research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6-benzoyl-3,5-di­phenyl­cyclo­hex-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az, 1063 Baku, Azerbaijan, and dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net

Edited by H. Ishida, Okayama University, Japan (Received 6 April 2020; accepted 17 April 2020; online 21 April 2020)

In the title compound, C25H20O2, the central cyclo­hexenone ring adopts an envelope conformation. The mean plane of the cyclo­hexenone ring makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the two attached phenyl rings, while it is inclined by 69.55 (11)° to the phenyl ring of the benzoyl group. In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

1. Chemical context

There have been a series of significant examples of enone derivatives used as target products as well as synthetic inter­mediates (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o2830.]; Asgarova et al., 2019[Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342-347.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Thomas, 2007[Thomas, A. W. (2007). Science of Synthesis, Vol. 31a, pp. 337-401. Stuttgart: Thieme.]). Moreover, a number of useful compounds containing enone moieties have been found in nature, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, which were the object of a total synthesis (Pfeiffer et al., 2005[Pfeiffer, M. W. B. & Phillips, A. J. (2005). J. Am. Chem. Soc. 127, 5334-5335.]; Schultz & Wang, 1998[Schultz, A. G. & Wang, A. (1998). J. Am. Chem. Soc. 120, 8259-8260.]; Kawamura et al., 2016[Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90-93.]; Cuthbertson & Taylor, 2013[Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490-1493.]). As part of a further study on the chemistry of α,β-unsaturated ketones (Naghiyev et al., 2016[Naghiyev, F. N., Gurbanov, A. V., Maharramov, A. M., Mamedov, I. G., Allahverdiyev, M. A. & Mahmudov, K. T. (2016). J. Iran. Chem. Soc. 13, 1-6.]), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the central cyclo­hexenone ring adopts an envelope conformation with puckering parameters QT = 0.470 (2) Å, θ = 125.3 (2)° and φ = 300.8 (3)°. The mean plane of the cyclo­hexenone ring [maximum deviation = 0.335 (2) Å] makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the C14–C18 and C20–C25 phenyl rings, whereas it is inclined by 69.55 (11)° to the C8–C13 phenyl ring of the benzoyl group.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions (C2—H2A⋯O2i, C15—H15A⋯O1i, C22—H22A⋯O1ii and C11—H11ACg3iii; symmetry codes as given in Table 1[link]; Cg3 is the centroid of the C14–C19 ring), forming layers parallel to the ab plane. The layers are further connected by another C—H⋯π inter­action (C24—H24ACg2iv; Table 1[link]; Cg2 is the centroid of the C8–C13 ring), forming a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.98 2.50 3.251 (3) 133
C15—H15A⋯O1i 0.93 2.55 3.369 (3) 148
C22—H22A⋯O1ii 0.93 2.54 3.472 (3) 175
C11—H11ACg3iii 0.93 2.88 3.717 (2) 150
C24—H24ACg2iv 0.93 2.78 3.667 (3) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) x+1, y, z; (iv) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing view of the title compound, formed by C—H⋯O and C—H⋯π inter­actions (dashed lines). [Symmetry codes: (a) x − 1, y, z; (b) x + 1, y, z; (c) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (d) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (e) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}].]

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed using CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The surface of the title compound mapped over dnorm is shown in Fig. 3[link]. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts, while the other weaker inter­molecular inter­actions appear as light-red spots. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) is shown in Fig. 4[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The overall two-dimensional fingerprint plot (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), and those delineated into H⋯H (48.8%), C⋯H/H⋯C (34.9%) and O⋯H/H⋯O (15%) contacts are illustrated in Fig. 5[link]ad, respectively. The most significant inter­molecular contribution is from the H⋯H contact (48.8%) (Fig. 5[link]b). The other minor contributions to the Hirshfeld surface are by C⋯C (0.9%), O⋯C/C⋯O (0.5%) and O⋯O (0.1%) contacts. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound plotted over dnorm using a standard surface resolution with a fixed colour scale of −0.1582 (red) to 1.4399 a.u. (blue).
[Figure 4]
Figure 4
The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface.

4. Database survey

Although a search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3,5-di­phenyl­cyclo­hex-2-en-1-one derivatives gave 44 hits, no compound having a skeleton of 6-acetyl-3,5-di­phenyl­cyclo­hex-2-en-1-one was found. As related compounds, nine derivatives of ethyl 2-oxo-4,6-di­phenyl­cyclo­hex-3-ene carboxyl­ate were reported.

5. Synthesis and crystallization

To a solution of 1,3-diphenyl-2-propen-1-one (1.90 mmol) in benzene (15 ml), 1-phenyl­butane-1,3-dione (1.90 mmol) and 0.05 ml of dry piperidine were added in this order, and the mixture was stirred at room temperature for 24 h. After completion of the reaction (as monitored by TLC), the solvent was removed under reduced pressure, and the residue was washed with hot water. Then, the products were recrystallized from ethanol (yield 72%, m.p. 446 K). IR (KBr): 2926, 2966, 3006 and 3062 ν(CH), 1610, 1650 and 1676 ν (C=O) cm−1; 1H NMR (300.130 MHz, DMSO-d6): δ 3.12 (dd, 2H, CH2, 2JH–H = 16.3 Hz, 3JH–H = 8.2 Hz), 3.91 (t, 1H, CH, 3JH–H = 12.4 Hz), 5.52 (d, 1H, CH, 3JH–H = 12.4 Hz), 6.56 (s, 1H, CH=), 7.1–7.92 (m, 15Harom, 3Ar); 13C NMR (75.468 MHz, DMSO-d6): δ 199.4, 197.5, 159.6, 142.7, 138.3, 137.8, 133.7, 130.9, 129.3, 129.1, 128.8, 128.0, 127.2, 126.9, 124.2, 58.2, 43.9, 36.4; MS (ESI): m/z: 353.15 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed at calculated positions using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Owing to poor agreement between observed and calculated intensities, eighteen outliers ([\overline{2}] 2 5) , (3 2 2) , ([\overline{1}] 2 2) , (5 0 3) , (0 1 1) , (5 1 3) , ([\overline{4}] 0 4) , ([\overline{2}] 1 7) , ([\overline{5}] 2 3) , ([\overline{5}] 3 5) , ([\overline{2}] 11 2) , (2 4 3), (4 8 7) , ([\overline{3}] 0 7) , ([\overline{2}] 10 5) , (2 5 5) , ([\overline{3}] 2 15) and (0 1 2) were omitted in the final cycle of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C25H20O2
Mr 352.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.2365 (4), 9.7989 (4), 19.3759 (8)
β (°) 103.333 (2)
V3) 1891.14 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.23 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23764, 4102, 2471
Rint 0.073
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.149, 1.01
No. of reflections 4102
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

6-Benzoyl-3,5-diphenylcyclohex-2-en-1-one top
Crystal data top
C25H20O2F(000) = 744
Mr = 352.41Dx = 1.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2365 (4) ÅCell parameters from 3243 reflections
b = 9.7989 (4) Åθ = 2.5–25.0°
c = 19.3759 (8) ŵ = 0.08 mm1
β = 103.333 (2)°T = 296 K
V = 1891.14 (13) Å3Prism, colourless
Z = 40.23 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2471 reflections with I > 2σ(I)
φ and ω scansRint = 0.073
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 27.0°, θmin = 2.1°
Tmin = 0.660, Tmax = 0.746h = 1313
23764 measured reflectionsk = 1212
4102 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
4102 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84873 (15)0.4571 (2)0.84508 (9)0.0662 (5)
O20.73311 (16)0.59881 (16)0.68577 (9)0.0556 (4)
C10.7327 (2)0.4250 (2)0.81963 (11)0.0432 (5)
C20.68555 (19)0.3941 (2)0.74035 (11)0.0377 (5)
H2A0.7033960.2977990.7325330.045*
C30.53461 (19)0.4203 (2)0.71377 (10)0.0380 (5)
H3A0.5198510.5182230.7189690.046*
C40.4572 (2)0.3451 (3)0.76099 (11)0.0471 (6)
H4A0.3629620.3691510.7462600.056*
H4B0.4648620.2476380.7542210.056*
C50.5064 (2)0.3775 (2)0.83834 (10)0.0388 (5)
C60.6339 (2)0.4151 (2)0.86315 (11)0.0442 (5)
H6A0.6616620.4363540.9110830.053*
C70.7682 (2)0.4818 (2)0.70074 (11)0.0401 (5)
C80.89014 (19)0.4261 (2)0.68142 (11)0.0403 (5)
C90.9499 (2)0.5025 (3)0.63619 (12)0.0532 (6)
H9A0.9128880.5860240.6190700.064*
C101.0629 (2)0.4558 (3)0.61664 (13)0.0612 (7)
H10A1.1014090.5074820.5863020.073*
C111.1189 (2)0.3329 (3)0.64180 (13)0.0580 (7)
H11A1.1948740.3011260.6282430.070*
C121.0623 (2)0.2568 (3)0.68717 (13)0.0570 (6)
H12A1.1011210.1743240.7047820.068*
C130.9480 (2)0.3026 (2)0.70664 (12)0.0486 (6)
H13A0.9098220.2501220.7368350.058*
C140.47921 (18)0.3846 (2)0.63661 (10)0.0375 (5)
C150.4852 (2)0.2530 (3)0.61136 (12)0.0515 (6)
H15A0.5293280.1853430.6415740.062*
C160.4257 (2)0.2214 (3)0.54103 (13)0.0604 (7)
H16A0.4296820.1323620.5250070.073*
C170.3615 (2)0.3190 (3)0.49526 (13)0.0620 (7)
H17A0.3227320.2974070.4482690.074*
C180.3552 (3)0.4496 (3)0.51981 (13)0.0625 (7)
H18A0.3113300.5168160.4891710.075*
C190.4131 (2)0.4825 (2)0.58944 (12)0.0491 (6)
H19A0.4077750.5716680.6049980.059*
C200.4106 (2)0.3634 (2)0.88513 (11)0.0398 (5)
C210.2742 (2)0.3877 (3)0.86040 (13)0.0550 (6)
H21A0.2415280.4123640.8132210.066*
C220.1862 (2)0.3760 (3)0.90421 (15)0.0667 (8)
H22A0.0952770.3934340.8865880.080*
C230.2324 (3)0.3389 (3)0.97356 (15)0.0662 (7)
H23A0.1731690.3310661.0032530.079*
C240.3663 (3)0.3132 (3)0.99904 (14)0.0625 (7)
H24A0.3977180.2872971.0461350.075*
C250.4553 (2)0.3253 (3)0.95566 (12)0.0516 (6)
H25A0.5459760.3078120.9738260.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (9)0.1016 (15)0.0586 (10)0.0170 (9)0.0056 (8)0.0036 (9)
O20.0606 (10)0.0407 (10)0.0728 (11)0.0030 (8)0.0305 (9)0.0069 (8)
C10.0342 (11)0.0494 (13)0.0456 (13)0.0024 (10)0.0084 (9)0.0009 (10)
C20.0310 (10)0.0410 (12)0.0426 (12)0.0015 (9)0.0115 (9)0.0000 (9)
C30.0340 (10)0.0434 (12)0.0379 (11)0.0018 (9)0.0107 (9)0.0001 (9)
C40.0342 (11)0.0680 (16)0.0398 (12)0.0073 (10)0.0101 (9)0.0004 (11)
C50.0367 (11)0.0434 (13)0.0376 (12)0.0024 (9)0.0112 (9)0.0001 (9)
C60.0398 (12)0.0545 (14)0.0378 (12)0.0003 (10)0.0074 (9)0.0019 (10)
C70.0383 (11)0.0404 (13)0.0428 (12)0.0034 (10)0.0118 (9)0.0003 (9)
C80.0354 (11)0.0432 (12)0.0434 (12)0.0054 (9)0.0111 (9)0.0038 (10)
C90.0485 (13)0.0566 (15)0.0587 (15)0.0081 (11)0.0211 (11)0.0045 (12)
C100.0459 (14)0.0793 (19)0.0643 (17)0.0090 (13)0.0248 (12)0.0062 (14)
C110.0313 (11)0.082 (2)0.0644 (16)0.0024 (12)0.0176 (11)0.0128 (14)
C120.0389 (12)0.0618 (16)0.0717 (16)0.0052 (11)0.0159 (12)0.0005 (13)
C130.0407 (12)0.0528 (15)0.0557 (14)0.0018 (10)0.0183 (10)0.0054 (11)
C140.0298 (10)0.0491 (13)0.0365 (11)0.0019 (9)0.0136 (8)0.0015 (9)
C150.0490 (13)0.0568 (15)0.0501 (14)0.0037 (11)0.0141 (11)0.0028 (12)
C160.0615 (16)0.0654 (17)0.0603 (16)0.0112 (13)0.0261 (13)0.0215 (13)
C170.0562 (15)0.092 (2)0.0387 (13)0.0195 (15)0.0123 (11)0.0051 (14)
C180.0600 (16)0.0763 (19)0.0468 (14)0.0068 (13)0.0035 (12)0.0123 (13)
C190.0496 (13)0.0522 (14)0.0455 (13)0.0026 (11)0.0110 (10)0.0046 (11)
C200.0369 (11)0.0449 (12)0.0393 (12)0.0016 (9)0.0122 (9)0.0039 (9)
C210.0421 (12)0.0775 (18)0.0470 (14)0.0041 (12)0.0137 (11)0.0002 (12)
C220.0405 (13)0.099 (2)0.0657 (18)0.0000 (13)0.0214 (12)0.0073 (15)
C230.0624 (16)0.083 (2)0.0653 (18)0.0023 (14)0.0404 (14)0.0014 (14)
C240.0645 (16)0.0813 (19)0.0476 (14)0.0096 (14)0.0254 (12)0.0091 (13)
C250.0429 (12)0.0707 (17)0.0434 (13)0.0104 (11)0.0146 (10)0.0034 (11)
Geometric parameters (Å, º) top
O1—C11.218 (2)C12—C131.384 (3)
O2—C71.217 (2)C12—H12A0.9300
C1—C61.461 (3)C13—H13A0.9300
C1—C21.530 (3)C14—C151.385 (3)
C2—C71.530 (3)C14—C191.389 (3)
C2—C31.533 (3)C15—C161.393 (3)
C2—H2A0.9800C15—H15A0.9300
C3—C141.513 (3)C16—C171.366 (4)
C3—C41.530 (3)C16—H16A0.9300
C3—H3A0.9800C17—C181.371 (4)
C4—C51.501 (3)C17—H17A0.9300
C4—H4A0.9700C18—C191.381 (3)
C4—H4B0.9700C18—H18A0.9300
C5—C61.335 (3)C19—H19A0.9300
C5—C201.487 (3)C20—C251.388 (3)
C6—H6A0.9300C20—C211.388 (3)
C7—C81.487 (3)C21—C221.378 (3)
C8—C131.387 (3)C21—H21A0.9300
C8—C91.396 (3)C22—C231.367 (4)
C9—C101.376 (3)C22—H22A0.9300
C9—H9A0.9300C23—C241.370 (3)
C10—C111.374 (4)C23—H23A0.9300
C10—H10A0.9300C24—C251.379 (3)
C11—C121.378 (3)C24—H24A0.9300
C11—H11A0.9300C25—H25A0.9300
O1—C1—C6121.6 (2)C11—C12—C13120.3 (2)
O1—C1—C2120.64 (19)C11—C12—H12A119.8
C6—C1—C2117.80 (17)C13—C12—H12A119.8
C1—C2—C7108.05 (16)C12—C13—C8120.4 (2)
C1—C2—C3111.34 (16)C12—C13—H13A119.8
C7—C2—C3111.64 (17)C8—C13—H13A119.8
C1—C2—H2A108.6C15—C14—C19117.7 (2)
C7—C2—H2A108.6C15—C14—C3121.83 (19)
C3—C2—H2A108.6C19—C14—C3120.35 (19)
C14—C3—C4110.59 (16)C14—C15—C16120.5 (2)
C14—C3—C2114.35 (16)C14—C15—H15A119.7
C4—C3—C2109.83 (16)C16—C15—H15A119.7
C14—C3—H3A107.2C17—C16—C15121.0 (2)
C4—C3—H3A107.2C17—C16—H16A119.5
C2—C3—H3A107.2C15—C16—H16A119.5
C5—C4—C3113.23 (17)C16—C17—C18118.8 (2)
C5—C4—H4A108.9C16—C17—H17A120.6
C3—C4—H4A108.9C18—C17—H17A120.6
C5—C4—H4B108.9C17—C18—C19120.8 (2)
C3—C4—H4B108.9C17—C18—H18A119.6
H4A—C4—H4B107.7C19—C18—H18A119.6
C6—C5—C20122.24 (19)C18—C19—C14121.1 (2)
C6—C5—C4119.54 (18)C18—C19—H19A119.5
C20—C5—C4118.20 (17)C14—C19—H19A119.5
C5—C6—C1124.03 (19)C25—C20—C21117.5 (2)
C5—C6—H6A118.0C25—C20—C5120.77 (18)
C1—C6—H6A118.0C21—C20—C5121.71 (19)
O2—C7—C8120.30 (19)C22—C21—C20121.5 (2)
O2—C7—C2118.76 (18)C22—C21—H21A119.3
C8—C7—C2120.94 (19)C20—C21—H21A119.3
C13—C8—C9118.4 (2)C23—C22—C21120.0 (2)
C13—C8—C7123.14 (19)C23—C22—H22A120.0
C9—C8—C7118.4 (2)C21—C22—H22A120.0
C10—C9—C8120.8 (2)C22—C23—C24119.6 (2)
C10—C9—H9A119.6C22—C23—H23A120.2
C8—C9—H9A119.6C24—C23—H23A120.2
C11—C10—C9120.2 (2)C23—C24—C25120.7 (2)
C11—C10—H10A119.9C23—C24—H24A119.6
C9—C10—H10A119.9C25—C24—H24A119.6
C10—C11—C12119.9 (2)C24—C25—C20120.6 (2)
C10—C11—H11A120.1C24—C25—H25A119.7
C12—C11—H11A120.1C20—C25—H25A119.7
O1—C1—C2—C731.1 (3)C10—C11—C12—C131.0 (4)
C6—C1—C2—C7148.64 (19)C11—C12—C13—C80.8 (4)
O1—C1—C2—C3154.1 (2)C9—C8—C13—C120.0 (3)
C6—C1—C2—C325.7 (3)C7—C8—C13—C12179.4 (2)
C1—C2—C3—C14176.81 (17)C4—C3—C14—C1563.8 (2)
C7—C2—C3—C1462.3 (2)C2—C3—C14—C1560.8 (3)
C1—C2—C3—C451.8 (2)C4—C3—C14—C19112.4 (2)
C7—C2—C3—C4172.67 (17)C2—C3—C14—C19123.0 (2)
C14—C3—C4—C5179.34 (18)C19—C14—C15—C160.4 (3)
C2—C3—C4—C553.5 (2)C3—C14—C15—C16175.84 (19)
C3—C4—C5—C627.3 (3)C14—C15—C16—C170.7 (3)
C3—C4—C5—C20153.97 (19)C15—C16—C17—C180.6 (4)
C20—C5—C6—C1177.5 (2)C16—C17—C18—C190.3 (4)
C4—C5—C6—C11.2 (3)C17—C18—C19—C140.1 (4)
O1—C1—C6—C5178.4 (2)C15—C14—C19—C180.1 (3)
C2—C1—C6—C51.8 (3)C3—C14—C19—C18176.2 (2)
C1—C2—C7—O283.9 (2)C6—C5—C20—C2530.6 (3)
C3—C2—C7—O238.9 (3)C4—C5—C20—C25148.1 (2)
C1—C2—C7—C895.4 (2)C6—C5—C20—C21149.3 (2)
C3—C2—C7—C8141.80 (19)C4—C5—C20—C2132.0 (3)
O2—C7—C8—C13169.2 (2)C25—C20—C21—C220.7 (4)
C2—C7—C8—C1310.2 (3)C5—C20—C21—C22179.2 (2)
O2—C7—C8—C910.3 (3)C20—C21—C22—C230.5 (4)
C2—C7—C8—C9170.39 (19)C21—C22—C23—C240.1 (4)
C13—C8—C9—C100.5 (3)C22—C23—C24—C250.4 (4)
C7—C8—C9—C10180.0 (2)C23—C24—C25—C200.2 (4)
C8—C9—C10—C110.3 (4)C21—C20—C25—C240.4 (4)
C9—C10—C11—C120.5 (4)C5—C20—C25—C24179.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.982.503.251 (3)133
C15—H15A···O1i0.932.553.369 (3)148
C22—H22A···O1ii0.932.543.472 (3)175
C11—H11A···Cg3iii0.932.883.717 (2)150
C24—H24A···Cg2iv0.932.783.667 (3)159
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x3/2, y1/2, z1/2.
 

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o2830.  CSD CrossRef IUCr Journals Google Scholar
First citationAsgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90–93.  CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Gurbanov, A. V., Maharramov, A. M., Mamedov, I. G., Allahverdiyev, M. A. & Mahmudov, K. T. (2016). J. Iran. Chem. Soc. 13, 1–6.  CSD CrossRef CAS Google Scholar
First citationPfeiffer, M. W. B. & Phillips, A. J. (2005). J. Am. Chem. Soc. 127, 5334–5335.  CrossRef PubMed CAS Google Scholar
First citationSchultz, A. G. & Wang, A. (1998). J. Am. Chem. Soc. 120, 8259–8260.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationThomas, A. W. (2007). Science of Synthesis, Vol. 31a, pp. 337–401. Stuttgart: Thieme.  Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds