organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(4-Methyl­phen­yl)-1-(3-nitro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 11 November 2007; accepted 21 November 2007; online 6 December 2007)

The title compound, C16H13NO3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the 4-methyl­phenyl and 3-nitro­phenyl groups is 4.0 (3)° in mol­ecule A and 16.2 (7)° in mol­ecule B. Inter­molecular C—H⋯O hydrogen bonding involving the O atoms of the 3-nitro­phenyl group of both independent mol­ecules link the mol­ecules into layers approximately parallel to the (110) plane. The layers are held together by ππ stacking inter­actions between the 4-methyl­phenyl ring of mol­ecule A and the 3-nitro­phenyl ring of mol­ecule B of the adjacent layer, with the distance between the centroids of inter­acting rings being 3.6987 (7) Å.

Related literature

For related structures, see: Butcher, Jasinski, Narayana et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660.]); Butcher, Jasinski, Yathirajan, Narayana et al. (2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007). Acta Cryst. E63, o3833.]); Butcher, Jasinski, Yathirajan, Veena et al. (2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.]); Rosli et al. (2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.]); Patil et al. (2007[Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o785-o786.]). For related literature, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Go et al. (2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]); Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]); Uchida et al. (1998[Uchida, J., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdeuyim, A. & Wadanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]); Tam et al. (1989[Tam, W., Gurein, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3

  • Mr = 267.27

  • Triclinic, [P \overline 1]

  • a = 8.0951 (3) Å

  • b = 11.5088 (5) Å

  • c = 14.6970 (5) Å

  • α = 80.351 (3)°

  • β = 74.830 (3)°

  • γ = 84.416 (3)°

  • V = 1300.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.41 × 0.35 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.874, Tmax = 0.974

  • 19776 measured reflections

  • 8636 independent reflections

  • 4667 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 0.97

  • 8636 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O2B 0.93 2.55 3.4644 (16) 170
C11A—H11A⋯O2B 0.93 2.59 3.5156 (14) 176
C2B—H2B⋯O2Ai 0.93 2.51 3.4311 (16) 171
C14A—H14A⋯O3Aii 0.93 2.54 3.4455 (16) 164
Symmetry codes: (i) x+1, y-1, z; (ii) x, y, z+1.

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999; Go et al. 2005). They are also important intermediates in organic synthesis. Among several organic compounds reported to have NLO properties, chalcone derivatives are recognized material because of their excellent blue light transmittance and good crystallization ability. They provide necessary configuration to show NLO properties having two planar rings connected through a conjugated double bond (Goto et al. 1991; Uchida et al. 1998; Tam et al. 1989). The crystal structures of 1-(3-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Narayana et al., 2007), (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Veena et al., 2007), (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Narayana et al. 2007), 3-(dimethylaminophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Rosli et al. 2007) and 3-(5-bromo-2-thienyl)-1-(4-nitrophenyl)prop-2-en-1-one (Patil et al. 2007) have been reported. We report here the crystal structure of a new chalcone, the title compound.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the 4-methylphenyl and 3-nitrophenyl groups is 4.0 (3)° in molecule A and 16.2 (7)° in molecule B. Crystal packing is stabilized by intermolecular C—H···O hydrogen bonding involving the O atoms on the 3-nitrophenyl group of both indpendent molecules. These hydrogen bonds (Table 1) link the molecules into a layer approximately parallel to the (1 1 0) plane (Fig. 2). Intermolecular π-π stacking interactions occur between 4-methylphenyl ring of molecule A at (x, y, z) and 3-nitrophenyl ring of molecule B of the adjacent layer at (1 - x, 1 - y, -z), with the distance between the centroids of interacting rings being 3.6987 (7) Å.

Related literature top

For related structures, see: Butcher, Jasinski, Narayana et al. (2007); Butcher, Jasinski, Yathirajan, Narayana et al. (2007); Butcher, Jasinski, Yathirajan, Veena et al. (2007); Rosli et al. (2007); Patil et al. (2007). For related literature, see: Dimmock et al. (1999); Go et al. (2005); Goto et al. (1991); Uchida et al. (1998); Tam et al. (1989).

Experimental top

A solution of 1-(3-nitrophenyl)ethanone (1.65 g, 0.01 mol) and 4-methylbenzaldehyde (1.20 g, 0.01 mol) in ethanol (25 ml) was stirred well and 10% NaOH solution (5 ml) was added. The reaction mixture was stirred for about 6 h and filtered. The product was crystallized from acetone (m.p. 414–416 K). Single crystals suitable for X-ray structure determination were grown by slow evaporation of an acetone solution of the title compound at room temperature. Analysis found: C 71.82, H 4.85, N 5.20%; C16H13NO3 requires: C 71.90, H 4.90, N 5.24%.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.16–1.21Ueq(C).

Structure description top

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999; Go et al. 2005). They are also important intermediates in organic synthesis. Among several organic compounds reported to have NLO properties, chalcone derivatives are recognized material because of their excellent blue light transmittance and good crystallization ability. They provide necessary configuration to show NLO properties having two planar rings connected through a conjugated double bond (Goto et al. 1991; Uchida et al. 1998; Tam et al. 1989). The crystal structures of 1-(3-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Narayana et al., 2007), (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Veena et al., 2007), (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Narayana et al. 2007), 3-(dimethylaminophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Rosli et al. 2007) and 3-(5-bromo-2-thienyl)-1-(4-nitrophenyl)prop-2-en-1-one (Patil et al. 2007) have been reported. We report here the crystal structure of a new chalcone, the title compound.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the 4-methylphenyl and 3-nitrophenyl groups is 4.0 (3)° in molecule A and 16.2 (7)° in molecule B. Crystal packing is stabilized by intermolecular C—H···O hydrogen bonding involving the O atoms on the 3-nitrophenyl group of both indpendent molecules. These hydrogen bonds (Table 1) link the molecules into a layer approximately parallel to the (1 1 0) plane (Fig. 2). Intermolecular π-π stacking interactions occur between 4-methylphenyl ring of molecule A at (x, y, z) and 3-nitrophenyl ring of molecule B of the adjacent layer at (1 - x, 1 - y, -z), with the distance between the centroids of interacting rings being 3.6987 (7) Å.

For related structures, see: Butcher, Jasinski, Narayana et al. (2007); Butcher, Jasinski, Yathirajan, Narayana et al. (2007); Butcher, Jasinski, Yathirajan, Veena et al. (2007); Rosli et al. (2007); Patil et al. (2007). For related literature, see: Dimmock et al. (1999); Go et al. (2005); Goto et al. (1991); Uchida et al. (1998); Tam et al. (1989).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.
(2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one top
Crystal data top
C16H13NO3Z = 4
Mr = 267.27F(000) = 560
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0951 (3) ÅCell parameters from 6626 reflections
b = 11.5088 (5) Åθ = 4.5–32.4°
c = 14.6970 (5) ŵ = 0.10 mm1
α = 80.351 (3)°T = 296 K
β = 74.830 (3)°Prism, pale yellow
γ = 84.416 (3)°0.41 × 0.35 × 0.28 mm
V = 1300.78 (9) Å3
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
8636 independent reflections
Radiation source: fine-focus sealed tube4667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.5°
φ and ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1517
Tmin = 0.874, Tmax = 0.974l = 2222
19776 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
8636 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H13NO3γ = 84.416 (3)°
Mr = 267.27V = 1300.78 (9) Å3
Triclinic, P1Z = 4
a = 8.0951 (3) ÅMo Kα radiation
b = 11.5088 (5) ŵ = 0.10 mm1
c = 14.6970 (5) ÅT = 296 K
α = 80.351 (3)°0.41 × 0.35 × 0.28 mm
β = 74.830 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
8636 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4667 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.974Rint = 0.027
19776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.97Δρmax = 0.31 e Å3
8636 reflectionsΔρmin = 0.23 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.10825 (12)0.78753 (8)0.47805 (6)0.0472 (2)
O2A0.17664 (12)0.86596 (9)0.15922 (6)0.0496 (2)
O3A0.03310 (14)0.76460 (9)0.05116 (7)0.0600 (3)
N1A0.07106 (13)0.78738 (9)0.13266 (7)0.0367 (2)
C1A0.05600 (14)0.67882 (10)0.35935 (8)0.0291 (2)
C2A0.17987 (15)0.59163 (10)0.33036 (8)0.0342 (3)
H2A0.23670.54880.37370.041*
C3A0.22047 (15)0.56733 (11)0.23722 (9)0.0388 (3)
H3A0.30270.50770.21910.047*
C4A0.13914 (15)0.63148 (11)0.17161 (8)0.0360 (3)
H4A0.16600.61650.10900.043*
C5A0.01681 (14)0.71848 (10)0.20163 (8)0.0294 (2)
C6A0.02749 (14)0.74350 (10)0.29349 (8)0.0302 (2)
H6A0.11140.80230.31140.036*
C7A0.00284 (14)0.70867 (10)0.45916 (8)0.0320 (2)
C8A0.08663 (15)0.64361 (10)0.53138 (8)0.0341 (3)
H8A0.17540.58770.51400.041*
C9A0.03681 (15)0.66381 (10)0.62182 (8)0.0341 (3)
H9A0.05540.71830.63590.041*
C10A0.10965 (14)0.61071 (10)0.70091 (8)0.0303 (2)
C11A0.24015 (15)0.52191 (10)0.69233 (8)0.0329 (3)
H11A0.28160.49300.63470.039*
C12A0.30868 (15)0.47626 (11)0.76861 (8)0.0354 (3)
H12A0.39520.41660.76160.043*
C13A0.25029 (15)0.51804 (11)0.85585 (8)0.0362 (3)
C14A0.11819 (16)0.60523 (12)0.86462 (8)0.0400 (3)
H14A0.07630.63360.92250.048*
C15A0.04786 (16)0.65058 (11)0.78910 (8)0.0387 (3)
H15A0.04150.70820.79700.046*
C16A0.32905 (19)0.47144 (14)0.93769 (9)0.0519 (4)
H16A0.37310.53540.95690.078*
H16B0.42080.41440.91820.078*
H16C0.24360.43480.99030.078*
O1B0.39815 (12)0.28759 (8)0.17553 (7)0.0511 (2)
O2B0.38505 (13)0.39995 (8)0.47951 (7)0.0530 (3)
O3B0.47675 (14)0.27633 (10)0.58517 (7)0.0658 (3)
N1B0.45688 (13)0.30623 (10)0.50460 (7)0.0416 (3)
C1B0.55580 (14)0.17912 (10)0.27830 (8)0.0313 (2)
C2B0.65291 (15)0.07736 (11)0.30205 (9)0.0371 (3)
H2B0.69740.02690.25720.045*
C3B0.68412 (16)0.05034 (11)0.39189 (9)0.0405 (3)
H3B0.74780.01850.40710.049*
C4B0.62101 (15)0.12525 (11)0.45862 (9)0.0391 (3)
H4B0.64260.10840.51870.047*
C5B0.52520 (14)0.22563 (10)0.43411 (8)0.0325 (3)
C6B0.48975 (14)0.25382 (10)0.34598 (8)0.0329 (3)
H6B0.42290.32160.33210.039*
C7B0.51234 (15)0.21124 (11)0.18375 (8)0.0359 (3)
C8B0.60755 (16)0.15048 (11)0.10342 (8)0.0377 (3)
H8B0.70490.10240.10840.045*
C9B0.55435 (15)0.16429 (10)0.02373 (8)0.0349 (3)
H9B0.45630.21340.02300.042*
C10B0.63097 (14)0.11180 (10)0.06276 (8)0.0315 (2)
C11B0.76586 (15)0.02570 (11)0.06979 (9)0.0371 (3)
H11B0.80950.00190.01710.045*
C12B0.83539 (15)0.01901 (11)0.15411 (8)0.0377 (3)
H12B0.92570.07600.15740.045*
C13B0.77214 (16)0.02004 (11)0.23457 (9)0.0368 (3)
C14B0.63582 (16)0.10371 (11)0.22680 (8)0.0372 (3)
H14B0.59060.13020.27910.045*
C15B0.56619 (15)0.14839 (11)0.14243 (8)0.0366 (3)
H15B0.47420.20400.13880.044*
C16B0.84893 (18)0.02696 (13)0.32704 (9)0.0475 (3)
H16D0.88710.03730.37670.071*
H16E0.76410.06710.34290.071*
H16F0.94460.08110.32050.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0582 (6)0.0466 (6)0.0373 (5)0.0196 (4)0.0185 (4)0.0101 (4)
O2A0.0500 (5)0.0565 (6)0.0455 (5)0.0211 (5)0.0237 (4)0.0121 (5)
O3A0.0856 (8)0.0647 (7)0.0368 (5)0.0213 (5)0.0313 (5)0.0167 (5)
N1A0.0390 (6)0.0390 (6)0.0347 (5)0.0027 (5)0.0154 (4)0.0061 (4)
C1A0.0325 (6)0.0252 (6)0.0309 (6)0.0012 (4)0.0124 (4)0.0013 (4)
C2A0.0374 (6)0.0291 (6)0.0359 (6)0.0043 (5)0.0131 (5)0.0012 (5)
C3A0.0396 (7)0.0336 (7)0.0410 (7)0.0071 (5)0.0083 (5)0.0067 (5)
C4A0.0418 (7)0.0341 (7)0.0326 (6)0.0000 (5)0.0107 (5)0.0058 (5)
C5A0.0300 (5)0.0293 (6)0.0299 (5)0.0001 (4)0.0107 (4)0.0028 (5)
C6A0.0315 (6)0.0261 (6)0.0343 (6)0.0018 (4)0.0122 (4)0.0041 (5)
C7A0.0340 (6)0.0300 (6)0.0324 (6)0.0003 (5)0.0103 (5)0.0033 (5)
C8A0.0353 (6)0.0340 (7)0.0335 (6)0.0038 (5)0.0130 (5)0.0029 (5)
C9A0.0390 (6)0.0296 (6)0.0362 (6)0.0043 (5)0.0150 (5)0.0059 (5)
C10A0.0311 (6)0.0324 (6)0.0288 (5)0.0020 (5)0.0095 (4)0.0056 (5)
C11A0.0385 (6)0.0328 (6)0.0293 (6)0.0004 (5)0.0105 (5)0.0077 (5)
C12A0.0370 (6)0.0366 (7)0.0331 (6)0.0037 (5)0.0108 (5)0.0063 (5)
C13A0.0380 (6)0.0414 (7)0.0311 (6)0.0010 (5)0.0136 (5)0.0038 (5)
C14A0.0452 (7)0.0480 (8)0.0290 (6)0.0035 (6)0.0105 (5)0.0130 (5)
C15A0.0419 (7)0.0389 (7)0.0383 (6)0.0082 (5)0.0147 (5)0.0130 (5)
C16A0.0619 (9)0.0624 (10)0.0353 (7)0.0088 (7)0.0240 (6)0.0064 (6)
O1B0.0595 (6)0.0492 (6)0.0496 (5)0.0225 (5)0.0259 (4)0.0164 (4)
O2B0.0731 (7)0.0400 (6)0.0460 (5)0.0174 (5)0.0179 (5)0.0135 (4)
O3B0.0876 (8)0.0755 (8)0.0382 (5)0.0277 (6)0.0280 (5)0.0186 (5)
N1B0.0448 (6)0.0441 (7)0.0365 (6)0.0055 (5)0.0113 (5)0.0105 (5)
C1B0.0278 (5)0.0314 (6)0.0338 (6)0.0008 (5)0.0060 (4)0.0062 (5)
C2B0.0344 (6)0.0346 (7)0.0401 (6)0.0040 (5)0.0053 (5)0.0092 (5)
C3B0.0380 (7)0.0359 (7)0.0436 (7)0.0085 (5)0.0098 (5)0.0015 (5)
C4B0.0391 (7)0.0395 (7)0.0371 (6)0.0024 (5)0.0122 (5)0.0006 (5)
C5B0.0311 (6)0.0334 (6)0.0319 (6)0.0005 (5)0.0062 (5)0.0059 (5)
C6B0.0318 (6)0.0294 (6)0.0381 (6)0.0015 (5)0.0114 (5)0.0043 (5)
C7B0.0368 (6)0.0331 (7)0.0396 (7)0.0023 (5)0.0125 (5)0.0086 (5)
C8B0.0389 (6)0.0377 (7)0.0381 (6)0.0051 (5)0.0130 (5)0.0082 (5)
C9B0.0348 (6)0.0308 (6)0.0376 (6)0.0000 (5)0.0090 (5)0.0018 (5)
C10B0.0332 (6)0.0298 (6)0.0315 (6)0.0042 (5)0.0096 (4)0.0009 (5)
C11B0.0422 (7)0.0348 (7)0.0360 (6)0.0011 (5)0.0172 (5)0.0010 (5)
C12B0.0351 (6)0.0354 (7)0.0408 (7)0.0018 (5)0.0087 (5)0.0042 (5)
C13B0.0403 (7)0.0345 (7)0.0368 (6)0.0098 (5)0.0097 (5)0.0035 (5)
C14B0.0399 (7)0.0398 (7)0.0344 (6)0.0048 (5)0.0156 (5)0.0010 (5)
C15B0.0369 (6)0.0327 (7)0.0424 (7)0.0003 (5)0.0164 (5)0.0029 (5)
C16B0.0509 (8)0.0494 (8)0.0419 (7)0.0040 (6)0.0095 (6)0.0084 (6)
Geometric parameters (Å, º) top
O1A—C7A1.2266 (14)O2B—N1B1.2224 (14)
O2A—N1A1.2222 (13)O3B—N1B1.2242 (14)
O3A—N1A1.2227 (13)N1B—O2B1.2224 (14)
N1A—C5A1.4698 (15)N1B—C5B1.4704 (15)
C1A—C2A1.3849 (16)C1B—C6B1.3904 (16)
C1A—C6A1.3967 (16)C1B—C2B1.3924 (17)
C1A—C7A1.5050 (15)C1B—C7B1.5000 (17)
C2A—C3A1.3910 (16)C2B—C3B1.3876 (17)
C2A—H2A0.93C2B—H2B0.93
C3A—C4A1.3811 (17)C3B—C4B1.3790 (18)
C3A—H3A0.93C3B—H3B0.93
C4A—C5A1.3800 (17)C4B—C5B1.3778 (17)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.3751 (15)C5B—C6B1.3788 (16)
C6A—H6A0.93C6B—H6B0.93
C7A—C8A1.4692 (16)C7B—C8B1.4739 (16)
C8A—C9A1.3372 (16)C8B—C9B1.3307 (16)
C8A—H8A0.93C8B—H8B0.93
C9A—C10A1.4571 (16)C9B—C10B1.4620 (16)
C9A—H9A0.93C9B—H9B0.93
C10A—C11A1.3928 (16)C10B—C15B1.3916 (16)
C10A—C15A1.3985 (15)C10B—C11B1.3963 (17)
C11A—C12A1.3827 (16)C11B—C12B1.3819 (17)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.3943 (16)C12B—C13B1.3988 (17)
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.3890 (18)C13B—C14B1.3865 (18)
C13A—C16A1.5031 (17)C13B—C16B1.5050 (17)
C14A—C15A1.3810 (17)C14B—C15B1.3825 (17)
C14A—H14A0.93C14B—H14B0.93
C15A—H15A0.93C15B—H15B0.93
C16A—H16A0.96C16B—H16D0.96
C16A—H16B0.96C16B—H16E0.96
C16A—H16C0.96C16B—H16F0.96
O1B—C7B1.2272 (15)
O2A—N1A—O3A123.18 (11)O2B—N1B—O3B123.47 (11)
O2A—N1A—C5A118.36 (9)O2B—N1B—O3B123.47 (11)
O3A—N1A—C5A118.45 (10)O2B—N1B—C5B118.42 (10)
C2A—C1A—C6A119.17 (10)O2B—N1B—C5B118.42 (10)
C2A—C1A—C7A123.95 (10)O3B—N1B—C5B118.11 (11)
C6A—C1A—C7A116.88 (10)C6B—C1B—C2B119.13 (11)
C1A—C2A—C3A120.87 (11)C6B—C1B—C7B117.43 (11)
C1A—C2A—H2A119.6C2B—C1B—C7B123.40 (10)
C3A—C2A—H2A119.6C3B—C2B—C1B120.77 (11)
C4A—C3A—C2A120.24 (12)C3B—C2B—H2B119.6
C4A—C3A—H3A119.9C1B—C2B—H2B119.6
C2A—C3A—H3A119.9C4B—C3B—C2B120.20 (12)
C5A—C4A—C3A118.08 (11)C4B—C3B—H3B119.9
C5A—C4A—H4A121.0C2B—C3B—H3B119.9
C3A—C4A—H4A121.0C5B—C4B—C3B118.39 (12)
C6A—C5A—C4A122.98 (11)C5B—C4B—H4B120.8
C6A—C5A—N1A118.30 (10)C3B—C4B—H4B120.8
C4A—C5A—N1A118.72 (10)C4B—C5B—C6B122.72 (11)
C5A—C6A—C1A118.66 (11)C4B—C5B—N1B118.99 (11)
C5A—C6A—H6A120.7C6B—C5B—N1B118.29 (11)
C1A—C6A—H6A120.7C5B—C6B—C1B118.78 (11)
O1A—C7A—C8A121.56 (10)C5B—C6B—H6B120.6
O1A—C7A—C1A119.20 (10)C1B—C6B—H6B120.6
C8A—C7A—C1A119.24 (10)O1B—C7B—C8B121.84 (11)
C9A—C8A—C7A120.81 (11)O1B—C7B—C1B118.90 (11)
C9A—C8A—H8A119.6C8B—C7B—C1B119.26 (11)
C7A—C8A—H8A119.6C9B—C8B—C7B120.09 (12)
C8A—C9A—C10A127.80 (11)C9B—C8B—H8B120.0
C8A—C9A—H9A116.1C7B—C8B—H8B120.0
C10A—C9A—H9A116.1C8B—C9B—C10B128.03 (12)
C11A—C10A—C15A118.21 (10)C8B—C9B—H9B116.0
C11A—C10A—C9A122.66 (10)C10B—C9B—H9B116.0
C15A—C10A—C9A119.13 (11)C15B—C10B—C11B117.82 (11)
C12A—C11A—C10A120.69 (10)C15B—C10B—C9B118.74 (11)
C12A—C11A—H11A119.7C11B—C10B—C9B123.44 (10)
C10A—C11A—H11A119.7C12B—C11B—C10B120.84 (11)
C11A—C12A—C13A121.17 (12)C12B—C11B—H11B119.6
C11A—C12A—H12A119.4C10B—C11B—H11B119.6
C13A—C12A—H12A119.4C11B—C12B—C13B121.04 (12)
C14A—C13A—C12A117.97 (11)C11B—C12B—H12B119.5
C14A—C13A—C16A120.87 (11)C13B—C12B—H12B119.5
C12A—C13A—C16A121.16 (12)C14B—C13B—C12B118.00 (11)
C15A—C14A—C13A121.26 (11)C14B—C13B—C16B120.67 (11)
C15A—C14A—H14A119.4C12B—C13B—C16B121.33 (12)
C13A—C14A—H14A119.4C15B—C14B—C13B120.95 (11)
C14A—C15A—C10A120.66 (12)C15B—C14B—H14B119.5
C14A—C15A—H15A119.7C13B—C14B—H14B119.5
C10A—C15A—H15A119.7C14B—C15B—C10B121.32 (12)
C13A—C16A—H16A109.5C14B—C15B—H15B119.3
C13A—C16A—H16B109.5C10B—C15B—H15B119.3
H16A—C16A—H16B109.5C13B—C16B—H16D109.5
C13A—C16A—H16C109.5C13B—C16B—H16E109.5
H16A—C16A—H16C109.5H16D—C16B—H16E109.5
H16B—C16A—H16C109.5C13B—C16B—H16F109.5
O2B—O2B—N1B0 (10)H16D—C16B—H16F109.5
O2B—N1B—O2B0.00 (11)H16E—C16B—H16F109.5
C6A—C1A—C2A—C3A0.59 (16)C6B—C1B—C2B—C3B0.10 (16)
C7A—C1A—C2A—C3A178.84 (10)C7B—C1B—C2B—C3B177.82 (10)
C1A—C2A—C3A—C4A1.01 (17)C1B—C2B—C3B—C4B0.93 (17)
C2A—C3A—C4A—C5A0.60 (17)C2B—C3B—C4B—C5B0.89 (17)
C3A—C4A—C5A—C6A0.22 (17)C3B—C4B—C5B—C6B0.17 (17)
C3A—C4A—C5A—N1A179.90 (10)C3B—C4B—C5B—N1B179.91 (10)
O2A—N1A—C5A—C6A1.82 (15)O2B—N1B—C5B—C4B173.67 (11)
O3A—N1A—C5A—C6A179.32 (10)O2B—N1B—C5B—C4B173.67 (11)
O2A—N1A—C5A—C4A178.48 (10)O3B—N1B—C5B—C4B5.53 (16)
O3A—N1A—C5A—C4A0.38 (15)O2B—N1B—C5B—C6B6.57 (16)
C4A—C5A—C6A—C1A0.62 (16)O2B—N1B—C5B—C6B6.57 (16)
N1A—C5A—C6A—C1A179.69 (9)O3B—N1B—C5B—C6B174.22 (11)
C2A—C1A—C6A—C5A0.20 (15)C4B—C5B—C6B—C1B1.18 (17)
C7A—C1A—C6A—C5A179.68 (9)N1B—C5B—C6B—C1B179.07 (9)
C2A—C1A—C7A—O1A179.98 (11)C2B—C1B—C6B—C5B1.12 (15)
C6A—C1A—C7A—O1A0.57 (15)C7B—C1B—C6B—C5B178.98 (10)
C2A—C1A—C7A—C8A0.68 (16)C6B—C1B—C7B—O1B13.01 (16)
C6A—C1A—C7A—C8A179.87 (9)C2B—C1B—C7B—O1B164.75 (11)
O1A—C7A—C8A—C9A4.01 (17)C6B—C1B—C7B—C8B167.00 (10)
C1A—C7A—C8A—C9A176.71 (10)C2B—C1B—C7B—C8B15.23 (16)
C7A—C8A—C9A—C10A177.55 (10)O1B—C7B—C8B—C9B10.23 (18)
C8A—C9A—C10A—C11A4.54 (18)C1B—C7B—C8B—C9B169.75 (10)
C8A—C9A—C10A—C15A174.93 (11)C7B—C8B—C9B—C10B179.97 (10)
C15A—C10A—C11A—C12A1.23 (16)C8B—C9B—C10B—C15B172.74 (11)
C9A—C10A—C11A—C12A178.24 (10)C8B—C9B—C10B—C11B7.71 (18)
C10A—C11A—C12A—C13A0.41 (17)C15B—C10B—C11B—C12B1.75 (16)
C11A—C12A—C13A—C14A1.45 (17)C9B—C10B—C11B—C12B178.70 (10)
C11A—C12A—C13A—C16A177.81 (11)C10B—C11B—C12B—C13B0.39 (17)
C12A—C13A—C14A—C15A0.83 (18)C11B—C12B—C13B—C14B0.96 (16)
C16A—C13A—C14A—C15A178.43 (12)C11B—C12B—C13B—C16B179.09 (10)
C13A—C14A—C15A—C10A0.82 (19)C12B—C13B—C14B—C15B0.92 (17)
C11A—C10A—C15A—C14A1.84 (17)C16B—C13B—C14B—C15B179.13 (10)
C9A—C10A—C15A—C14A177.65 (11)C13B—C14B—C15B—C10B0.48 (17)
O2B—O2B—N1B—O3B0.00 (5)C11B—C10B—C15B—C14B1.80 (16)
O2B—O2B—N1B—C5B0.00 (8)C9B—C10B—C15B—C14B178.63 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···O2B0.932.553.4644 (16)170
C11A—H11A···O2B0.932.593.5156 (14)176
C2B—H2B···O2Ai0.932.513.4311 (16)171
C14A—H14A···O3Aii0.932.543.4455 (16)164
Symmetry codes: (i) x+1, y1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO3
Mr267.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0951 (3), 11.5088 (5), 14.6970 (5)
α, β, γ (°)80.351 (3), 74.830 (3), 84.416 (3)
V3)1300.78 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.35 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.874, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
19776, 8636, 4667
Rint0.027
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 0.97
No. of reflections8636
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···O2B0.932.553.4644 (16)170
C11A—H11A···O2B0.932.593.5156 (14)176
C2B—H2B···O2Ai0.932.513.4311 (16)171
C14A—H14A···O3Aii0.932.543.4455 (16)164
Symmetry codes: (i) x+1, y1, z; (ii) x, y, z+1.
 

Acknowledgements

KL thanks Mangalore University for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007). Acta Cryst. E63, o3833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPatil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o785–o786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTam, W., Gurein, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationUchida, J., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdeuyim, A. & Wadanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds