research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-[(1Z,3E)-1-cyano-2,4-di­phenyl­penta-1,3-dien-1-yl]pyridine-3,5-dicarbo­nitrile monohydrate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by Y. Ozawa, University of Hyogo, Japan (Received 26 February 2024; accepted 6 April 2024; online 18 April 2024)

The asymmetric unit of the title compound, C25H18N6·H2O, comproses two mol­ecules (I and II), together with a water mol­ecule. The terminal phenyl groups attached to the methyl groups of the mol­ecules I and II do not overlap completely, but are approximately perpendicular. In the crystal, the mol­ecules are connected by N—H⋯N, C—H⋯N, O—H⋯N and N—H⋯O hydrogen bonds with each other directly and through water mol­ecules, forming layers parallel to the (001) plane. C—H⋯π inter­actions between these layers ensure the cohesion of the crystal structure. A Hirshfeld surface analysis indicates that H⋯H (39.1% for mol­ecule I; 40.0% for mol­ecule II), C⋯H/H⋯C (26.6% for mol­ecule I and 25.8% for mol­ecule II) and N⋯H/H⋯N (24.3% for mol­ecules I and II) inter­actions are the most important contributors to the crystal packing.

1. Chemical context

Functionalized pyridines are six-membered heterocyclic systems containing one or several functional groups in their core. These derivatives are used for a large range of applications and as as drugs, ligands, catalysts, materials etc (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.]; Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). Functionalized pyridines with various biological activities, such as anti­cancer, anti­oxidant, vasodilatory, cytotoxic, anti-inflammatory, herbicidal, insecticidal, anti­hypertensive, anti­bacterial, anti­convulsant, cardiotonic properties, as well as multiple synthetic pathways of these systems, have been reported (Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]; Donmez & Turkyılmaz, 2022[Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43-48.]; Abd El-Lateef et al., 2023[Abd El-Lateef, H. M., Khalaf, M. M., Gouda, M., Kandeel, M., Amer, A., Abdelhamid, A. A., Drar, A. M. & Gad, M. A. (2023). ACS Omega, 8, 29685-29692.]). Given the wide application of these compounds, the efficient and regioselective functionalization of pyridines has attracted much attention. Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), herein we report the crystal structure and Hirshfeld surface analysis of the title compound, 2,4-di­amino-6-[(1Z,3E)-1-cyano-2,4-di­phenyl­penta-1,3-dien-1-yl]pyridine-3,5-dicarbo­nitrile. The plausible reaction mechanism of the formation of the title compound is illustrated in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
The plausible formation mechanism of the title compound.

2. Structural commentary

Fig. 2[link] shows two mol­ecules (I without suffix and II with suffix A), which together with a water mol­ecule form the asymmetric unit. An overlay fit of inverted mol­ecule II on mol­ecule I is shown in Fig. 3[link], the weighted r.m.s. fit of the 31 non-H atoms being 0.510 Å and showing the major differences to be in the terminal phenyl groups (C20–C25 and C20A–C25A) attached to the methyl groups of the mol­ecules I and II.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
A least-squares overlay of the two independent mol­ecules I and II [inverted mol­ecule II (red) on mol­ecule I (black)].

In I, the phenyl rings (C14–C19 and C20–C25) form a di­hedral angle of 45.39 (11)° with each other, while they subtend angles of 80.43 (10) and 57.35 (10)°, respectively, with the pyridine ring (N1/C2–C6). In II, the phenyl rings (C14A–C19A and C20A–C25A) form a dihedral angle of 87.88 (11)° with each other, while they subtend angles of 76.94 (11) and 62.05 (10)°, respectively, with the pyridine ring (N1A/C2A–C6A). In I, the C6—C9—C10—C14, C6—C9—C10—C11, C9—C10—C11—C12 and C10—C11—C12—C20 torsion angles are 177.30 (18), −11.2 (3), 153.8 (2) and 174.73 (19)°, respectively. In II, the corresponding C6A—C9A—C10A—C14A, C6A—C9A—C10A—C11A, C9A—C10A—C11A—C12A and C10A—C11A—C12A—C20A torsion angles have approximately the same values, viz. 172.10 (19), −15.5 (3), 153.0 (2) and 173.0 (2)°, respectively. Bond lengths and angles in the mol­ecules of the title compound are comparable with those of closely related structures detailed in the Database survey (section 4).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected by N—H⋯N and C—H⋯N and O—H⋯N and N—H⋯O hydrogen bonds with each other directly and through water mol­ecules, forming layers parallel to the (001) plane (Table 1[link]; Figs. 4[link], 5[link] and 6[link]). In addition, C—H⋯π inter­actions between these layers ensure the cohesion of the crystal structure (Table 1[link]; Fig. 7[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the C14A–C19A and C20A–C25A phenyl rings of mol­ecule II, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.93 (2) 1.93 (2) 2.853 (2) 169 (3)
O1—H1B⋯N7Ai 0.89 (2) 2.33 (2) 3.163 (3) 156 (3)
O1A—H1C⋯N1A 1.04 (2) 1.78 (2) 2.811 (3) 174 (2)
O1A—H1D⋯N7ii 0.91 (2) 2.38 (2) 3.206 (3) 152 (2)
O1A—H1D⋯N13A 0.91 (2) 2.59 (2) 3.153 (3) 121 (2)
N2—H2A⋯O1 0.86 (3) 2.44 (3) 3.140 (3) 139 (2)
N2—H2A⋯O1iii 0.86 (3) 2.29 (3) 2.892 (3) 127 (2)
N2—H2B⋯N7Aiv 0.87 (3) 2.41 (3) 3.209 (3) 151.7 (18)
N2A—H2C⋯O1A 0.87 (3) 2.48 (3) 3.174 (3) 137 (2)
N2A—H2C⋯O1Av 0.87 (3) 2.25 (3) 2.859 (3) 127 (3)
N2A—H2D⋯N7iv 0.85 (3) 2.42 (3) 3.205 (3) 154 (3)
N4—H4A⋯N13Avi 0.82 (3) 2.21 (3) 2.984 (3) 158 (3)
N4A—H4C⋯N13vii 0.84 (3) 2.16 (3) 2.930 (3) 152 (2)
C11—H11⋯N8A 0.95 2.59 3.453 (3) 151
C11A—H11A⋯N8viii 0.95 2.49 3.369 (3) 154
C21—H21⋯Cg6ix 0.95 2.91 3.653 (2) 136
C26A—H26FCg5 0.98 2.97 3.781 (2) 141
Symmetry codes: (i) [x-1, y, z]; (ii) [x-1, y+1, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+2, -y+1, -z+1]; (v) [-x+1, -y+2, -z+1]; (vi) [x+1, y-1, z]; (vii) [x+1, y, z]; (viii) [x, y+1, z]; (ix) [-x+1, -y+1, -z].
[Figure 4]
Figure 4
The packing of the title compound viewed along the a axis with O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 5]
Figure 5
The packing of the title compound viewed along the b axis with O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 6]
Figure 6
The packing of the title compound viewed along the c axis with O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 7]
Figure 7
A view of the packing of the title compound along the a axis with C—H⋯π inter­actions shown as dashed lines.

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces for both independent mol­ecules. The dnorm mappings for mol­ecules I and II were performed in the ranges −0.5788 to 1.4167 a.u. and −0.621 to 1.3731 a.u., respectively. The O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯N inter­actions are indicated by red areas on the Hirshfeld surfaces (Fig. 8[link]a,b for I and Fig. 8[link]c,d for II). Although H⋯H inter­actions (39.1% for mol­ecule I and 40.0% for mol­ecule II) contribute the most to surface contacts, fingerprint plots (Fig. 9[link]) show that C⋯H/H⋯C inter­actions (26.6% for mol­ecule I and 25.8% for mol­ecule II) and N⋯H/H⋯N inter­actions (24.3% for mol­ecules I and II) are also significant (Tables 1[link] and 2[link]). Other, less notable contacts are C⋯N/N⋯C (4.6% for mol­ecule I and 4.4% for mol­ecule II), N⋯N (1.9% contribution for mol­ecule I and 2.0% for mol­ecule II), O⋯H/H⋯O inter­actions (1.6% for mol­ecule I and 1.7% for mol­ecule II), O⋯C/C⋯O inter­actions (1.0% for mol­ecules I and II), C⋯C (0.7% for mol­ecule I and 0.8% for mol­ecule II) and O⋯N/N⋯O inter­actions (0.1% for mol­ecules I and II). A comparison of the supplied data shows that mol­ecules I and II have extremely comparable environments.

Table 2
Inter­atomic contacts of the title compound (Å)

N1⋯H1A 1.93 x, y, z
H19⋯H26F 2.48 x, y, z
H2A⋯O1 2.29 1 − x, 1 − y, 1 − z
H2B⋯N7A 2.41 2 − x, 1 − y, 1 − z
N13⋯H2D 2.67 1 − x, 1 − y, 1 − z
H4A⋯N13A 2.21 1 + x, −1 + y, z
N4⋯H16 2.90 1 + x, y, z
N7⋯H1D 2.38 1 + x, −1 + y, z
C7⋯N7 3.21 2 − x, −y, 1 − z
H26B⋯H25A 2.43 x, −1 + y, z
N13⋯H4C 2.16 −1 + x, y, z
C13⋯O1A 3.01 x, −1 + y, z
H22⋯H19A 2.37 1 − x, 1 − y, −z
N1A⋯H1C 1.78 x, y, z
H2C⋯O1A 2.25 1 − x, 2 − y, 1 − z
N4A⋯H16A 2.69 1 + x, y, z
N7A⋯H1B 2.33 1 + x, y, z
C7A⋯N7A 3.21 2 − x, 1 − y, 1 − z
C13A⋯O1 3.06 x, y, z
[Figure 8]
Figure 8
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm for I, (c) front and (d) back sides for II.
[Figure 9]
Figure 9
The two-dimensional fingerprint plots, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) N⋯H/H⋯N inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.]

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the buta-1,3-diene unit gave ten similar structures, viz. CSD refcode SESRUE (Ibis & Deniz, 2006[Ibis, C. & Deniz, N. G. (2006). Acta Cryst. E62, o5373-o5374.]), JEYVAL (Ibis & Deniz, 2007a[Ibis, C. & Deniz, N. G. (2007a). Acta Cryst. E63, o1091-o1092.]), SINDOJ (Ibis & Deniz, 2007b[Ibis, C. & Deniz, N. G. (2007b). Acta Cryst. E63, o4394.]), WIHFAV (Ibis & Deniz, 2007c[Ibis, C. & Deniz, N. G. (2007c). Acta Cryst. E63, o3058.]), CICMIL (Sathiyanarayanan et al., 2007[Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2007). Acta Cryst. E63, o2504-o2505.]), GISDOC (Sathiyanarayanan et al., 2008a[Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2008a). Acta Cryst. E64, o124.]), GIRQEE (Sathiyanarayanan et al., 2008b[Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2008b). Acta Cryst. E64, o123.]), IGANUA (Bats et al., 2008[Bats, J. W., Urschel, B. & Müller, T. (2008). Acta Cryst. E64, o2235.]), KABKAB (Narayan et al., 2010[Narayan, G., Rath, N. P. & Das, S. (2010). Acta Cryst. E66, o2678.]) and IDOTOM (Okuno & Iwahashi, 2013[Okuno, T. & Iwahashi, H. (2013). Acta Cryst. E69, o665.]).

In SESRUE, the butadiene has a conformation closer to cisoid than to transoid, the C4—C3—C2—C1 torsion angle being −64.3 (3)°. In JEYVAL, the butadiene unit has assumed a configuration close to cisoid, but it is not completely planar. The C18—C19— C20—C21 torsion angle is −56.0 (11)°. In SINDOJ, the butadiene unit is not completely planar. The torsional angle of the butadiene unit (C1—C2—C3—C4) is −82.2 (5)°. In WIHFAV, the butadiene unit has assumed a configuration close to cisoid, but is not completely planar. The C4—C3—C2—C1 torsion angle is −97.2 (3)°. In CICMIL, co-operative C—H⋯π inter­actions form mol­ecular dimers. The dimers associate in a one-dimensional chain along the a-axis direction. In GISDOC, the torsion angles describing the mol­ecular conformation namely, C2—C1—O1—C7, C8—C7—O1—C1 and O1—C7—C8—C8i [symmetry code: (i) 1 − x, 1 − y, −z] are trans, gauche and trans, respectively. The structure is consolidated by a short intra­molecular C—H⋯O contact. The mol­ecules are held together by C—H⋯π inter­actions, forming a sheet structure parallel to the (201) plane. The structure of GIRQEE is consolidated by a short inter­molecular C—H⋯O contact. Cooperative C—H⋯π inter­actions generate an infinite one-dimensional chains of mol­ecules along the a-axis direction. In IGANUA, the asymmetric unit contains two half-mol­ecules. Both complete mol­ecules are generated by crystallographic inversion centres located at the mid-points of the central C—C single bonds; the butadiene groups are planar, with a trans conformation about the central C—C bond. The mol­ecules show short intra­molecular H⋯I contacts of 2.89 and 2.92 Å. The crystal packing shows no short inter­molecular contacts. In KABKAB, there are four mol­ecules per unit cell. The symmetrical mol­ecules are arranged in a herringbone fashion (Koren et al., 2003[Koren, A. B., Curtis, M. D., Francis, A. H. & Kampf, J. W. (2003). J. Am. Chem. Soc. 125, 5040-5050.]) in which the mol­ecules are packed in an edge-to-face orientation. In IDOTOM, the mol­ecules are aligned along the b-axis. Four kinds of weak C—H⋯N inter­actions are recognized, one of which connects the mol­ecules into a one-dimensional array and the remaining three link these arrays.

5. Synthesis and crystallization

A solution of aceto­phenone (17 mmol) and malono­nitrile (26 mmol) in ethanol (35 mL) was stirred for 1 h. Then 5 drops of methyl­piperazine were added to the reaction mixture. The resulting reaction mixture was stirred for 4 h. After the reaction was complete, it was kept for 5 days until the formation of crystals occurred. The crystals were separated by filtration and recrystallized from an ethanol–water solution (m.p. = 458–459 K, yield 55%).

1H NMR (300 MHz, DMSO-d6, ppm.): 2.32 (s, 3H, CH3); 6.88 (s, 4H, 2NH2); 7.19–7.87 (m, 10H, 10CHarom.); 7.96 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, ppm): 17.95 (CH3), 61.61 (Cquat.), 67.24 (Cquat.), 69.98 (Cquat.), 116.21 (CN), 116.88 (CN), 117.76 (=CH), 119.32 (CN), 127.52 (2CHarom.), 127.58 (CHarom.), 128.62 (2CHarom.), 128.90 (CHarom.), 129.37 (2CHarom.), 129.54 (2CHarom.), 138.14 (Carom.), 142.25 (Carom.), 145.96 (Cquat.), 155.03 (Cquat.), 161.99 (Cquat.), 166.07 (Cquat.), 166.39 (Cquat.).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in difference-Fourier maps and refined freely. The O-bound H atoms were located in difference-Fourier maps and were refined with Uiso(H) = 1.5Ueq(O). The O—H bond lengths of water mol­ecules were forced to be 0.85 ± 0.02 Å with the DFIX command. Both H atoms of the water mol­ecules were forced to have the same displacement parameters with the EADP command.

Table 3
Experimental details

Crystal data
Chemical formula C25H18N6·H2O
Mr 420.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.2188 (5), 10.7365 (5), 20.4119 (10)
α, β, γ (°) 84.376 (2), 89.298 (2), 70.167 (2)
V3) 2095.97 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.32 × 0.19 × 0.16
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.834, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 55460, 7385, 5414
Rint 0.066
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.02
No. of reflections 7385
No. of parameters 625
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.32
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

2,4-Diamino-6-[(1Z,3E)-1-cyano-2,4-diphenylpenta-1,3-dien-1-yl]pyridine-3,5-dicarbonitrile monohydrate top
Crystal data top
C25H18N6·H2OZ = 4
Mr = 420.47F(000) = 880
Triclinic, P1Dx = 1.332 Mg m3
a = 10.2188 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7365 (5) ÅCell parameters from 9984 reflections
c = 20.4119 (10) Åθ = 2.3–33.2°
α = 84.376 (2)°µ = 0.09 mm1
β = 89.298 (2)°T = 100 K
γ = 70.167 (2)°Prism, yellow
V = 2095.97 (18) Å30.32 × 0.19 × 0.16 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
5414 reflections with I > 2σ(I)
Radiation source: normal-focus sealed X-ray tubeRint = 0.066
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.834, Tmax = 0.947k = 1212
55460 measured reflectionsl = 2424
7385 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0655P)2 + 1.3358P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7385 reflectionsΔρmax = 0.39 e Å3
625 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6967 (2)0.2304 (2)0.42352 (10)0.0182 (4)
C30.8187 (2)0.1282 (2)0.40672 (10)0.0170 (4)
C40.8094 (2)0.0389 (2)0.36291 (10)0.0171 (4)
C50.67687 (19)0.0614 (2)0.33360 (9)0.0163 (4)
C60.5636 (2)0.1696 (2)0.35016 (9)0.0163 (4)
C70.9508 (2)0.1177 (2)0.43378 (10)0.0193 (4)
C80.6664 (2)0.0333 (2)0.29128 (10)0.0201 (5)
C90.4236 (2)0.2037 (2)0.31930 (10)0.0170 (4)
C100.3935 (2)0.20248 (19)0.25418 (10)0.0176 (4)
C110.4995 (2)0.1889 (2)0.20405 (10)0.0183 (4)
H110.5739980.2187460.2138050.022*
C120.5041 (2)0.1392 (2)0.14563 (10)0.0196 (4)
C130.3098 (2)0.2596 (2)0.36181 (10)0.0178 (4)
C140.2455 (2)0.2344 (2)0.23301 (10)0.0186 (4)
C150.1649 (2)0.1629 (2)0.26180 (10)0.0236 (5)
H150.2044260.0918940.2950930.028*
C160.0266 (2)0.1953 (2)0.24190 (11)0.0282 (5)
H160.0275690.1452330.2609600.034*
C170.0323 (2)0.3008 (2)0.19420 (11)0.0279 (5)
H170.1272400.3237670.1813100.034*
C180.0467 (2)0.3726 (2)0.16541 (11)0.0261 (5)
H180.0061270.4449660.1329410.031*
C190.1857 (2)0.3382 (2)0.18422 (10)0.0213 (5)
H190.2406230.3859800.1635840.026*
C200.6150 (2)0.1445 (2)0.09859 (10)0.0208 (5)
C210.5886 (2)0.1566 (2)0.03092 (11)0.0313 (5)
H210.5005160.1586800.0153580.038*
C220.6883 (3)0.1654 (3)0.01376 (12)0.0357 (6)
H220.6677930.1746710.0596260.043*
C230.8182 (2)0.1610 (2)0.00783 (12)0.0323 (6)
H230.8870450.1668080.0228620.039*
C240.8457 (2)0.1479 (3)0.07461 (12)0.0340 (6)
H240.9343760.1444050.0899550.041*
C250.7458 (2)0.1398 (2)0.11949 (11)0.0288 (5)
H250.7667640.1309340.1652880.035*
C260.4041 (2)0.0744 (2)0.12403 (11)0.0274 (5)
H26A0.3603460.0451930.1627350.041*
H26B0.4547870.0027010.1006820.041*
H26C0.3322600.1385340.0946240.041*
N10.57086 (16)0.24888 (17)0.39556 (8)0.0189 (4)
N20.7017 (2)0.31559 (19)0.46583 (9)0.0231 (4)
H2A0.628 (3)0.376 (3)0.4779 (12)0.035 (7)*
H2B0.778 (3)0.303 (2)0.4884 (11)0.025 (6)*
N40.92089 (19)0.06329 (18)0.34776 (10)0.0225 (4)
H4A0.996 (3)0.082 (3)0.3675 (13)0.038 (8)*
H4B0.917 (2)0.119 (3)0.3188 (12)0.032 (7)*
N71.05707 (18)0.11177 (18)0.45446 (9)0.0270 (4)
N80.66825 (18)0.11456 (18)0.25793 (9)0.0259 (4)
N130.21914 (17)0.31331 (18)0.39406 (9)0.0232 (4)
C2A0.7035 (2)0.7391 (2)0.42403 (10)0.0185 (4)
C3A0.8244 (2)0.6325 (2)0.41013 (10)0.0171 (4)
C4A0.8140 (2)0.5382 (2)0.36907 (10)0.0175 (4)
C5A0.68280 (19)0.56133 (19)0.33876 (9)0.0161 (4)
C6A0.5711 (2)0.6731 (2)0.35225 (9)0.0165 (4)
C7A0.9562 (2)0.6215 (2)0.43738 (10)0.0192 (4)
C8A0.6711 (2)0.4623 (2)0.29911 (11)0.0233 (5)
C9A0.4330 (2)0.7034 (2)0.32019 (10)0.0175 (4)
C10A0.4078 (2)0.6919 (2)0.25576 (10)0.0184 (4)
C11A0.5150 (2)0.6787 (2)0.20631 (10)0.0195 (4)
H11A0.5836150.7168330.2149470.023*
C12A0.5295 (2)0.6195 (2)0.14987 (10)0.0207 (5)
C13A0.3151 (2)0.7614 (2)0.36033 (10)0.0188 (4)
C14A0.2620 (2)0.7106 (2)0.23633 (10)0.0200 (5)
C15A0.1942 (2)0.6297 (2)0.26811 (11)0.0256 (5)
H15A0.2420020.5618940.3015070.031*
C16A0.0578 (2)0.6474 (3)0.25135 (12)0.0337 (6)
H16A0.0120850.5920190.2731490.040*
C17A0.0118 (2)0.7464 (3)0.20266 (12)0.0394 (7)
H17A0.1051640.7583470.1907770.047*
C18A0.0544 (2)0.8275 (3)0.17141 (12)0.0374 (6)
H18A0.0056980.8961100.1385530.045*
C19A0.1911 (2)0.8099 (2)0.18749 (10)0.0264 (5)
H19A0.2364160.8652560.1653000.032*
C20A0.6380 (2)0.6311 (2)0.10246 (10)0.0213 (5)
C21A0.6895 (2)0.5393 (2)0.05612 (11)0.0294 (5)
H21A0.6572620.4661430.0558050.035*
C22A0.7869 (2)0.5535 (3)0.01061 (12)0.0354 (6)
H22A0.8211740.4898480.0202430.042*
C23A0.8344 (2)0.6602 (3)0.01009 (11)0.0320 (6)
H23A0.9003550.6702740.0212990.038*
C24A0.7851 (2)0.7518 (3)0.05550 (11)0.0318 (6)
H24A0.8175520.8249360.0554110.038*
C25A0.6884 (2)0.7373 (2)0.10118 (11)0.0268 (5)
H25A0.6557490.8007350.1322390.032*
C26A0.4477 (2)0.5341 (2)0.13285 (11)0.0282 (5)
H26D0.5103800.4419710.1322070.042*
H26E0.4029770.5667820.0893580.042*
H26F0.3764370.5376150.1658530.042*
N1A0.57830 (17)0.75733 (17)0.39527 (8)0.0199 (4)
N2A0.7090 (2)0.82797 (19)0.46381 (9)0.0242 (4)
H2C0.634 (3)0.887 (3)0.4764 (13)0.039 (8)*
H2D0.781 (3)0.816 (3)0.4873 (13)0.036 (7)*
N4A0.92293 (19)0.43097 (19)0.35784 (10)0.0233 (4)
H4C0.998 (3)0.413 (2)0.3793 (12)0.030 (7)*
H4D0.916 (3)0.375 (3)0.3307 (13)0.034 (7)*
N7A1.06263 (18)0.61477 (18)0.45827 (9)0.0262 (4)
N8A0.67225 (19)0.37721 (19)0.26829 (10)0.0286 (4)
N13A0.21990 (18)0.81696 (18)0.38964 (9)0.0248 (4)
O10.38740 (17)0.48954 (17)0.43987 (9)0.0365 (4)
H1A0.437 (3)0.408 (2)0.4247 (13)0.050 (6)*
H1B0.2974 (19)0.501 (3)0.4414 (14)0.050 (6)*
O1A0.38751 (17)0.98991 (18)0.43855 (9)0.0392 (4)
H1C0.452 (2)0.9031 (19)0.4212 (11)0.035 (5)*
H1D0.2966 (18)0.998 (2)0.4359 (12)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0181 (10)0.0202 (11)0.0138 (10)0.0040 (9)0.0006 (8)0.0019 (8)
C30.0146 (10)0.0189 (11)0.0169 (10)0.0051 (8)0.0020 (8)0.0007 (8)
C40.0165 (10)0.0180 (11)0.0158 (10)0.0051 (8)0.0003 (8)0.0006 (8)
C50.0132 (10)0.0194 (11)0.0157 (10)0.0044 (8)0.0016 (8)0.0022 (8)
C60.0143 (10)0.0192 (11)0.0149 (10)0.0052 (8)0.0006 (8)0.0003 (8)
C70.0181 (11)0.0192 (11)0.0195 (11)0.0052 (9)0.0011 (9)0.0001 (9)
C80.0144 (10)0.0213 (11)0.0229 (11)0.0041 (9)0.0017 (9)0.0003 (9)
C90.0147 (10)0.0174 (10)0.0188 (10)0.0051 (8)0.0004 (8)0.0024 (8)
C100.0167 (10)0.0164 (10)0.0198 (11)0.0060 (8)0.0010 (8)0.0016 (8)
C110.0141 (10)0.0207 (11)0.0195 (11)0.0055 (8)0.0027 (8)0.0006 (8)
C120.0177 (10)0.0189 (11)0.0191 (11)0.0026 (9)0.0035 (8)0.0001 (8)
C130.0149 (10)0.0193 (11)0.0183 (11)0.0049 (9)0.0046 (9)0.0005 (9)
C140.0155 (10)0.0219 (11)0.0180 (10)0.0046 (9)0.0003 (8)0.0066 (9)
C150.0234 (11)0.0296 (12)0.0204 (11)0.0118 (10)0.0003 (9)0.0042 (9)
C160.0228 (11)0.0419 (14)0.0268 (12)0.0183 (11)0.0048 (10)0.0104 (11)
C170.0164 (11)0.0428 (14)0.0248 (12)0.0077 (10)0.0020 (9)0.0122 (10)
C180.0206 (11)0.0323 (13)0.0212 (11)0.0023 (10)0.0041 (9)0.0074 (10)
C190.0186 (10)0.0259 (12)0.0195 (11)0.0070 (9)0.0000 (9)0.0043 (9)
C200.0216 (11)0.0185 (11)0.0195 (11)0.0032 (9)0.0010 (9)0.0021 (8)
C210.0264 (12)0.0387 (14)0.0255 (12)0.0064 (11)0.0028 (10)0.0051 (10)
C220.0396 (14)0.0441 (15)0.0203 (12)0.0107 (12)0.0013 (11)0.0019 (11)
C230.0326 (13)0.0373 (14)0.0273 (13)0.0123 (11)0.0099 (10)0.0052 (11)
C240.0280 (13)0.0455 (15)0.0317 (13)0.0157 (12)0.0042 (11)0.0083 (11)
C250.0251 (12)0.0395 (14)0.0228 (12)0.0114 (11)0.0002 (10)0.0063 (10)
C260.0254 (12)0.0298 (13)0.0293 (13)0.0100 (10)0.0010 (10)0.0111 (10)
N10.0138 (8)0.0222 (9)0.0181 (9)0.0024 (7)0.0013 (7)0.0029 (7)
N20.0184 (10)0.0271 (11)0.0207 (10)0.0020 (9)0.0028 (8)0.0085 (8)
N40.0142 (9)0.0222 (10)0.0290 (11)0.0016 (8)0.0005 (8)0.0086 (8)
N70.0211 (10)0.0275 (11)0.0325 (11)0.0092 (8)0.0067 (8)0.0006 (8)
N80.0240 (10)0.0246 (10)0.0298 (11)0.0082 (8)0.0013 (8)0.0058 (9)
N130.0150 (9)0.0290 (10)0.0224 (10)0.0030 (8)0.0019 (8)0.0029 (8)
C2A0.0187 (10)0.0206 (11)0.0137 (10)0.0039 (9)0.0004 (8)0.0011 (8)
C3A0.0139 (10)0.0185 (11)0.0170 (10)0.0036 (8)0.0025 (8)0.0008 (8)
C4A0.0152 (10)0.0202 (11)0.0152 (10)0.0045 (8)0.0004 (8)0.0012 (8)
C5A0.0130 (10)0.0185 (11)0.0159 (10)0.0045 (8)0.0004 (8)0.0009 (8)
C6A0.0150 (10)0.0201 (11)0.0129 (10)0.0047 (8)0.0002 (8)0.0011 (8)
C7A0.0196 (11)0.0172 (11)0.0194 (11)0.0050 (9)0.0003 (9)0.0005 (8)
C8A0.0161 (10)0.0252 (12)0.0273 (12)0.0059 (9)0.0001 (9)0.0009 (10)
C9A0.0138 (10)0.0190 (11)0.0186 (10)0.0044 (8)0.0007 (8)0.0008 (8)
C10A0.0163 (10)0.0176 (11)0.0206 (11)0.0049 (8)0.0016 (8)0.0015 (8)
C11A0.0149 (10)0.0257 (12)0.0194 (11)0.0086 (9)0.0008 (8)0.0028 (9)
C12A0.0172 (10)0.0234 (11)0.0203 (11)0.0050 (9)0.0021 (9)0.0019 (9)
C13A0.0150 (10)0.0221 (11)0.0178 (11)0.0047 (9)0.0052 (9)0.0006 (9)
C14A0.0164 (10)0.0274 (12)0.0169 (10)0.0073 (9)0.0009 (8)0.0064 (9)
C15A0.0244 (11)0.0318 (13)0.0248 (12)0.0139 (10)0.0035 (9)0.0068 (10)
C16A0.0285 (13)0.0541 (17)0.0305 (13)0.0257 (12)0.0101 (11)0.0197 (12)
C17A0.0174 (12)0.073 (2)0.0317 (14)0.0149 (13)0.0028 (10)0.0273 (14)
C18A0.0212 (12)0.0588 (17)0.0228 (12)0.0003 (12)0.0054 (10)0.0085 (12)
C19A0.0228 (11)0.0351 (13)0.0189 (11)0.0063 (10)0.0007 (9)0.0047 (10)
C20A0.0150 (10)0.0285 (12)0.0189 (11)0.0049 (9)0.0033 (8)0.0031 (9)
C21A0.0265 (12)0.0346 (14)0.0244 (12)0.0058 (10)0.0010 (10)0.0075 (10)
C22A0.0287 (13)0.0467 (16)0.0244 (13)0.0027 (11)0.0024 (10)0.0112 (11)
C23A0.0197 (11)0.0522 (16)0.0221 (12)0.0096 (11)0.0035 (9)0.0032 (11)
C24A0.0247 (12)0.0484 (15)0.0237 (12)0.0157 (11)0.0029 (10)0.0016 (11)
C25A0.0206 (11)0.0387 (14)0.0209 (11)0.0094 (10)0.0018 (9)0.0036 (10)
C26A0.0307 (12)0.0297 (13)0.0296 (13)0.0150 (10)0.0051 (10)0.0113 (10)
N1A0.0153 (8)0.0246 (10)0.0169 (9)0.0025 (7)0.0002 (7)0.0034 (7)
N2A0.0220 (10)0.0257 (11)0.0203 (10)0.0004 (9)0.0026 (9)0.0078 (8)
N4A0.0146 (9)0.0227 (10)0.0299 (11)0.0015 (8)0.0027 (8)0.0081 (9)
N7A0.0193 (10)0.0283 (11)0.0305 (11)0.0080 (8)0.0061 (8)0.0003 (8)
N8A0.0254 (10)0.0273 (11)0.0335 (11)0.0094 (9)0.0015 (8)0.0041 (9)
N13A0.0144 (9)0.0303 (11)0.0257 (10)0.0021 (8)0.0011 (8)0.0044 (8)
O10.0206 (9)0.0327 (10)0.0548 (12)0.0034 (8)0.0032 (8)0.0187 (9)
O1A0.0239 (9)0.0356 (10)0.0575 (12)0.0055 (8)0.0034 (8)0.0185 (9)
Geometric parameters (Å, º) top
C2—N21.331 (3)C2A—C3A1.419 (3)
C2—N11.357 (3)C3A—C4A1.407 (3)
C2—C31.418 (3)C3A—C7A1.427 (3)
C3—C41.400 (3)C4A—N4A1.339 (3)
C3—C71.429 (3)C4A—C5A1.416 (3)
C4—N41.344 (3)C5A—C6A1.395 (3)
C4—C51.421 (3)C5A—C8A1.434 (3)
C5—C61.399 (3)C6A—N1A1.340 (3)
C5—C81.428 (3)C6A—C9A1.482 (3)
C6—N11.337 (3)C7A—N7A1.149 (3)
C6—C91.483 (3)C8A—N8A1.156 (3)
C7—N71.149 (3)C9A—C10A1.369 (3)
C8—N81.153 (3)C9A—C13A1.441 (3)
C9—C101.370 (3)C10A—C11A1.461 (3)
C9—C131.439 (3)C10A—C14A1.488 (3)
C10—C111.462 (3)C11A—C12A1.352 (3)
C10—C141.492 (3)C11A—H11A0.9500
C11—C121.348 (3)C12A—C20A1.492 (3)
C11—H110.9500C12A—C26A1.500 (3)
C12—C201.489 (3)C13A—N13A1.149 (3)
C12—C261.508 (3)C14A—C19A1.393 (3)
C13—N131.149 (3)C14A—C15A1.393 (3)
C14—C151.394 (3)C15A—C16A1.384 (3)
C14—C191.394 (3)C15A—H15A0.9500
C15—C161.391 (3)C16A—C17A1.385 (4)
C15—H150.9500C16A—H16A0.9500
C16—C171.389 (3)C17A—C18A1.380 (4)
C16—H160.9500C17A—H17A0.9500
C17—C181.383 (3)C18A—C19A1.383 (3)
C17—H170.9500C18A—H18A0.9500
C18—C191.390 (3)C19A—H19A0.9500
C18—H180.9500C20A—C25A1.399 (3)
C19—H190.9500C20A—C21A1.401 (3)
C20—C251.391 (3)C21A—C22A1.389 (3)
C20—C211.396 (3)C21A—H21A0.9500
C21—C221.380 (3)C22A—C23A1.386 (3)
C21—H210.9500C22A—H22A0.9500
C22—C231.388 (3)C23A—C24A1.383 (3)
C22—H220.9500C23A—H23A0.9500
C23—C241.379 (3)C24A—C25A1.387 (3)
C23—H230.9500C24A—H24A0.9500
C24—C251.382 (3)C25A—H25A0.9500
C24—H240.9500C26A—H26D0.9800
C25—H250.9500C26A—H26E0.9800
C26—H26A0.9800C26A—H26F0.9800
C26—H26B0.9800N2A—H2C0.87 (3)
C26—H26C0.9800N2A—H2D0.85 (3)
N2—H2A0.86 (3)N4A—H4C0.84 (3)
N2—H2B0.88 (2)N4A—H4D0.88 (3)
N4—H4A0.83 (3)O1—H1A0.930 (17)
N4—H4B0.89 (3)O1—H1B0.886 (17)
C2A—N2A1.328 (3)O1A—H1C1.035 (16)
C2A—N1A1.358 (3)O1A—H1D0.904 (16)
N2—C2—N1117.04 (18)N2A—C2A—C3A121.37 (19)
N2—C2—C3121.22 (18)N1A—C2A—C3A121.39 (18)
N1—C2—C3121.70 (18)C4A—C3A—C2A119.78 (17)
C4—C3—C2119.73 (17)C4A—C3A—C7A120.18 (18)
C4—C3—C7120.23 (18)C2A—C3A—C7A120.03 (18)
C2—C3—C7120.04 (18)N4A—C4A—C3A122.20 (18)
N4—C4—C3122.02 (18)N4A—C4A—C5A120.38 (19)
N4—C4—C5120.57 (19)C3A—C4A—C5A117.41 (18)
C3—C4—C5117.39 (18)C6A—C5A—C4A118.84 (18)
C6—C5—C4118.87 (17)C6A—C5A—C8A123.79 (17)
C6—C5—C8123.83 (17)C4A—C5A—C8A117.23 (18)
C4—C5—C8117.22 (17)N1A—C6A—C5A123.76 (17)
N1—C6—C5123.49 (17)N1A—C6A—C9A115.48 (17)
N1—C6—C9114.35 (17)C5A—C6A—C9A120.74 (17)
C5—C6—C9122.14 (17)N7A—C7A—C3A178.5 (2)
N7—C7—C3178.3 (2)N8A—C8A—C5A174.8 (2)
N8—C8—C5175.0 (2)C10A—C9A—C13A117.87 (17)
C10—C9—C13117.96 (17)C10A—C9A—C6A126.45 (18)
C10—C9—C6126.87 (18)C13A—C9A—C6A115.45 (17)
C13—C9—C6114.65 (17)C9A—C10A—C11A121.54 (18)
C9—C10—C11121.47 (17)C9A—C10A—C14A117.15 (18)
C9—C10—C14118.91 (18)C11A—C10A—C14A120.87 (17)
C11—C10—C14119.08 (17)C12A—C11A—C10A128.63 (19)
C12—C11—C10127.66 (18)C12A—C11A—H11A115.7
C12—C11—H11116.2C10A—C11A—H11A115.7
C10—C11—H11116.2C11A—C12A—C20A119.58 (18)
C11—C12—C20119.53 (18)C11A—C12A—C26A123.85 (19)
C11—C12—C26124.22 (19)C20A—C12A—C26A116.47 (18)
C20—C12—C26116.24 (18)N13A—C13A—C9A174.7 (2)
N13—C13—C9174.9 (2)C19A—C14A—C15A119.38 (19)
C15—C14—C19119.10 (19)C19A—C14A—C10A120.81 (19)
C15—C14—C10121.07 (19)C15A—C14A—C10A119.80 (19)
C19—C14—C10119.82 (18)C16A—C15A—C14A120.4 (2)
C16—C15—C14120.2 (2)C16A—C15A—H15A119.8
C16—C15—H15119.9C14A—C15A—H15A119.8
C14—C15—H15119.9C15A—C16A—C17A119.8 (2)
C17—C16—C15120.0 (2)C15A—C16A—H16A120.1
C17—C16—H16120.0C17A—C16A—H16A120.1
C15—C16—H16120.0C18A—C17A—C16A120.1 (2)
C18—C17—C16120.3 (2)C18A—C17A—H17A120.0
C18—C17—H17119.9C16A—C17A—H17A120.0
C16—C17—H17119.9C17A—C18A—C19A120.6 (2)
C17—C18—C19119.7 (2)C17A—C18A—H18A119.7
C17—C18—H18120.2C19A—C18A—H18A119.7
C19—C18—H18120.2C18A—C19A—C14A119.8 (2)
C18—C19—C14120.7 (2)C18A—C19A—H19A120.1
C18—C19—H19119.6C14A—C19A—H19A120.1
C14—C19—H19119.6C25A—C20A—C21A117.5 (2)
C25—C20—C21117.8 (2)C25A—C20A—C12A120.99 (19)
C25—C20—C12122.29 (18)C21A—C20A—C12A121.5 (2)
C21—C20—C12119.92 (19)C22A—C21A—C20A121.1 (2)
C22—C21—C20121.1 (2)C22A—C21A—H21A119.4
C22—C21—H21119.5C20A—C21A—H21A119.4
C20—C21—H21119.5C23A—C22A—C21A120.2 (2)
C21—C22—C23120.5 (2)C23A—C22A—H22A119.9
C21—C22—H22119.8C21A—C22A—H22A119.9
C23—C22—H22119.8C24A—C23A—C22A119.6 (2)
C24—C23—C22118.8 (2)C24A—C23A—H23A120.2
C24—C23—H23120.6C22A—C23A—H23A120.2
C22—C23—H23120.6C23A—C24A—C25A120.2 (2)
C23—C24—C25120.8 (2)C23A—C24A—H24A119.9
C23—C24—H24119.6C25A—C24A—H24A119.9
C25—C24—H24119.6C24A—C25A—C20A121.4 (2)
C24—C25—C20121.0 (2)C24A—C25A—H25A119.3
C24—C25—H25119.5C20A—C25A—H25A119.3
C20—C25—H25119.5C12A—C26A—H26D109.5
C12—C26—H26A109.5C12A—C26A—H26E109.5
C12—C26—H26B109.5H26D—C26A—H26E109.5
H26A—C26—H26B109.5C12A—C26A—H26F109.5
C12—C26—H26C109.5H26D—C26A—H26F109.5
H26A—C26—H26C109.5H26E—C26A—H26F109.5
H26B—C26—H26C109.5C6A—N1A—C2A118.50 (17)
C6—N1—C2118.52 (17)C2A—N2A—H2C121.7 (17)
C2—N2—H2A122.3 (17)C2A—N2A—H2D121.1 (17)
C2—N2—H2B120.7 (15)H2C—N2A—H2D115 (2)
H2A—N2—H2B116 (2)C4A—N4A—H4C120.0 (17)
C4—N4—H4A121.1 (18)C4A—N4A—H4D121.6 (17)
C4—N4—H4B122.8 (16)H4C—N4A—H4D118 (2)
H4A—N4—H4B116 (2)H1A—O1—H1B111 (2)
N2A—C2A—N1A117.19 (19)H1C—O1A—H1D113 (2)
N2—C2—C3—C4178.88 (19)N2A—C2A—C3A—C4A178.38 (19)
N1—C2—C3—C43.6 (3)N1A—C2A—C3A—C4A4.1 (3)
N2—C2—C3—C71.9 (3)N2A—C2A—C3A—C7A2.1 (3)
N1—C2—C3—C7175.66 (18)N1A—C2A—C3A—C7A175.42 (18)
C2—C3—C4—N4176.88 (19)C2A—C3A—C4A—N4A175.52 (19)
C7—C3—C4—N43.9 (3)C7A—C3A—C4A—N4A4.9 (3)
C2—C3—C4—C54.3 (3)C2A—C3A—C4A—C5A5.2 (3)
C7—C3—C4—C5174.93 (18)C7A—C3A—C4A—C5A174.31 (18)
N4—C4—C5—C6179.39 (19)N4A—C4A—C5A—C6A179.16 (19)
C3—C4—C5—C60.5 (3)C3A—C4A—C5A—C6A1.6 (3)
N4—C4—C5—C83.9 (3)N4A—C4A—C5A—C8A3.2 (3)
C3—C4—C5—C8177.24 (18)C3A—C4A—C5A—C8A177.52 (18)
C4—C5—C6—N14.5 (3)C4A—C5A—C6A—N1A3.7 (3)
C8—C5—C6—N1172.01 (19)C8A—C5A—C6A—N1A171.99 (19)
C4—C5—C6—C9176.96 (18)C4A—C5A—C6A—C9A178.24 (18)
C8—C5—C6—C96.6 (3)C8A—C5A—C6A—C9A6.1 (3)
N1—C6—C9—C10139.7 (2)N1A—C6A—C9A—C10A140.7 (2)
C5—C6—C9—C1041.6 (3)C5A—C6A—C9A—C10A41.1 (3)
N1—C6—C9—C1331.8 (2)N1A—C6A—C9A—C13A33.6 (3)
C5—C6—C9—C13146.87 (19)C5A—C6A—C9A—C13A144.61 (19)
C13—C9—C10—C11160.02 (19)C13A—C9A—C10A—C11A158.67 (19)
C6—C9—C10—C1111.2 (3)C6A—C9A—C10A—C11A15.5 (3)
C13—C9—C10—C1411.4 (3)C13A—C9A—C10A—C14A13.7 (3)
C6—C9—C10—C14177.30 (18)C6A—C9A—C10A—C14A172.10 (19)
C9—C10—C11—C12153.8 (2)C9A—C10A—C11A—C12A153.0 (2)
C14—C10—C11—C1234.7 (3)C14A—C10A—C11A—C12A34.9 (3)
C10—C11—C12—C20174.73 (19)C10A—C11A—C12A—C20A173.0 (2)
C10—C11—C12—C266.4 (3)C10A—C11A—C12A—C26A10.8 (4)
C9—C10—C14—C1556.0 (3)C9A—C10A—C14A—C19A120.8 (2)
C11—C10—C14—C15132.3 (2)C11A—C10A—C14A—C19A51.6 (3)
C9—C10—C14—C19123.2 (2)C9A—C10A—C14A—C15A57.9 (3)
C11—C10—C14—C1948.5 (3)C11A—C10A—C14A—C15A129.6 (2)
C19—C14—C15—C160.0 (3)C19A—C14A—C15A—C16A0.1 (3)
C10—C14—C15—C16179.21 (19)C10A—C14A—C15A—C16A178.87 (19)
C14—C15—C16—C171.3 (3)C14A—C15A—C16A—C17A0.0 (3)
C15—C16—C17—C181.2 (3)C15A—C16A—C17A—C18A0.5 (4)
C16—C17—C18—C190.3 (3)C16A—C17A—C18A—C19A1.0 (4)
C17—C18—C19—C141.7 (3)C17A—C18A—C19A—C14A0.9 (3)
C15—C14—C19—C181.5 (3)C15A—C14A—C19A—C18A0.4 (3)
C10—C14—C19—C18177.72 (19)C10A—C14A—C19A—C18A178.4 (2)
C11—C12—C20—C2530.2 (3)C11A—C12A—C20A—C25A24.1 (3)
C26—C12—C20—C25148.8 (2)C26A—C12A—C20A—C25A159.4 (2)
C11—C12—C20—C21148.9 (2)C11A—C12A—C20A—C21A158.2 (2)
C26—C12—C20—C2132.2 (3)C26A—C12A—C20A—C21A18.3 (3)
C25—C20—C21—C220.9 (3)C25A—C20A—C21A—C22A0.1 (3)
C12—C20—C21—C22178.2 (2)C12A—C20A—C21A—C22A177.7 (2)
C20—C21—C22—C230.8 (4)C20A—C21A—C22A—C23A0.4 (3)
C21—C22—C23—C240.2 (4)C21A—C22A—C23A—C24A0.6 (3)
C22—C23—C24—C250.2 (4)C22A—C23A—C24A—C25A0.2 (3)
C23—C24—C25—C200.1 (4)C23A—C24A—C25A—C20A0.3 (3)
C21—C20—C25—C240.5 (3)C21A—C20A—C25A—C24A0.4 (3)
C12—C20—C25—C24178.6 (2)C12A—C20A—C25A—C24A177.3 (2)
C5—C6—N1—C25.3 (3)C5A—C6A—N1A—C2A5.0 (3)
C9—C6—N1—C2175.98 (17)C9A—C6A—N1A—C2A176.85 (17)
N2—C2—N1—C6176.39 (18)N2A—C2A—N1A—C6A176.61 (18)
C3—C2—N1—C61.3 (3)C3A—C2A—N1A—C6A1.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C14A–C19A and C20A–C25A phenyl rings of molecule II, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.93 (2)1.93 (2)2.853 (2)169 (3)
O1—H1B···N7Ai0.89 (2)2.33 (2)3.163 (3)156 (3)
O1A—H1C···N1A1.04 (2)1.78 (2)2.811 (3)174 (2)
O1A—H1C···N2A1.04 (2)2.61 (2)3.174 (3)114 (1)
O1A—H1D···N7ii0.91 (2)2.38 (2)3.206 (3)152 (2)
O1A—H1D···N13A0.91 (2)2.59 (2)3.153 (3)121 (2)
N2—H2A···O10.86 (3)2.44 (3)3.140 (3)139 (2)
N2—H2A···O1iii0.86 (3)2.29 (3)2.892 (3)127 (2)
N2—H2B···N7Aiv0.87 (3)2.41 (3)3.209 (3)151.7 (18)
N2A—H2C···O1A0.87 (3)2.48 (3)3.174 (3)137 (2)
N2A—H2C···O1Av0.87 (3)2.25 (3)2.859 (3)127 (3)
N2A—H2D···N7iv0.85 (3)2.42 (3)3.205 (3)154 (3)
N4—H4A···N13Avi0.82 (3)2.21 (3)2.984 (3)158 (3)
N4A—H4C···N13vii0.84 (3)2.16 (3)2.930 (3)152 (2)
C11—H11···N8A0.952.593.453 (3)151
C11A—H11A···N8viii0.952.493.369 (3)154
C21—H21···Cg6ix0.952.913.653 (2)136
C26A—H26F···Cg50.982.973.781 (2)141
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+2, z+1; (vi) x+1, y1, z; (vii) x+1, y, z; (viii) x, y+1, z; (ix) x+1, y+1, z.
Interatomic contacts of the title compound (Å) top
N1···H1A1.93x, y, z
H19···H26F2.48x, y, z
H2A···O12.291 - x, 1 - y, 1 - z
H2B···N7A2.412 - x, 1 - y, 1 - z
N13···H2D2.671 - x, 1 - y, 1 - z
H4A···N13A2.211 + x, -1 + y, z
N4···H162.901 + x, y, z
N7···H1D2.381 + x, -1 + y, z
C7···N73.212 - x, -y, 1 - z
H26B···H25A2.43x, -1 + y, z
N13···H4C2.16-1 + x, y, z
C13···O1A3.01x, -1 + y, z
H22···H19A2.371 - x, 1 - y, -z
N1A···H1C1.78x, y, z
H2C···O1A2.251 - x, 2 - y, 1 - z
N4A···H16A2.691 + x, y, z
N7A···H1B2.331 + x, y, z
C7A···N7A3.212 - x, 1 - y, 1 - z
C13A···O13.06x, y, z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK,; writing (review and editing of the manuscript), İGM and ANK; visualization, MA, FSK and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA;

supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAbd El-Lateef, H. M., Khalaf, M. M., Gouda, M., Kandeel, M., Amer, A., Abdelhamid, A. A., Drar, A. M. & Gad, M. A. (2023). ACS Omega, 8, 29685–29692.  CAS PubMed Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.  Google Scholar
First citationBats, J. W., Urschel, B. & Müller, T. (2008). Acta Cryst. E64, o2235.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbis, C. & Deniz, N. G. (2006). Acta Cryst. E62, o5373–o5374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIbis, C. & Deniz, N. G. (2007a). Acta Cryst. E63, o1091–o1092.  CSD CrossRef IUCr Journals Google Scholar
First citationIbis, C. & Deniz, N. G. (2007b). Acta Cryst. E63, o4394.  CSD CrossRef IUCr Journals Google Scholar
First citationIbis, C. & Deniz, N. G. (2007c). Acta Cryst. E63, o3058.  CSD CrossRef IUCr Journals Google Scholar
First citationKoren, A. B., Curtis, M. D., Francis, A. H. & Kampf, J. W. (2003). J. Am. Chem. Soc. 125, 5040–5050.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayan, G., Rath, N. P. & Das, S. (2010). Acta Cryst. E66, o2678.  CSD CrossRef IUCr Journals Google Scholar
First citationOkuno, T. & Iwahashi, H. (2013). Acta Cryst. E69, o665.  CSD CrossRef IUCr Journals Google Scholar
First citationSathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2007). Acta Cryst. E63, o2504–o2505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2008a). Acta Cryst. E64, o124.  CSD CrossRef IUCr Journals Google Scholar
First citationSathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2008b). Acta Cryst. E64, o123.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds