Download citation
Download citation
link to html
The title compound {systematic name: tetra­kis([mu]-3,5-dinitro­benzoato-[kappa]2O:O')bis­[(3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione-[kappa]O2)copper(II)]}, [Cu2(C7H3N2O6)4(C8H10N4O2)2], consists of paddle-wheel dimeric tetra­kis([mu]-3,5-dinitro­benzoato-[kappa]2O:O')dicopper(II) units with O-coordinated caffeine mol­ecules in both apical positions. The entire dimeric mol­ecule lies on a tetra­gonal inversion \overline{4} axis, and thus one nitro­benzoate anion with one Cu atom in a special position belong to the independent part of the mol­ecule. The caffeine ligand bonded to the Cu atom is disordered on a local twofold non-crystallographic axis coincident with the \overline{4} axis. A [pi]-[pi] stacking inter­action is observed between the caffeine rings and adjacent symmetry-related benzene rings of the 3,5-dinitro­benzoate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106025467/sf3010sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025467/sf3010Isup2.hkl
Contains datablock I

CCDC reference: 618611

Comment top

Benzoates, especially salicylates and fenamates, are known to play an important role in human medicine. The preparation of new nitrosubstituted benzoatocopper complexes with different biologically active ligands, the study of their composition, stereochemistry, structure and spectroscopic properties, and of course the study of their biological activity, are the basis of our approach to studying these compounds.

The complex molecule of the title compound, (I) (Fig. 1), is located on an inversion axis 4, with both Cu atoms and atoms O7, C8 and C10 of the caffeine ligand on a twofold axis. Each Cu atom in the dimeric structure has a tetragonal–pyramidal coordination, with four carboxylate O atom (O1, O2 and their symmetry equivalents) in equatorial positions [Cu—O1 = 1.933 (2) Å and Cu—O2 = 1.983 (2) Å] and caffeine atom O7 in the apical position [Cu—O7 = 2.180 (2) Å]. The Cu···Cuii separation is 2.661 (1) Å [symmetry code: (ii) y − 1/4, 1/4 − x, 5/4 − z Please check added symmop], which is close to the Cu···Cu distance in the complex [Cu3(C7H3N2O6)6(CH3OH)2]n (Hökelek et al., 1998). The Cu atoms are slightly displaced from the basal plane by 0.200 (1) Å toward the apical atom O7, and the τ parameter (Addison et al., 1984) of 0.16 implies tetragonal geometry.

The caffeine molecules are significantly planar; the dihedral angle between the pyrimidine and imidazole rings is 0°. These dihedral angles for the structures of other complexes with caffeine are in the range 0–5°. The dihedral angle is 0° only for complexes [Cu2(µ-flufenamato-κ2O:O')4(caffeine-κN)(H2O)] (Melník et al., 1998) and [Cu2(µ-CCl3CO2-κ2O:O')4(caffeine-κN)2].benzene (Horie et al., 1986).

Interactions between molecules of (I) are ππ stacking interactions (Fig. 2) (Janiak, 2000) between the caffeine rings and adjacent symmetry-related benzene rings of the 3,5-dinitrobenzoate anions at (−x, −y, −z + 1) and (x, y + 1/2, −z + 1); the distances between the caffeine and benzene planes are in the range 3.28–3.52 Å.

As a ligand, caffeine usually prefers an N atom as a donor atom, e.g. in copper(II) carboxylate complexes with caffeine of the formulae [Cu2(µ-flufenamato-κ2O:O')4(caffeine-κN)(H2O)] (Melník et al., 1998) or [Cu2(µ-RCO2-κ2O:O')4(caffeine-κN)2], where RCO2 is the benzoate anion (Kawata et al., 1992), the naproxenate anion (Koman et al., 2000), the chloroacetate anion (Koreň et al., 1985), the o-iodobenzoate anion (Valach et al., 2001), the benzoylformate anion (Harada et al., 1997) or the trichloroacetate anion (Horie et al., 1986). The Cu···Cu separations and Cu—Nap(caffeine) bond distances in these complexes are in the ranges 2.633–2.852 and 2.239–2.116 Å, respectively. The O atom was found to participate in coordination only in the complex {[Cu2(µ-CCl3CO2-κ2O:O')4(µ-caffeine-κ2N:O)].2toluene}n, which contains caffeine as a bridging ligand (Uekusa et al., 1992). It is interesting that the bonding of caffeine via an O atom in the title compound results in a smaller Cu-to-basal plane distance compared with those compounds with caffeine as an N-donor ligand [0.223 (Melník et al., 1998), 0.204 (Kawata et al., 1992), 0.217 (Koman et al., 2000), 0.236 (Koreň et al., 1985), 0.236 (Valach et al., 2001), 0.259 (Harada et al., 1997) or 0.315 Å (Horie et al., 1986).

Complex (I) is also unusual for the manner of bonding adopted by the 3,5-dinitrobenzoate anion. This anion prefers a monodentate or ionic bonding manner, and there is only one example of a bidentate bridging bonding mode forming copper(II) acetate-like dimers in 3,5-dinitrobenzoatocopper(II) complexes with formula [Cu3(C7H3N2O6)6(CH3OH)2]n (Hökelek et al., 1998), and in this case (O-donor apical ligand) the Cu atom is displaced from the basal plane by 0.195 Å.

Experimental top

Caffeine (0.5 mmol) was added to copper(II) acetate (1 mmol) in aqueous solution (Volume?). 3,5-Dinitrobenzoic acid (2 mmol) was then added. The powdery blue product was filtered off, washed with water and dried at room temperature. Blue crystals of (I) suitable for X-ray analysis were obtained from the mother liquor after a few weeks by slow room-temperature crystallization.

Refinement top

Discrete positional disorder of the caffeine ligands is observed. Molecules of (I) lie around a 4 inversion axis. Atoms Cu, O7, C8 and C10 lie in special positions on the twofold rotation axis and have occupancy factors of 0.5 in the asymmetric unit. Fig. 1 shows the molecular structure of (I). Atoms which have full occupancy in complete molecules are drawn with solid lines. Atoms which have 0.5 occupancy in parts A or B alongside the twofold rotation axis are drawn with open or open dashed lines. Atoms N from the caffeine ligand in part A and atom O8 from the caffeine ligand in mirror part B lie in the same positions and were constrained by EXYZ and EADP with occupancy factors of 0.5. In part A, the full caffeine ligand consists of atoms O7, C8, C9, N3, N4, N5, C11 and C13, atoms in inversion C9i, N3i, C13i, C12i and O8i, and their parent H atoms. In part A [Part B?], the full molecule consists of atoms O7, C8, C9, N3, C12, O8 and C13, atoms in inversion C9i, N3i, C13i, N4i, N5i and C11i, and their parent H atoms. The remaining H atoms were positioned geometically, with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) −x, 1/2 − y, z; (ii) y − 1/4, 1/4 − x, 5/4 − z].
[Figure 2] Fig. 2. The ππ stacking interactions (dashed lines) in the crystal structure of (I).
tetrakis(µ-3,5-dinitrobenzoato-κ2O:O')bis[(3,7-dihydro-1,3,7- trimethyl-1H-purine-2,6-dione-κO)copper(II)]} top
Crystal data top
[Cu2(C7H3N2O6)4(C8H10N4O2)2]Dx = 1.790 Mg m3
Mr = 1359.96Mo Kα radiation, λ = 0.71069 Å
Tetragonal, I41/aCell parameters from 6992 reflections
a = 12.900 (5) Åθ = 3.2–35.0°
c = 30.330 (3) ŵ = 0.96 mm1
V = 5047 (3) Å3T = 100 K
Z = 4Block, blue
F(000) = 27600.24 × 0.12 × 0.11 mm
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
5131 independent reflections
Radiation source: fine-focus sealed tube2721 reflections with I > 2α(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 35.0°, θmin = 3.2°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
h = 1615
Tmin = 0.826, Tmax = 0.908k = 1720
19901 measured reflectionsl = 4739
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
5131 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu2(C7H3N2O6)4(C8H10N4O2)2]Z = 4
Mr = 1359.96Mo Kα radiation
Tetragonal, I41/aµ = 0.96 mm1
a = 12.900 (5) ÅT = 100 K
c = 30.330 (3) Å0.24 × 0.12 × 0.11 mm
V = 5047 (3) Å3
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
5131 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
2721 reflections with I > 2α(I)
Tmin = 0.826, Tmax = 0.908Rint = 0.067
19901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.01Δρmax = 0.91 e Å3
5131 reflectionsΔρmin = 0.61 e Å3
216 parameters
Special details top

Experimental. analytical numerical absorption using a multifaceted crystal model

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.00000.25000.581135 (11)0.00983 (9)
N10.29906 (13)0.19367 (13)0.69899 (6)0.0168 (4)
N20.26890 (13)0.19816 (14)0.53733 (6)0.0170 (4)
N30.04696 (12)0.17070 (12)0.44505 (5)0.0133 (4)
N40.0177 (3)0.2223 (3)0.33284 (10)0.0147 (8)0.50
N50.09415 (12)0.09653 (12)0.37678 (6)0.0213 (4)0.50
O10.07869 (10)0.12280 (10)0.58494 (4)0.0141 (3)
O20.12827 (11)0.33175 (10)0.59047 (4)0.0139 (3)
O30.35451 (11)0.27110 (11)0.69570 (5)0.0229 (4)
O40.27634 (11)0.15046 (11)0.73356 (4)0.0193 (3)
O50.32022 (11)0.27824 (11)0.53727 (5)0.0238 (4)
O60.23465 (12)0.15658 (12)0.50390 (5)0.0245 (4)
O70.00000.25000.50926 (6)0.0182 (4)
O80.09415 (12)0.09653 (12)0.37678 (6)0.0213 (4)0.50
C10.10335 (14)0.08503 (14)0.62227 (7)0.0130 (4)
C20.16494 (14)0.01333 (14)0.62103 (6)0.0115 (4)
C30.19942 (15)0.05885 (15)0.66000 (7)0.0128 (4)
H30.18280.02900.68780.015*
C40.25847 (15)0.14856 (16)0.65753 (7)0.0137 (5)
C50.28290 (15)0.19614 (16)0.61797 (6)0.0140 (5)
H50.32260.25810.61690.017*
C60.24658 (16)0.14898 (16)0.58017 (7)0.0134 (4)
C70.18889 (15)0.05867 (15)0.58075 (7)0.0130 (4)
H70.16600.02800.55400.016*
C80.00000.25000.46879 (9)0.0133 (6)
C90.05002 (15)0.16877 (15)0.39868 (6)0.0124 (4)
C100.00000.25000.37706 (9)0.0114 (5)
C110.0709 (3)0.1319 (3)0.33348 (13)0.0180 (9)0.50
H110.09080.09570.30760.022*0.50
C120.0154 (4)0.2187 (3)0.29438 (13)0.0190 (10)*0.50
H12A0.09130.21620.29340.028*0.50
H12B0.01070.25210.26760.028*0.50
H12C0.01210.14800.29630.028*0.50
C130.09496 (17)0.08490 (16)0.46926 (7)0.0188 (5)
H13A0.06780.08330.49940.028*
H13B0.17030.09480.47010.028*
H13C0.07890.01930.45450.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0110 (2)0.0098 (2)0.00861 (16)0.00072 (18)0.0000.000
N10.0170 (10)0.0134 (9)0.0200 (10)0.0013 (8)0.0028 (8)0.0053 (8)
N20.0161 (10)0.0167 (10)0.0182 (10)0.0020 (8)0.0025 (8)0.0036 (8)
N30.0152 (9)0.0130 (9)0.0117 (9)0.0001 (7)0.0002 (7)0.0000 (7)
N40.018 (2)0.019 (2)0.0075 (14)0.0003 (16)0.0010 (17)0.0021 (14)
N50.0238 (9)0.0179 (8)0.0222 (9)0.0051 (7)0.0046 (8)0.0009 (8)
O10.0161 (8)0.0127 (7)0.0134 (8)0.0034 (6)0.0008 (6)0.0006 (6)
O20.0132 (8)0.0172 (8)0.0114 (7)0.0032 (7)0.0013 (6)0.0014 (6)
O30.0264 (9)0.0165 (8)0.0258 (9)0.0108 (7)0.0042 (7)0.0043 (7)
O40.0234 (9)0.0199 (8)0.0146 (8)0.0009 (7)0.0000 (7)0.0018 (7)
O50.0257 (9)0.0188 (8)0.0267 (9)0.0075 (7)0.0017 (7)0.0065 (7)
O60.0313 (9)0.0286 (9)0.0135 (8)0.0064 (8)0.0007 (7)0.0010 (7)
O70.0205 (12)0.0244 (12)0.0096 (10)0.0033 (11)0.0000.000
O80.0238 (9)0.0179 (8)0.0222 (9)0.0051 (7)0.0046 (8)0.0009 (8)
C10.0092 (9)0.0119 (9)0.0179 (11)0.0017 (8)0.0002 (9)0.0013 (9)
C20.0093 (9)0.0100 (9)0.0152 (10)0.0011 (7)0.0010 (9)0.0002 (9)
C30.0125 (10)0.0131 (11)0.0129 (11)0.0035 (9)0.0002 (8)0.0005 (8)
C40.0119 (10)0.0134 (11)0.0160 (11)0.0004 (9)0.0027 (9)0.0037 (9)
C50.0117 (10)0.0108 (10)0.0195 (12)0.0018 (8)0.0007 (9)0.0009 (9)
C60.0121 (10)0.0130 (10)0.0152 (10)0.0031 (9)0.0017 (9)0.0021 (9)
C70.0115 (10)0.0133 (10)0.0140 (10)0.0018 (9)0.0007 (9)0.0013 (9)
C80.0115 (15)0.0183 (17)0.0102 (14)0.0049 (14)0.0000.000
C90.0105 (10)0.0146 (11)0.0123 (11)0.0030 (9)0.0004 (8)0.0002 (8)
C100.0121 (14)0.0138 (14)0.0084 (12)0.0005 (12)0.0000.000
C110.022 (2)0.021 (2)0.011 (2)0.0007 (19)0.0010 (18)0.0069 (18)
C130.0230 (12)0.0185 (11)0.0149 (11)0.0030 (10)0.0000 (9)0.0038 (9)
Geometric parameters (Å, º) top
Cu—O1i1.933 (2)C1—O2ii1.256 (2)
Cu—O11.933 (2)C1—C21.498 (3)
Cu—O21.983 (2)C2—C71.389 (3)
Cu—O2i1.983 (2)C2—C31.393 (3)
Cu—O72.180 (2)C3—C41.388 (3)
Cu—Cuii2.661 (1)C3—H30.9500
N1—O41.223 (2)C4—C51.384 (3)
N1—O31.233 (2)C5—C61.380 (3)
N1—C41.481 (3)C5—H50.9500
N2—O51.227 (2)C6—C71.383 (3)
N2—O61.229 (2)C7—H70.9500
N2—C61.474 (3)C8—N3i1.390 (2)
N3—C81.390 (2)C9—C101.394 (2)
N3—C91.407 (2)C10—C9i1.394 (2)
N3—C131.465 (2)C10—N4i1.407 (4)
N4—N4i0.848 (6)C11—H110.9500
N4—C111.352 (5)C12—N4i1.457 (4)
N4—C101.407 (4)C12—H12A0.9800
N4—C12i1.457 (4)C12—H12B0.9800
N5—C111.423 (4)C12—H12C0.9800
N5—C91.278 (2)C13—H13A0.9800
O1—C11.273 (2)C13—H13B0.9800
O2—C1iii1.256 (2)C13—H13C0.9800
O7—C81.227 (3)
O1i—Cu—O1173.16 (8)C3—C2—C1120.35 (18)
O1i—Cu—O288.75 (6)C4—C3—C2118.75 (19)
O1—Cu—O290.27 (6)C4—C3—H3120.6
O1i—Cu—O2i90.27 (6)C2—C3—H3120.6
O1—Cu—O2i88.75 (6)C5—C4—C3122.80 (19)
O2—Cu—O2i163.57 (8)C5—C4—N1118.78 (18)
O1i—Cu—O793.42 (4)C3—C4—N1118.40 (18)
O1—Cu—O793.42 (4)C6—C5—C4116.59 (19)
O2—Cu—O798.21 (4)C6—C5—H5121.7
O2i—Cu—O798.21 (4)C4—C5—H5121.7
O1i—Cu—Cuii86.58 (4)C5—C6—C7122.9 (2)
O1—Cu—Cuii86.58 (4)C5—C6—N2118.44 (18)
O2—Cu—Cuii81.79 (4)C7—C6—N2118.62 (19)
O2i—Cu—Cuii81.79 (4)C6—C7—C2119.06 (19)
O7—Cu—Cuii180.0C6—C7—H7120.5
O4—N1—O3125.29 (17)C2—C7—H7120.5
O4—N1—C4117.66 (17)O7—C8—N3121.19 (11)
O3—N1—C4117.04 (17)O7—C8—N3i121.19 (12)
O5—N2—O6124.06 (18)N3—C8—N3i117.6 (2)
O5—N2—C6117.97 (17)N5—C9—C10120.64 (19)
O6—N2—C6117.97 (17)N5—C9—N3123.01 (18)
C8—N3—C9122.88 (17)C10—C9—N3116.34 (18)
C8—N3—C13118.72 (17)C9—C10—C9i123.9 (3)
C9—N3—C13118.39 (16)C9—C10—N4100.50 (16)
N4i—N4—C11177.8 (7)C9i—C10—N4135.60 (19)
N4i—N4—C1072.45 (12)C9—C10—N4i135.60 (19)
C11—N4—C10106.7 (3)C9i—C10—N4i100.50 (16)
N4i—N4—C12i53.25 (19)N5—C11—N4113.4 (3)
C11—N4—C12i127.6 (3)N5—C11—H11123.3
C10—N4—C12i125.7 (3)N4—C11—H11123.3
C11—N5—C998.7 (2)N4i—C12—H12A109.5
C1—O1—Cu120.60 (13)N4i—C12—H12B109.5
C1iii—O2—Cu124.12 (13)N4i—C12—H12C109.5
C8—O7—Cu180.0N3—C13—H13A109.5
O2ii—C1—O1126.90 (17)N3—C13—H13B109.5
O2ii—C1—C2117.36 (18)H13A—C13—H13B109.5
O1—C1—C2115.74 (18)N3—C13—H13C109.5
C7—C2—C3119.86 (18)H13A—C13—H13C109.5
C7—C2—C1119.79 (18)H13B—C13—H13C109.5
O1i—Cu—O1—C10.74 (14)O6—N2—C6—C70.3 (3)
O2—Cu—O1—C181.01 (14)C5—C6—C7—C20.8 (3)
O2i—Cu—O1—C182.59 (14)N2—C6—C7—C2178.19 (17)
O7—Cu—O1—C1179.26 (13)C3—C2—C7—C60.2 (3)
Cuii—Cu—O1—C10.74 (13)C1—C2—C7—C6179.45 (17)
O1i—Cu—O2—C1iii87.80 (15)Cu—O7—C8—N331 (49)
O1—Cu—O2—C1iii85.43 (15)Cu—O7—C8—N3i149 (85)
O2i—Cu—O2—C1iii1.08 (14)C9—N3—C8—O7178.97 (12)
O7—Cu—O2—C1iii178.92 (14)C13—N3—C8—O71.39 (17)
Cuii—Cu—O2—C1iii1.08 (14)C9—N3—C8—N3i1.03 (12)
O1i—Cu—O7—C8148 (85)C13—N3—C8—N3i178.61 (17)
O1—Cu—O7—C832 (49)C11—N5—C9—C100.5 (3)
O2—Cu—O7—C8123 (49)C11—N5—C9—N3178.3 (2)
O2i—Cu—O7—C857 (85)C8—N3—C9—N5179.20 (15)
Cuii—Cu—O7—C80 (44)C13—N3—C9—N51.2 (3)
Cu—O1—C1—O2ii0.2 (3)C8—N3—C9—C102.0 (2)
Cu—O1—C1—C2179.58 (12)C13—N3—C9—C10177.67 (15)
O2ii—C1—C2—C7178.47 (17)N5—C9—C10—C9i179.8 (2)
O1—C1—C2—C71.8 (3)N3—C9—C10—C9i0.93 (11)
O2ii—C1—C2—C32.3 (3)N5—C9—C10—N40.5 (2)
O1—C1—C2—C3177.44 (17)N3—C9—C10—N4179.3 (2)
C7—C2—C3—C40.8 (3)N5—C9—C10—N4i0.2 (3)
C1—C2—C3—C4178.42 (18)N3—C9—C10—N4i178.7 (3)
C2—C3—C4—C51.4 (3)N4i—N4—C10—C9179.2 (5)
C2—C3—C4—N1177.11 (17)C11—N4—C10—C91.3 (3)
O4—N1—C4—C5179.87 (19)C12i—N4—C10—C9178.4 (4)
O3—N1—C4—C51.2 (3)N4i—N4—C10—C9i1.1 (7)
O4—N1—C4—C31.6 (3)C11—N4—C10—C9i179.0 (2)
O3—N1—C4—C3177.33 (18)C12i—N4—C10—C9i1.3 (6)
C3—C4—C5—C60.9 (3)C11—N4—C10—N4i177.9 (8)
N1—C4—C5—C6177.60 (19)C12i—N4—C10—N4i2.4 (3)
C4—C5—C6—C70.2 (3)C9—N5—C11—N41.4 (4)
C4—C5—C6—N2178.74 (18)N4i—N4—C11—N569 (10)
O5—N2—C6—C51.0 (3)C10—N4—C11—N51.8 (4)
O6—N2—C6—C5178.72 (19)C12i—N4—C11—N5177.9 (4)
O5—N2—C6—C7179.96 (18)
Symmetry codes: (i) x, y+1/2, z; (ii) y1/4, x+1/4, z+5/4; (iii) y+1/4, x+1/4, z+5/4.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3N2O6)4(C8H10N4O2)2]
Mr1359.96
Crystal system, space groupTetragonal, I41/a
Temperature (K)100
a, c (Å)12.900 (5), 30.330 (3)
V3)5047 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.24 × 0.12 × 0.11
Data collection
DiffractometerKuma KM-4 CCD area-detector
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.826, 0.908
No. of measured, independent and
observed [I > 2α(I)] reflections
19901, 5131, 2721
Rint0.067
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.078, 1.01
No. of reflections5131
No. of parameters216
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.61

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1998), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Cu—O1i1.933 (2)Cu—O2i1.983 (2)
Cu—O11.933 (2)Cu—O72.180 (2)
Cu—O21.983 (2)Cu—Cuii2.661 (1)
O1i—Cu—O1173.16 (8)O1i—Cu—O793.42 (4)
O1i—Cu—O288.75 (6)O1—Cu—O793.42 (4)
O1—Cu—O290.27 (6)O2—Cu—O798.21 (4)
O1—Cu—O2i88.75 (6)O2i—Cu—O798.21 (4)
O2—Cu—O2i163.57 (8)
Symmetry codes: (i) x, y+1/2, z; (ii) y1/4, x+1/4, z+5/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds