Download citation
Download citation
link to html
In the title compound, C17H16N2O3, the dihedral angle between the benzene rings is 1.56 (7)°. The nitro group is coplanar with the attached benzene ring while the dimethyl­amino group is twisted slightly away from the attached benzene ring. A weak intra­molecular C—H...O hydrogen bond is present in the mol­ecular structure. The crystal structure is stabilized by inter­molecular C—H...O hydrogen bonds, forming chains along the [011] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019745/ci2370sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019745/ci2370Isup2.hkl
Contains datablock I

CCDC reference: 647696

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.054
  • wR factor = 0.162
  • Data-to-parameter ratio = 20.6

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.822 0.996 Tmin(prime) and Tmax expected: 0.945 0.996 RR(prime) = 0.870 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.87 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Many chalcone derivatives crystallize as noncentrosymmetric structures and display significant non-linear optical (NLO) properties (Uchida et al., 1998; Patil et al., 2006; Shettigar et al., 2006). Crystals of the title compound, (I), do not exhibit second-order NLO properties, as the compound crystallizes in a centrosymmetric space group (Watson et al., 1993).

Bond lengths and angles in (I) (Fig. 1) have normal values (Allen et al., 1987). The dihedral angle between the benzene rings is 1.56 (7)°. The plane through the enone group (O1/C7—C9) makes dihedral angles of 10.47 (7) and 9.23 (7)°, respectively, with the C1—C6 and C10—C15 benzene rings. The nitro group attached at atom C2 is almost coplanar with the C1—C6 benzene ring, with torsion angles O2–N2–C2–C1 and O3–N2–C2–C3 of -2.5 (2)° and -2.1 (2)°, respectively. The dimethylamino group is twisted slightly away from the attached C10—C15 benzene ring, with torsion angles C16–N1–C13–C14 and C17–N1–C13–C12 of 10.5 (2)° and -8.3 (2)°, respectively.

An intramolecular C9—H9A···O1 interaction is observed in the molecular structure of (I), and it generates an S(5) ring motif (Bernstein et al., 1995). The molecules are linked into a chain along the [0 1 1] direction by intermolecular C17—H17C···O3i hydrogen bonds (Table 1). In addition, π-π interactions involving the C1—C6 (centroid Cg1) and C10—C15 (centroid Cg2) benzene rings is observed, with a Cg1···Cg2ii distance of 3.5164 (8) Å. Symmetry codes: (i) x,-1 + y,-1 + z; (ii) 1 - x, -y, 1 - z.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For general background and related literature, see: Uchida et al. (1998); Watson et al. (1993); Patil, Dharmaprakash et al. (2006); Shettigar et al. (2006).

Experimental top

N,N-dimethylaminobenzaldehyde (0.01 mol) and 3-nitroacetophenone (0.01 mol) were stirred in methanol (60 ml) at room temperature. 10% of NaOH aqueous solution (5 g) was added and the mixture was stirred for 2 h. The resulting precipitate was filtered off, washed with water and dried. The resulting crude product recrystallized from acetone. Crystals of (I) suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

All H atoms were refined using a riding model, with C—H distances in the range 0.93–0.96 Å. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H and 1.2Ueq for the remaining H atoms.

Structure description top

Many chalcone derivatives crystallize as noncentrosymmetric structures and display significant non-linear optical (NLO) properties (Uchida et al., 1998; Patil et al., 2006; Shettigar et al., 2006). Crystals of the title compound, (I), do not exhibit second-order NLO properties, as the compound crystallizes in a centrosymmetric space group (Watson et al., 1993).

Bond lengths and angles in (I) (Fig. 1) have normal values (Allen et al., 1987). The dihedral angle between the benzene rings is 1.56 (7)°. The plane through the enone group (O1/C7—C9) makes dihedral angles of 10.47 (7) and 9.23 (7)°, respectively, with the C1—C6 and C10—C15 benzene rings. The nitro group attached at atom C2 is almost coplanar with the C1—C6 benzene ring, with torsion angles O2–N2–C2–C1 and O3–N2–C2–C3 of -2.5 (2)° and -2.1 (2)°, respectively. The dimethylamino group is twisted slightly away from the attached C10—C15 benzene ring, with torsion angles C16–N1–C13–C14 and C17–N1–C13–C12 of 10.5 (2)° and -8.3 (2)°, respectively.

An intramolecular C9—H9A···O1 interaction is observed in the molecular structure of (I), and it generates an S(5) ring motif (Bernstein et al., 1995). The molecules are linked into a chain along the [0 1 1] direction by intermolecular C17—H17C···O3i hydrogen bonds (Table 1). In addition, π-π interactions involving the C1—C6 (centroid Cg1) and C10—C15 (centroid Cg2) benzene rings is observed, with a Cg1···Cg2ii distance of 3.5164 (8) Å. Symmetry codes: (i) x,-1 + y,-1 + z; (ii) 1 - x, -y, 1 - z.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For general background and related literature, see: Uchida et al. (1998); Watson et al. (1993); Patil, Dharmaprakash et al. (2006); Shettigar et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(2E)-3-[4-(dimethylamino)phenyl]-1-(3-nitrophenyl) prop-2-en-1-one top
Crystal data top
C17H16N2O3Z = 2
Mr = 296.32F(000) = 312
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4326 (2) ÅCell parameters from 2515 reflections
b = 7.1724 (2) Åθ = 3.0–30.0°
c = 16.5000 (6) ŵ = 0.10 mm1
α = 93.989 (2)°T = 100 K
β = 96.973 (2)°Plate, red
γ = 107.844 (2)°0.58 × 0.25 × 0.04 mm
V = 714.68 (4) Å3
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
4139 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.3°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.822, Tmax = 0.996l = 2322
12950 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.1229P]
where P = (Fo2 + 2Fc2)/3
4139 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H16N2O3γ = 107.844 (2)°
Mr = 296.32V = 714.68 (4) Å3
Triclinic, P1Z = 2
a = 6.4326 (2) ÅMo Kα radiation
b = 7.1724 (2) ŵ = 0.10 mm1
c = 16.5000 (6) ÅT = 100 K
α = 93.989 (2)°0.58 × 0.25 × 0.04 mm
β = 96.973 (2)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
4139 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2776 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.996Rint = 0.047
12950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
4139 reflectionsΔρmin = 0.33 e Å3
201 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20474 (19)0.31302 (18)0.58398 (7)0.0307 (3)
O20.4006 (2)0.58466 (19)0.86676 (8)0.0358 (3)
O30.7425 (2)0.7068 (2)0.92259 (7)0.0403 (3)
N10.3580 (2)0.16780 (19)0.12184 (8)0.0242 (3)
N20.5992 (2)0.6233 (2)0.86426 (8)0.0268 (3)
C10.5108 (3)0.4710 (2)0.72163 (9)0.0208 (3)
H1A0.36180.43820.72670.025*
C20.6705 (3)0.5694 (2)0.78695 (9)0.0214 (3)
C30.8939 (3)0.6208 (2)0.78275 (10)0.0240 (3)
H3A0.99840.68750.82780.029*
C40.9570 (3)0.5698 (2)0.70954 (10)0.0241 (3)
H4A1.10640.60220.70510.029*
C50.8002 (3)0.4708 (2)0.64249 (10)0.0219 (3)
H5A0.84580.43730.59370.026*
C60.5761 (2)0.4212 (2)0.64736 (9)0.0193 (3)
C70.3950 (3)0.3212 (2)0.57715 (9)0.0210 (3)
C80.4516 (3)0.2383 (2)0.50196 (9)0.0214 (3)
H8A0.59860.25440.49730.026*
C90.2920 (3)0.1398 (2)0.44018 (9)0.0215 (3)
H9A0.14790.12140.44970.026*
C100.3166 (3)0.0582 (2)0.36015 (9)0.0199 (3)
C110.5214 (3)0.0810 (2)0.33381 (9)0.0211 (3)
H11A0.65050.14610.36990.025*
C120.5359 (3)0.0091 (2)0.25577 (9)0.0214 (3)
H12A0.67430.02730.24010.026*
C130.3440 (3)0.0919 (2)0.19893 (9)0.0205 (3)
C140.1394 (3)0.1144 (2)0.22557 (9)0.0228 (3)
H14A0.00990.17940.18980.027*
C150.1271 (3)0.0417 (2)0.30389 (9)0.0222 (3)
H15A0.01100.05960.31970.027*
C160.1605 (3)0.2440 (3)0.06120 (10)0.0302 (4)
H16A0.05430.34890.08160.045*
H16B0.19760.29320.01120.045*
H16C0.09880.14040.05070.045*
C170.5695 (3)0.1231 (3)0.09321 (11)0.0336 (4)
H17A0.66650.17160.12840.050*
H17B0.63260.01700.09410.050*
H17C0.54990.18500.03810.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (6)0.0426 (7)0.0256 (6)0.0097 (5)0.0054 (5)0.0044 (5)
O20.0301 (7)0.0514 (8)0.0276 (7)0.0160 (6)0.0078 (5)0.0043 (5)
O30.0400 (8)0.0535 (8)0.0233 (7)0.0158 (6)0.0023 (6)0.0142 (6)
N10.0239 (7)0.0293 (7)0.0180 (7)0.0086 (5)0.0007 (5)0.0030 (5)
N20.0304 (8)0.0307 (7)0.0209 (7)0.0136 (6)0.0032 (6)0.0023 (5)
C10.0224 (8)0.0197 (7)0.0220 (8)0.0091 (6)0.0042 (6)0.0016 (5)
C20.0273 (8)0.0209 (7)0.0188 (7)0.0115 (6)0.0056 (6)0.0005 (5)
C30.0259 (8)0.0201 (7)0.0241 (8)0.0069 (6)0.0009 (6)0.0006 (6)
C40.0198 (8)0.0220 (7)0.0305 (9)0.0068 (6)0.0047 (6)0.0018 (6)
C50.0246 (8)0.0205 (7)0.0233 (8)0.0097 (6)0.0077 (6)0.0025 (6)
C60.0231 (8)0.0161 (6)0.0199 (7)0.0076 (6)0.0044 (6)0.0026 (5)
C70.0238 (8)0.0200 (7)0.0197 (7)0.0072 (6)0.0055 (6)0.0013 (5)
C80.0228 (8)0.0221 (7)0.0206 (8)0.0087 (6)0.0049 (6)0.0006 (5)
C90.0248 (8)0.0200 (7)0.0217 (8)0.0090 (6)0.0059 (6)0.0029 (6)
C100.0249 (8)0.0167 (6)0.0186 (7)0.0076 (6)0.0027 (6)0.0015 (5)
C110.0220 (8)0.0196 (7)0.0198 (7)0.0058 (6)0.0000 (6)0.0006 (5)
C120.0209 (7)0.0221 (7)0.0212 (8)0.0071 (6)0.0035 (6)0.0004 (6)
C130.0260 (8)0.0172 (6)0.0185 (7)0.0082 (6)0.0019 (6)0.0000 (5)
C140.0228 (8)0.0211 (7)0.0221 (8)0.0060 (6)0.0016 (6)0.0009 (6)
C150.0220 (8)0.0225 (7)0.0230 (8)0.0081 (6)0.0039 (6)0.0027 (6)
C160.0315 (9)0.0332 (9)0.0209 (8)0.0065 (7)0.0012 (7)0.0037 (6)
C170.0308 (9)0.0447 (10)0.0243 (9)0.0125 (8)0.0054 (7)0.0061 (7)
Geometric parameters (Å, º) top
O1—C71.2268 (18)C8—H8A0.93
O2—N21.2282 (18)C9—C101.453 (2)
O3—N21.2253 (18)C9—H9A0.93
N1—C131.3726 (19)C10—C151.400 (2)
N1—C171.445 (2)C10—C111.403 (2)
N1—C161.450 (2)C11—C121.378 (2)
N2—C21.4728 (19)C11—H11A0.93
C1—C21.377 (2)C12—C131.416 (2)
C1—C61.401 (2)C12—H12A0.93
C1—H1A0.93C13—C141.404 (2)
C2—C31.382 (2)C14—C151.380 (2)
C3—C41.380 (2)C14—H14A0.93
C3—H3A0.93C15—H15A0.93
C4—C51.388 (2)C16—H16A0.96
C4—H4A0.93C16—H16B0.96
C5—C61.389 (2)C16—H16C0.96
C5—H5A0.93C17—H17A0.96
C6—C71.503 (2)C17—H17B0.96
C7—C81.471 (2)C17—H17C0.96
C8—C91.339 (2)
C13—N1—C17120.03 (13)C10—C9—H9A116.0
C13—N1—C16119.75 (13)C15—C10—C11117.16 (13)
C17—N1—C16117.94 (13)C15—C10—C9119.05 (14)
O3—N2—O2123.47 (14)C11—C10—C9123.73 (14)
O3—N2—C2117.85 (14)C12—C11—C10121.55 (14)
O2—N2—C2118.67 (13)C12—C11—H11A119.2
C2—C1—C6118.98 (14)C10—C11—H11A119.2
C2—C1—H1A120.5C11—C12—C13121.21 (14)
C6—C1—H1A120.5C11—C12—H12A119.4
C1—C2—C3122.83 (14)C13—C12—H12A119.4
C1—C2—N2118.35 (14)N1—C13—C14121.62 (14)
C3—C2—N2118.82 (14)N1—C13—C12121.33 (14)
C4—C3—C2117.84 (15)C14—C13—C12117.04 (13)
C4—C3—H3A121.1C15—C14—C13121.22 (14)
C2—C3—H3A121.1C15—C14—H14A119.4
C3—C4—C5120.78 (15)C13—C14—H14A119.4
C3—C4—H4A119.6C14—C15—C10121.82 (14)
C5—C4—H4A119.6C14—C15—H15A119.1
C4—C5—C6120.80 (14)C10—C15—H15A119.1
C4—C5—H5A119.6N1—C16—H16A109.5
C6—C5—H5A119.6N1—C16—H16B109.5
C5—C6—C1118.76 (14)H16A—C16—H16B109.5
C5—C6—C7124.49 (13)N1—C16—H16C109.5
C1—C6—C7116.73 (13)H16A—C16—H16C109.5
O1—C7—C8122.01 (14)H16B—C16—H16C109.5
O1—C7—C6118.94 (13)N1—C17—H17A109.5
C8—C7—C6119.04 (13)N1—C17—H17B109.5
C9—C8—C7120.16 (14)H17A—C17—H17B109.5
C9—C8—H8A119.9N1—C17—H17C109.5
C7—C8—H8A119.9H17A—C17—H17C109.5
C8—C9—C10127.92 (15)H17B—C17—H17C109.5
C8—C9—H9A116.0
C6—C1—C2—C30.4 (2)C6—C7—C8—C9176.63 (13)
C6—C1—C2—N2179.16 (12)C7—C8—C9—C10176.15 (14)
O3—N2—C2—C1178.37 (14)C8—C9—C10—C15179.55 (14)
O2—N2—C2—C12.5 (2)C8—C9—C10—C113.4 (2)
O3—N2—C2—C32.1 (2)C15—C10—C11—C120.3 (2)
O2—N2—C2—C3177.06 (14)C9—C10—C11—C12176.72 (14)
C1—C2—C3—C40.1 (2)C10—C11—C12—C130.3 (2)
N2—C2—C3—C4179.64 (13)C17—N1—C13—C14173.04 (14)
C2—C3—C4—C50.2 (2)C16—N1—C13—C1410.5 (2)
C3—C4—C5—C60.2 (2)C17—N1—C13—C128.3 (2)
C4—C5—C6—C10.7 (2)C16—N1—C13—C12170.82 (13)
C4—C5—C6—C7177.56 (13)C11—C12—C13—N1178.40 (13)
C2—C1—C6—C50.7 (2)C11—C12—C13—C140.3 (2)
C2—C1—C6—C7177.63 (12)N1—C13—C14—C15178.41 (13)
C5—C6—C7—O1168.19 (14)C12—C13—C14—C150.3 (2)
C1—C6—C7—O110.1 (2)C13—C14—C15—C100.3 (2)
C5—C6—C7—C811.0 (2)C11—C10—C15—C140.3 (2)
C1—C6—C7—C8170.71 (12)C9—C10—C15—C14176.88 (13)
O1—C7—C8—C94.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.452.798 (2)102
C17—H17C···O3i0.962.593.430 (2)146
Symmetry code: (i) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC17H16N2O3
Mr296.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4326 (2), 7.1724 (2), 16.5000 (6)
α, β, γ (°)93.989 (2), 96.973 (2), 107.844 (2)
V3)714.68 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.25 × 0.04
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.822, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12950, 4139, 2776
Rint0.047
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.162, 1.07
No. of reflections4139
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.33

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.452.798 (2)102
C17—H17C···O3i0.962.593.430 (2)146
Symmetry code: (i) x, y1, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds