research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan, b`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and dDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 3 January 2024; accepted 12 January 2024; online 26 January 2024)

The title com­pound, C13H11NO, adopts an E configuration about the C=C double bond. The pyrrole ring is inclined to the phenyl ring at an angle of 44.94 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis. These ribbons are connected via C—H⋯π inter­actions, forming a three-dimensional network. No significant ππ inter­actions are observed.

1. Chemical context

The chemistry of carbo- and heterocyclic aromatic com­pounds is the most important branch of organic chemistry (Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]; Akkurt et al., 2023[Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.]). Synthetic organic chemistry is growing tremendously, with recently developed aromatic systems that are designed for various research and commercial purposes (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Erenler et al., 2022[Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.]). Nowadays, five- and six-membered heterocyclic systems find broad applications in different branches of chemistry, as well as coordination chemistry (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), drug design and development (Donmez & Turkyılmaz, 2022[Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci. 2, 43-48.]; Askerova, 2022[Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci. 2, 58-64.]), and materials science (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262-270.]). The pyrrole motif is the most widespread five-membered heteroaromatic ring system in nitro­gen heterocycles (Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322-3330.]). It is an essential structural motif present in many natural tetra­pyrrole scaffolds of heme and related cofactors (chloro­phyll a, heme b, vitamin B12 and factor 430), and other bioactive mol­ecules, like porphobilinogen, nargenicin, prodigiosin, etc. (Walsh et al., 2006[Walsh, C. T., Garneau-Tsodikova, S. & Howard-Jones, A. R. (2006). Nat. Prod. Rep. 23, 517-531.]; Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). Chalcones incorporating N-heterocyclic, especially pyrrole, scaffolds with various biological and pharmacological activities, such as anti­oxidant, anti­bacterial, anti­fungal, anti­leishmanial, anti­cancer, anti­tubercular, anti­malarial and other properties, have been reviewed recently (Mezgebe et al., 2023[Mezgebe, K., Melaku, Y. & Mulugeta, E. (2023). ACS Omega, 8, 19194-19211.]). In addition, the incorporation of diverse pharmacophore groups in a pyrrole scaffold has led to the development of more desired com­pounds, such as elopiprazole, lorpiprazole, isamoltane, obatoclax, etc. (Bhardwaj et al., 2015[Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. & Sharma, P. (2015). RSC Adv. 5, 15233-15266.]; Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]). Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), we report herein the crystal structure and Hirshfeld surface analysis of the title com­pound, (2E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one.

[Scheme 1]

2. Structural commentary

The title com­pound (Fig. 1[link]) shows an E configuration about the C=C double bond. The pyrrole ring (atoms N1/C10–C13) is inclined to the phenyl ring (C1–C6) by 44.94 (8)°, the torsion angles being C5—C6—C7—C8 = −156.04 (13)°, C5—C6—C7—O1 = 22.6 (2)°, C6—C7—C8—C9 = −163.76 (13)°, C7—C8—C9—C10 = −172.34 (13)°, O1—C7—C8—C9 = 17.6 (2)° and C8—C9—C10—C11 = 173.37 (14)°. The geometrical parameters of the the title com­pound are in agreement with those reported for similar com­pounds; see the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link] and Fig. 2[link]). These ribbons are connected via C—H⋯π inter­actions, forming a three-dimensional network (Table 1[link] and Fig. 3[link]). No significant ππ inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the phenyl (C1–C6) and 1H-pyrrole (N1/C10–C13) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.872 (17) 2.119 (17) 2.9561 (18) 160.7 (14)
C2—H2⋯Cg1ii 0.93 2.82 3.450 (2) 126
C5—H5⋯Cg1iii 0.93 2.91 3.5233 (19) 124
C9—H9⋯Cg2iv 0.93 3.00 3.6207 (18) 126
C13—H13⋯Cg2v 0.93 2.95 3.593 (2) 127
Symmetry codes: (i) [x-1, y, z]; (ii) [-x, -y, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y, -z+1]; (v) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
View of the N—H⋯O hydrogen bonds of the title com­pound down the b axis.
[Figure 3]
Figure 3
View of the C—H⋯π inter­actions of the title com­pound in the unit cell.

The Hirshfeld surfaces of the title mol­ecule and the two-dimensional fingerprints were com­puted with CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dnorm mappings for the title com­pound were performed in the range from −0.4746 (red) to +1.2616 (blue) a.u. On the dnorm surfaces, bright-red spots indicate the locations of the N—H⋯O inter­actions [Table 1[link] and Figs. 4[link](a) and 4(b)].

[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title com­pound mapped over dnorm, with a fixed colour scale of −0.4746 to +1.2616 a.u.

The fingerprint plots (Fig. 5[link]) reveal that while H⋯H inter­actions [Fig. 5[link](b); 48.4%] make the largest contributions to the surface contacts (Table 1[link]), C⋯H/H⋯C [Fig. 5[link](c); 31.7%] and O⋯H/H⋯O [Fig. 5[link](d); 11.3%] contacts are also important. Other less notable inter­actions are C⋯C (3.7%), N⋯H/H⋯N (3.1%) and O⋯C/C⋯O (1.8%).

[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the `(2E)-1-phenyl-3-(1H-pyrrol-2-yl)prop-2-en-1-one' skeleton of the title com­pound yielded two hits, namely, 1-(3-chloro­phen­yl)-3-(3-fur­yl)prop-2-en-1-one (CSD refcode NUQFOW; Zingales et al., 2015[Zingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707.]) and (E)-3-(2-fur­yl)-1-phenyl­prop-2-en-1-one (NOTCUW01; Vázquez-Vuelvas et al., 2015[Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161-164.]). When the positions of the pyrrole and phenyl rings are switched, additional hits are found, namely, 1-(2,4-di­methyl­furan-3-yl)-3-phenyl­prop-2-en-1-one (MISXUL; Khalilov et al., 2023[Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 736-740.]), 1-(3-fur­yl)-3-[3-(tri­fluoro­meth­yl)phen­yl]prop-2-en-1-one (KUDNAA; Bákowicz et al., 2015[Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. Cryst. Mater. 230, 131-137.]) and (2E)-3-(4-chloro­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (XIYYOU; Bukhari et al., 2008[Bukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, o867-o868.]).

In the crystal of NUQFOW, mol­ecules stack along the a axis; however, there are no significant inter­molecular inter­actions present. In the crystal of NOTCUW01, mol­ecules are connected by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons extending along the c axis. In the crystal of MISXUL, pairs of mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with R22(14) ring motifs. The mol­ecules are connected via C—H⋯π inter­actions, forming a three-dimensional network. No ππ inter­actions are observed. In KUDNAA, mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming zigzag chains with C(5) motifs along the b axis. In addition, mol­ecules are connected by face-to-face ππ stacking inter­actions [centroid–centroid distances = 3.926 (3) and 3.925 (2) Å] between the opposing benzene and furan rings of the mol­ecules along the c axis. In XIYYOU, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(10) dimers. There are C—H⋯π inter­actions between the benzene and pyrrole rings and a benzene C—H group. A weak ππ inter­action between the pyrrole rings [centroid–centroid distance = 3.8515 (11) Å] further stabilizes the structure. There is also a π-inter­action between the pyrrole ring and the carbonyl group, with an O⋯π distance of 3.4825 (18) Å.

5. Synthesis and crystallization

The title com­pound was synthesized according to a recently reported procedure (Li et al., 2022[Li, J., Zheng, H., Lu, H., Li, J., Yao, L., Wang, Y., Zhou, X., Nie, J., Zhu, X. & Fu, Z. (2022). Eur. Polym. J. 176, 111393.]), and colourless crystals were obtained upon recrystallization from an ethanol/water (3:1 v/v) solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions (0.93 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and refined with Uiso(H) = 1.2Ueq(N). Three reflections (001, 010 and 020) were omitted in the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C13H11NO
Mr 197.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.7855 (16), 7.3347 (19), 12.424 (3)
α, β, γ (°) 106.519 (8), 91.912 (9), 92.326 (9)
V3) 504.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.12 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.688, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18072, 2535, 1908
Rint 0.042
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.108, 1.06
No. of reflections 2535
No. of parameters 139
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(2E)-1-Phenyl-3-(1H-pyrrol-2-yl)propen-1-one top
Crystal data top
C13H11NOZ = 2
Mr = 197.23F(000) = 208
Triclinic, P1Dx = 1.298 Mg m3
a = 5.7855 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3347 (19) ÅCell parameters from 5813 reflections
c = 12.424 (3) Åθ = 2.9–27.4°
α = 106.519 (8)°µ = 0.08 mm1
β = 91.912 (9)°T = 293 K
γ = 92.326 (9)°Block, colorless
V = 504.5 (2) Å30.12 × 0.11 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1908 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.6°, θmin = 2.9°
Tmin = 0.688, Tmax = 0.746h = 77
18072 measured reflectionsk = 99
2535 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.1277P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2535 reflectionsΔρmax = 0.18 e Å3
139 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2761 (2)0.1954 (2)0.68844 (12)0.0384 (3)
H10.1525800.1481440.6368260.046*
C20.2561 (3)0.1996 (2)0.79934 (13)0.0454 (4)
H20.1202020.1526110.8221050.055*
C30.4365 (3)0.2729 (2)0.87637 (13)0.0482 (4)
H30.4218980.2762270.9512110.058*
C40.6386 (3)0.3416 (2)0.84307 (13)0.0455 (4)
H40.7592760.3934190.8956150.055*
C50.6619 (2)0.3335 (2)0.73212 (12)0.0378 (3)
H50.8003200.3764680.7094530.045*
C60.4805 (2)0.26175 (18)0.65370 (11)0.0324 (3)
C70.5128 (2)0.25283 (19)0.53401 (11)0.0354 (3)
C80.3085 (2)0.2513 (2)0.46122 (12)0.0383 (3)
H80.1687590.2879790.4935660.046*
C90.3176 (2)0.19850 (19)0.34947 (11)0.0357 (3)
H90.4555040.1482840.3211340.043*
C100.1436 (2)0.20911 (19)0.26803 (11)0.0335 (3)
C110.1590 (3)0.1715 (2)0.15357 (12)0.0407 (4)
H110.2839750.1203830.1122310.049*
C120.0454 (3)0.2235 (2)0.11041 (13)0.0457 (4)
H120.0812060.2144160.0354620.055*
C130.1829 (3)0.2901 (2)0.19837 (13)0.0436 (4)
H130.3304370.3340680.1937550.052*
N10.0693 (2)0.28171 (17)0.29363 (10)0.0386 (3)
H1N0.130 (3)0.302 (2)0.3590 (14)0.046*
O10.70997 (17)0.25046 (16)0.49928 (8)0.0496 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (7)0.0410 (8)0.0402 (8)0.0001 (6)0.0026 (6)0.0099 (6)
C20.0437 (9)0.0482 (9)0.0484 (9)0.0010 (7)0.0145 (7)0.0190 (7)
C30.0613 (10)0.0526 (9)0.0349 (8)0.0068 (8)0.0081 (7)0.0181 (7)
C40.0467 (9)0.0493 (9)0.0391 (9)0.0005 (7)0.0068 (7)0.0115 (7)
C50.0338 (7)0.0404 (8)0.0402 (8)0.0016 (6)0.0029 (6)0.0128 (6)
C60.0320 (7)0.0324 (7)0.0331 (7)0.0059 (5)0.0044 (6)0.0089 (5)
C70.0335 (7)0.0379 (7)0.0349 (7)0.0053 (6)0.0059 (6)0.0096 (6)
C80.0315 (7)0.0474 (8)0.0371 (8)0.0078 (6)0.0052 (6)0.0127 (6)
C90.0328 (7)0.0373 (7)0.0380 (8)0.0013 (6)0.0052 (6)0.0120 (6)
C100.0320 (7)0.0354 (7)0.0334 (7)0.0009 (5)0.0025 (6)0.0109 (6)
C110.0412 (8)0.0464 (8)0.0344 (8)0.0019 (6)0.0062 (6)0.0115 (6)
C120.0521 (10)0.0540 (9)0.0333 (8)0.0052 (7)0.0036 (7)0.0179 (7)
C130.0364 (8)0.0502 (9)0.0479 (9)0.0019 (7)0.0054 (7)0.0207 (7)
N10.0360 (7)0.0472 (7)0.0338 (7)0.0031 (5)0.0048 (5)0.0129 (5)
O10.0330 (6)0.0771 (8)0.0403 (6)0.0057 (5)0.0088 (5)0.0181 (5)
Geometric parameters (Å, º) top
C1—C21.378 (2)C8—C91.3346 (19)
C1—C61.3886 (19)C8—H80.9300
C1—H10.9300C9—C101.4237 (19)
C2—C31.375 (2)C9—H90.9300
C2—H20.9300C10—N11.3728 (18)
C3—C41.377 (2)C10—C111.3761 (19)
C3—H30.9300C11—C121.394 (2)
C4—C51.374 (2)C11—H110.9300
C4—H40.9300C12—C131.361 (2)
C5—C61.3867 (19)C12—H120.9300
C5—H50.9300C13—N11.3526 (18)
C6—C71.4882 (19)C13—H130.9300
C7—O11.2318 (16)N1—H1N0.871 (16)
C7—C81.462 (2)
C2—C1—C6120.07 (14)C9—C8—C7121.56 (13)
C2—C1—H1120.0C9—C8—H8119.2
C6—C1—H1120.0C7—C8—H8119.2
C3—C2—C1120.16 (14)C8—C9—C10128.38 (13)
C3—C2—H2119.9C8—C9—H9115.8
C1—C2—H2119.9C10—C9—H9115.8
C2—C3—C4120.20 (14)N1—C10—C11106.72 (12)
C2—C3—H3119.9N1—C10—C9124.28 (12)
C4—C3—H3119.9C11—C10—C9128.65 (13)
C5—C4—C3119.93 (14)C10—C11—C12108.08 (13)
C5—C4—H4120.0C10—C11—H11126.0
C3—C4—H4120.0C12—C11—H11126.0
C4—C5—C6120.48 (13)C13—C12—C11107.23 (13)
C4—C5—H5119.8C13—C12—H12126.4
C6—C5—H5119.8C11—C12—H12126.4
C5—C6—C1119.12 (13)N1—C13—C12108.61 (14)
C5—C6—C7119.03 (12)N1—C13—H13125.7
C1—C6—C7121.83 (12)C12—C13—H13125.7
O1—C7—C8121.73 (13)C13—N1—C10109.35 (12)
O1—C7—C6119.52 (13)C13—N1—H1N125.1 (10)
C8—C7—C6118.74 (12)C10—N1—H1N124.9 (10)
C6—C1—C2—C31.3 (2)O1—C7—C8—C917.6 (2)
C1—C2—C3—C40.4 (2)C6—C7—C8—C9163.76 (13)
C2—C3—C4—C51.2 (2)C7—C8—C9—C10172.34 (13)
C3—C4—C5—C61.9 (2)C8—C9—C10—N11.1 (2)
C4—C5—C6—C11.0 (2)C8—C9—C10—C11173.37 (14)
C4—C5—C6—C7179.23 (12)N1—C10—C11—C120.50 (16)
C2—C1—C6—C50.7 (2)C9—C10—C11—C12172.82 (13)
C2—C1—C6—C7177.54 (13)C10—C11—C12—C130.54 (17)
C5—C6—C7—O122.6 (2)C11—C12—C13—N10.37 (17)
C1—C6—C7—O1155.56 (14)C12—C13—N1—C100.06 (16)
C5—C6—C7—C8156.04 (13)C11—C10—N1—C130.27 (15)
C1—C6—C7—C825.76 (19)C9—C10—N1—C13173.41 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C1–C6) phenyl and (N1/C10–C13) 1H-pyrrole rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.872 (17)2.119 (17)2.9561 (18)160.7 (14)
C2—H2···Cg1ii0.932.823.450 (2)126
C5—H5···Cg1iii0.932.913.5233 (19)124
C9—H9···Cg2iv0.933.003.6207 (18)126
C13—H13···Cg2v0.932.953.593 (2)127
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z+1.
 

Acknowledgements

The contributions of the authors are as follows: conceptualization, IGM, ANK and AMM; methodology, IB and MA; investigation, ASA and FNN; writing (original draft), MA, AB and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, IGM and FNN; funding acquisition, ASA, AB and FNN; resources, AB, ASA and MA; supervision, MA and ANK.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.  CrossRef Google Scholar
First citationAskerova, U. F. (2022). UNEC J. Eng. Appl. Sci. 2, 58–64.  Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.  Google Scholar
First citationBąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. Cryst. Mater. 230, 131–137.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. & Sharma, P. (2015). RSC Adv. 5, 15233–15266.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, o867–o868.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDonmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci. 2, 43–48.  Google Scholar
First citationErenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 736–740.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, J., Zheng, H., Lu, H., Li, J., Yao, L., Wang, Y., Zhou, X., Nie, J., Zhu, X. & Fu, Z. (2022). Eur. Polym. J. 176, 111393.  CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322–3330.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMezgebe, K., Melaku, Y. & Mulugeta, E. (2023). ACS Omega, 8, 19194–19211.  CrossRef CAS PubMed Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161–164.  CSD CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar
First citationWalsh, C. T., Garneau-Tsodikova, S. & Howard-Jones, A. R. (2006). Nat. Prod. Rep. 23, 517–531.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds