14)0.00110 (12)
O10.0408 (10)0.0382 (9)0.0517 (10)0.0001 (8)0.0074 (8)0.0067 (8)
O20.0428 (10)0.0384 (10)0.0511 (10)0.0009 (8)0.0070 (8)0.0056 (8)
O30.0604 (12)0.0393 (10)0.0346 (8)0.0024 (8)0.0043 (8)0.0023 (7)
O40.0626 (12)0.0360 (9)0.0328 (8)0.0022 (8)0.0026 (8)0.0038 (7)
O50.0572 (12)0.0315 (9)0.0533 (10)0.0070 (8)0.0008 (9)0.0047 (8)
O60.108 (2)0.0639 (15)0.0859 (17)0.0257 (15)0.0341 (15)0.0078 (13)
O70.125 (2)0.122 (2)0.0477 (13)0.0305 (19)0.0330 (14)0.0112 (14)
O80.0399 (13)0.133 (3)0.105 (2)0.0118 (14)0.0095 (13)0.0151 (17)
O90.0694 (17)0.0748 (18)0.156 (3)0.0204 (15)0.0189 (17)0.0202 (19)
N10.0728 (17)0.0353 (12)0.0528 (13)0.0130 (11)0.0181 (12)0.0010 (10)
N20.0669 (17)0.0692 (18)0.0480 (13)0.0005 (14)0.0093 (12)0.0031 (13)
N30.0449 (16)0.089 (2)0.0635 (16)0.0140 (15)0.0027 (12)0.0034 (15)
C10.0405 (13)0.0390 (13)0.0330 (11)0.0051 (11)0.0030 (9)0.0045 (10)
C20.0425 (14)0.0361 (12)0.0339 (11)0.0029 (11)0.0014 (10)0.0042 (9)
C30.0568 (17)0.0503 (16)0.0456 (14)0.0095 (14)0.0034 (12)0.0074 (12)
C40.074 (2)0.062 (2)0.0476 (15)0.0153 (17)0.0003 (14)0.0188 (14)
C50.0636 (19)0.0632 (19)0.0359 (13)0.0016 (15)0.0001 (12)0.0138 (12)
C60.0498 (15)0.0479 (15)0.0361 (12)0.0027 (12)0.0035 (11)0.0015 (11)
C70.0435 (14)0.0391 (14)0.0404 (12)0.0016 (11)0.0025 (10)0.0076 (10)
C80.0409 (13)0.0399 (13)0.0310 (11)0.0013 (11)0.0013 (9)0.0010 (9)
C90.0402 (14)0.0434 (14)0.0357 (11)0.0029 (11)0.0014 (10)0.0003 (10)
C100.0547 (17)0.0478 (16)0.0610 (17)0.0100 (14)0.0097 (14)0.0025 (13)
C110.065 (2)0.059 (2)0.085 (2)0.0241 (17)0.0192 (18)0.0027 (17)
C120.0466 (18)0.081 (2)0.0672 (19)0.0181 (17)0.0165 (15)0.0062 (17)
C130.0398 (14)0.0673 (19)0.0438 (13)0.0021 (14)0.0017 (11)0.0014 (13)
C140.0411 (14)0.0527 (16)0.0409 (13)0.0042 (12)0.0018 (11)0.0046 (11)
C150.0596 (18)0.0360 (14)0.0494 (14)0.0068 (13)0.0075 (13)0.0021 (11)
C160.110 (3)0.0401 (18)0.107 (3)0.0039 (19)0.027 (2)0.0158 (19)
C170.085 (3)0.072 (2)0.096 (3)0.034 (2)0.034 (2)0.008 (2)
O100.140 (3)0.109 (3)0.163 (4)0.049 (3)0.008 (3)0.016 (3)
N40.086 (2)0.072 (2)0.0730 (19)0.0017 (18)0.0054 (16)0.0005 (16)
C180.107 (4)0.085 (3)0.090 (3)0.008 (3)0.004 (3)0.006 (2)
C190.179 (6)0.133 (5)0.122 (4)0.071 (5)0.000 (4)0.009 (4)
C200.117 (4)0.120 (4)0.097 (3)0.040 (3)0.014 (3)0.009 (3)
Geometric parameters (Å, º) top
Cu1—O11.9620 (17)C6—C71.383 (3)
Cu1—O31.9650 (16)C7—H70.9300
Cu1—O2i1.9719 (18)C8—C91.502 (3)
Cu1—O4i1.9751 (16)C9—C101.378 (4)
Cu1—O52.1453 (17)C9—C141.387 (4)
Cu1—Cu1i2.6554 (6)C10—C111.390 (4)
O1—C81.257 (3)C10—H100.9300
O2—C81.257 (3)C11—C121.365 (5)
O2—Cu1i1.9718 (18)C11—H110.9300
O3—C11.254 (3)C12—C131.381 (4)
O4—C11.258 (3)C12—H120.9300
O4—Cu1i1.9751 (16)C13—C141.371 (4)
O5—C151.229 (3)C14—H140.9300
O6—N21.216 (3)C15—H150.9300
O7—N21.222 (3)C16—H16A0.9600
O8—N31.213 (3)C16—H16B0.9600
O9—N31.211 (4)C16—H16C0.9600
N1—C151.318 (3)C17—H17A0.9600
N1—C161.432 (4)C17—H17B0.9600
N1—C171.467 (4)C17—H17C0.9600
N2—C61.469 (4)O10—C181.209 (5)
N3—C131.481 (4)N4—C181.339 (6)
C1—C21.508 (3)N4—C191.407 (6)
C2—C31.381 (4)N4—C201.441 (5)
C2—C71.381 (3)C18—H180.9300
C3—C41.387 (4)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.370 (4)C19—H19C0.9600
C4—H40.9300C20—H20A0.9600
C5—C61.374 (4)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
O1—Cu1—O388.06 (8)O1—C8—C9115.9 (2)
O1—Cu1—O2i167.89 (7)C10—C9—C14119.4 (2)
O3—Cu1—O2i90.95 (8)C10—C9—C8121.3 (2)
O1—Cu1—O4i88.98 (8)C14—C9—C8119.3 (2)
O3—Cu1—O4i167.85 (7)C9—C10—C11120.5 (3)
O2i—Cu1—O4i89.47 (8)C9—C10—H10119.7
O1—Cu1—O594.83 (7)C11—C10—H10119.7
O3—Cu1—O598.30 (7)C12—C11—C10120.4 (3)
O2i—Cu1—O597.26 (7)C12—C11—H11119.8
O4i—Cu1—O593.69 (7)C10—C11—H11119.8
O1—Cu1—Cu1i82.41 (5)C11—C12—C13118.4 (3)
O3—Cu1—Cu1i85.24 (5)C11—C12—H12120.8
O2i—Cu1—Cu1i85.48 (5)C13—C12—H12120.8
O4i—Cu1—Cu1i82.68 (5)C14—C13—C12122.4 (3)
O5—Cu1—Cu1i175.46 (6)C14—C13—N3118.0 (3)
C8—O1—Cu1125.04 (17)C12—C13—N3119.5 (3)
C8—O2—Cu1i120.92 (16)C13—C14—C9118.9 (3)
C1—O3—Cu1121.59 (15)C13—C14—H14120.6
C1—O4—Cu1i123.95 (16)C9—C14—H14120.6
C15—O5—Cu1121.53 (18)O5—C15—N1125.2 (3)
C15—N1—C16120.8 (3)O5—C15—H15117.4
C15—N1—C17120.4 (3)N1—C15—H15117.4
C16—N1—C17118.5 (3)N1—C16—H16A109.5
O6—N2—O7123.3 (3)N1—C16—H16B109.5
O6—N2—C6118.7 (2)H16A—C16—H16B109.5
O7—N2—C6118.0 (3)N1—C16—H16C109.5
O9—N3—O8124.1 (3)H16A—C16—H16C109.5
O9—N3—C13117.9 (3)H16B—C16—H16C109.5
O8—N3—C13118.1 (3)N1—C17—H17A109.5
O3—C1—O4126.4 (2)N1—C17—H17B109.5
O3—C1—C2117.4 (2)H17A—C17—H17B109.5
O4—C1—C2116.2 (2)N1—C17—H17C109.5
C3—C2—C7119.8 (2)H17A—C17—H17C109.5
C3—C2—C1120.2 (2)H17B—C17—H17C109.5
C7—C2—C1119.9 (2)C18—N4—C19119.9 (4)
C2—C3—C4120.1 (3)C18—N4—C20119.8 (4)
C2—C3—H3120.0C19—N4—C20120.3 (4)
C4—C3—H3120.0O10—C18—N4125.5 (5)
C5—C4—C3120.8 (3)O10—C18—H18117.3
C5—C4—H4119.6N4—C18—H18117.3
C3—C4—H4119.6N4—C19—H19A109.5
C4—C5—C6118.2 (2)N4—C19—H19B109.5
C4—C5—H5120.9H19A—C19—H19B109.5
C6—C5—H5120.9N4—C19—H19C109.5
C5—C6—C7122.5 (3)H19A—C19—H19C109.5
C5—C6—N2119.0 (2)H19B—C19—H19C109.5
C7—C6—N2118.5 (2)N4—C20—H20A109.5
C2—C7—C6118.6 (2)N4—C20—H20B109.5
C2—C7—H7120.7H20A—C20—H20B109.5
C6—C7—H7120.7N4—C20—H20C109.5
O2—C8—O1126.1 (2)H20A—C20—H20C109.5
O2—C8—C9118.0 (2)H20B—C20—H20C109.5
Cu1—O3—C1—O43.6 (4)Cu1—O1—C8—C9179.02 (15)
Cu1—O3—C1—C2174.57 (15)O2—C8—C9—C106.0 (4)
Cu1i—O4—C1—O35.6 (4)O1—C8—C9—C10175.3 (2)
Cu1i—O4—C1—C2172.56 (15)O2—C8—C9—C14173.9 (2)
O3—C1—C2—C323.2 (4)O1—C8—C9—C144.8 (3)
O4—C1—C2—C3155.2 (3)C14—C9—C10—C111.2 (4)
O3—C1—C2—C7158.5 (2)C8—C9—C10—C11178.9 (3)
O4—C1—C2—C723.1 (3)C9—C10—C11—C120.4 (5)
C7—C2—C3—C41.4 (4)C10—C11—C12—C131.2 (5)
C1—C2—C3—C4176.9 (3)C11—C12—C13—C140.5 (5)
C2—C3—C4—C52.0 (5)C11—C12—C13—N3179.8 (3)
C3—C4—C5—C60.8 (5)O9—N3—C13—C148.5 (4)
C4—C5—C6—C71.0 (4)O8—N3—C13—C14171.4 (3)
C4—C5—C6—N2179.9 (3)O9—N3—C13—C12171.8 (3)
O6—N2—C6—C5165.9 (3)O8—N3—C13—C128.4 (4)
O7—N2—C6—C513.7 (4)C12—C13—C14—C91.1 (4)
O6—N2—C6—C713.2 (4)N3—C13—C14—C9178.7 (2)
O7—N2—C6—C7167.2 (3)C10—C9—C14—C131.9 (4)
C3—C2—C7—C60.4 (4)C8—C9—C14—C13178.2 (2)
C1—C2—C7—C6178.7 (2)Cu1—O5—C15—N1177.7 (2)
C5—C6—C7—C21.6 (4)C16—N1—C15—O53.6 (4)
N2—C6—C7—C2179.3 (2)C17—N1—C15—O5176.6 (3)
Cu1i—O2—C8—O10.5 (3)C19—N4—C18—O102.5 (7)
Cu1i—O2—C8—C9178.98 (15)C20—N4—C18—O10178.0 (4)
Cu1—O1—C8—O20.5 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4ii0.932.473.360 (4)161
C15—H15···O10.932.503.100 (4)123
C16—H16C···O50.962.402.770 (4)102
C19—H19A···O100.962.352.753 (8)104
C20—H20C···O10iii0.962.593.503 (7)160
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. BA–FA–F7–004).

References

First citationBecke, A. D. (1988). Phys. Rev. A, 38, 3098–3100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDrożdżewski, P., Brożyna, A. & Kubiak, M. (2004). Polyhedron, 23, 1785–1792.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaiduc, I. & Silvestru, C. (1989). Organometallics in Cancer Chemotherapy. Boston: CRS, Press.  Google Scholar
First citationHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminform, 4, 1–17.  CrossRef PubMed Google Scholar
First citationHarrison, W., Rettig, S. & Trotter, J. J. (1972). J. Chem. Soc. Dalton Trans. pp. 1852–1856.  CSD CrossRef Google Scholar
First citationHökelek, T., Mert, Y. & Ünalerouğlu, C. (1998). Acta Cryst. C54, 310–313.  CSD CrossRef IUCr Journals Google Scholar
First citationIbragimov, A. B., Ashurov, J. M., Ibragimov, A. B. & Eshimbetov, A. G. (2021). J. Chem. Crystallogr. 51, 405–417.  CSD CrossRef CAS Google Scholar
First citationJassal, A. K., Sharma, S., Hundal, G. & Hundal, M. S. (2015). Cryst. Growth Des. 15, 79–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 34, 749–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarelson, M., Lobanov, V. S. & Katritzky, A. R. (1996). Chem. Rev. 96, 1027–1044.  CrossRef PubMed CAS Google Scholar
First citationLee, C., Yang, W. & Parr, G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Google Scholar
First citationLi, J. & Zhou, H. (2010). Nat. Chem. 2, 893–898.  CSD CrossRef PubMed Google Scholar
First citationLinder, M. C. & Goode, C. A. (1991). Biochemistry of Copper. New York: Plenum.  Google Scholar
First citationLu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592.  Web of Science CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R. & Hatamjafari, F. (2021). J. Chem. Res. 45, 147–158.  CrossRef CAS Google Scholar
First citationNeese, F. (2012). WIREs Comput. Mol. Sci. 2, 73–78.  Web of Science CrossRef CAS Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, V. M., Sathyanarayana, D. N. & Manohar, H. J. (1983). J. Chem. Soc. Dalton Trans. pp. 2167–2173.  CSD CrossRef Google Scholar
First citationRauk, A. (2001). Orbital interaction. Theory of Organic Chemistry. New York: Wiley-Interscience.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku OD, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S., Cui, J., Li, Z. & Nie, F. (2013). Z. Krist. New Cryst. Struct. 228, 199–200.  CAS Google Scholar
First citationStachová, P., Moncol, J., Valigura, D. & Lis, T. (2006). Acta Cryst. C62, m375–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationSu, F., Lu, L., Feng, S., Zhu, M., Gao, Z. & Dong, Y. (2015). Dalton Trans. 44, 7213–7222.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTapiero, H. & Tew, K. D. (2003). Biomed. Pharmacother. 57, 399–411.  CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar
First citationUeyama, N., Yamada, Y., Takeda, J., Okamura, T., Mori, W. & Nakamura, A. (1996). Chem. Commun. pp. 1377–1378.  CSD CrossRef Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Dokl. Nat. Akad. Nauk Azerbauidzhana, 36, 40.  Google Scholar
First citationWang, J., Su, F. & Shi, L. (2018). Acta Cryst. E74, 691–694.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D., Gao, J. & Long, S. (2020). IUCrData, 5, x200801.  Google Scholar
First citationZhu, L.-G., Kitagawa, S., Miyasaka, H. & Chang, H.-C. (2003). Inorg. Chim. Acta, 355, 121–126.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds