research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methyl­idene]butanamide monohydrate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148 Baku, Azerbaijan, b"Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avenida Angamos 601, Casilla 170, Antofagasta 1240000, Chile, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 31 October 2023; accepted 9 November 2023; online 14 November 2023)

In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two mol­ecules are connected to the water mol­ecule by two N—H⋯O hydrogen bonds and one mol­ecule by an O—H⋯O hydrogen bond. C—H⋯π and ππ inter­actions further link the mol­ecules into chains extending in the [[\overline{1}]01] direction and stabilize the mol­ecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

Heterocyclic and carbocyclic aromatic systems are the most important compounds in organic chemistry (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.]; Aliyeva et al., 2023[Aliyeva, V. A., Gurbanov, A. V., Mahmoud, A. G., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Faraday Discuss. 244, 77-95.]). Organic synthesis is developing enormously with newer aromatic compounds having been obtained for diverse medicinal and commercial purposes (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.]; Poustforoosh et al., 2022[Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.]; Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]). Nowadays, the application of five and six-membered heterocycles in particular has been expanded in different branches of chemistry, including coordination chemistry (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), drug design and development (Çelik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]) and material science (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262-270.]). The pyrrole core is the most common five-membered heteroaromatic ring system in nitro­gen heterocycles (Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322-3330.]). It is an essential structural motif present in many natural tetra­pyrrole scaffolds of heme and related cofactors (chloro­phyll a, heme b, vitamin B12, factor 430) and other bioactive mol­ecules such as porphobilinogen, nargenicin and prodigiosin (Walsh et al., 2006[Walsh, C. T., Garneau-Tsodikova, S. & Howard-Jones, A. R. (2006). Nat. Prod. Rep. 23, 517-531.]). The combination of different pharmacophores in a pyrrole ring system has led to the formation of more active compounds, such as elopiprazole, lorpiprazole, isamoltane, obatoclax (Bhardwaj et al., 2015[Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. & Sharma, P. (2015). RSC Adv. 5, 15233-15266.]). On the other hand, there have been a variety of significant examples of pyrrole derivatives used as target products as well as synthetic inter­mediates (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]).

[Scheme 1]

2. Structural commentary

The title compound crystallizes with one water mol­ecule in the asymmetric unit (Fig. 1[link]). The 1H-pyrrole ring (N2/C10–C13) makes a dihedral angle of 59.95 (13)° with the phenyl ring (C1–C6). The conformation is stabilized by an intra­molecular C5—H5⋯O1 inter­action (Table 1[link]). In addition, an OW1—HW1⋯O1 hydrogen bond is observed between the main mol­ecule and the water mol­ecule in the asymmetric unit (Table 1[link]). The 1H-pyrrole ring and N-phenyl­formamide substituents on the C8=C9 double bond are in a cis configuration [the C7—C8—C9—C10 torsion angle is 1.5 (3) °] and the 1H-pyrrole ring and the acetaldehyde substituents are in a trans configuration [the C14—C8—C9—C10 torsion angle is 179.17 (18) °].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/C10–C13 pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.41 2.906 (3) 113
C13—H13⋯O1i 0.93 2.56 3.480 (3) 173
N1—HN1⋯OW1ii 0.91 (2) 1.99 (2) 2.898 (2) 179 (2)
N2—HN2⋯OW1iii 0.89 (2) 2.02 (2) 2.901 (2) 173 (2)
OW1—HW1⋯O1 0.92 (3) 1.80 (3) 2.718 (2) 177 (2)
OW1—HW2⋯O2iv 0.87 (3) 1.92 (3) 2.750 (2) 160 (2)
C15—H15CCg1iii 0.96 2.66 3.536 (3) 151
Symmetry codes: (i) [x, y-1, z]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

The other torsion angles C5—C6—N1—C7, C6—N1—C7—O1, C6—N1—C7—C8, N1—C7—C8—C14, N1—C7—C8—C9, C7—C8—C14—C15 and C8—C9—C10—C11 are −30.7 (3), 6.7 (3), −172.19 (17), 85.2 (2), −97.0 (2), −176.03 (18) and −1.0 (4)°, respectively. The geometric parameters of the title compound are normal and comparable to that of related compound listed in the Database survey section.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are also connected by C—H⋯O hydrogen bonds in layers parallel to the (020) plane, while two mol­ecules are connected to the water mol­ecule by two N—H⋯O hydrogen bonds and one mol­ecule by an O—H⋯O hydrogen bond (Table 1[link], Figs. 2[link] and 3[link]). C—H⋯π and ππ inter­actions [Cg2⋯Cg2(1 − x, 1 − y, 1 − z) = 3.8404 (16) Å, slippage = 0.858 Å; Cg2 is the centroid of phenyl ring C1–C6] link the mol­ecules into chains extending in the [[\overline{1}]01] direction and stabilize the mol­ecular packing (Table 1[link], Figs. 4[link] and 5[link]).

[Figure 2]
Figure 2
View of the crystal packing of the title compound along the a-axis showing N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
View of the crystal packing of the title compound along the b-axis showing N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds as dashed lines.
[Figure 4]
Figure 4
View of the crystal packing of the title compound along the a-axis showing the C—H⋯π and ππ inter­actions as dashed lines.
[Figure 5]
Figure 5
View of the crystal packing of the title compound along the c-axis showing the C—H⋯π and ππ inter­actions as dashed lines.

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The Hirshfeld surfaces were mapped over dnorm in the range −0.6778 (red) to +1.5015 (blue) a.u. (Fig. 6[link]). The inter­actions given in Table 2[link] play a key role in the mol­ecular packing of the title compound. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (49.4%, Fig. 7[link]b). Other major contributors are C⋯H/H⋯C (23.2%, Fig. 7[link]c) and O⋯H/H⋯O (20.0%, Fig. 7[link]d) inter­actions. Other smaller contributions are made by C⋯C (3.4%), N⋯H/H⋯N (3.3%), C⋯N/N⋯C (0.4%) and C⋯O/O⋯C (0.3%) inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯HW1 1.80 x, y, z
O1⋯H13 2.56 x, 1 + y, z
O2⋯HW2 1.92 [{3\over 2}] − x, [{3\over 2}] − y, [{1\over 2}] − z
HN1⋯OW1 1.99 [{1\over 2}] + x, 1 − y, z
N2⋯H15B 2.92 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
HN2⋯OW1 2.02 [{3\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] − z
H15C⋯N2 2.76 [{3\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] − z
H5⋯H5 2.36 [{3\over 2}] − x, y, 1 − z
H3⋯C11 3.06 1 − x, 1 − y, 1 − z
H3⋯H15A 2.59 x, [{3\over 2}] − y, [{1\over 2}] + z
[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.6778 to +1.5015 a.u.
[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing the fragment N—C—CH=C—C(=O)—NH, in which the N—C bond is part of a five-membered ring and the CH=C bond is acyclic, resulted in one hit, N-[(1,1-di­methyl­eth­oxy)carbon­yl]-L-alanyl-[(2Z)-3-(pyrrolidin-2-yl)-2-methyl-2-propeno­yl]-L-alanine methyl­amide di­chloro­methane solvate hydrate (CSD refcode SEFCUC; Grison et al., 2005[Grison, C., Coutrot, P., Genève, S., Didierjean, C. & Marraud, M. (2005). J. Org. Chem. 70, 10753-10764.]).

In the crystal of SEFCUC, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming mol­ecular layers parallel to the (001) plane. These layers are connected to each other by van der Waals forces. Torsion angles at the central C—C=C—C(=O)—NH unit in SEFCUC, i.e. the torsion angles C9—C13—C14—C16 and C13—C14—C16—N3 are −3.1 (5) and −53.1 (4)°, respectively. SEFCUC shows a folded conformation due to an intra­molecular N—H⋯O hydrogen bond. The amide group is trans-planar, as in the title compound.

5. Synthesis and crystallization

To a solution of pyrrole-2-carboxaldehyde (1 g, 10 mmol) and acetoacetanilide (1.77 g, 10 mmol) in ethanol (80%, 20 mL), were added methyl­piperazine (3–4 drops) and the mixture was stirred at room temperature for 2 h. The reaction mixture was then left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 69%; m.p. 513–514 K).

1H NMR (300 MHz, DMSO-d6, δ): 2.34 (s, 3H, CH3), 6.21 (d, 1H, CHpyr.), 6.57 (1H, d, CHpyr.), 7.10 (t, 1H, CHpyr), 7.14 (t, 1H, CHarom.), 7.35 (m, 2H; 2CHarom.), 7.57 (s, 1H, CH=), 7.70 (d, 2H, 2CHarom.), 10.41 (s, 1H, NH), 11.52 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6 δ): 26.45 (CH3), 112.12 (CHpyr.), 114.66 (CHpyr.), 119.74 (2CHarom.), 124.08 (CHpyr.), 126.70 (CHarom.), 129.37 (2CHarom.), 130.66 (Cpyr.), 136.83 (CH=), 139.58 (Cquat.), 139.70 (Cquat.), 166.74 (C=O), 195.29 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the water mol­ecule and the hydrogen atoms bound to nitro­gen were located in difference-Fourier maps and refined with fixed positional thermal displacement parameters and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). All carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.93–0.96 Å) and were included in the refinement in the riding-model approximation with Uiso(H) = 1.2 or 1.5Ueq(C). One reflection (0 1 1), affected by the beam stop, was omitted in the final cycles of refinement. Owing to poor agreement between observed and calculated intensities, fourteen outliers ([\overline{15}] 1 10, [\overline{2}] 3 15, 8 4 16, 16 0 0, [\overline{7}] 3 18, 0 5 23, 2 3 7, [\overline{1}] 2 21, [\overline{7}] 7 18, [\overline{6}] 6 8, 1 5 18, [\overline{1}] 3 18, 0 2 14, 5 5 20) were omitted during the final refinement cycle. The value of R(int) should normally be considerably lower than 0.10. The value of R(int) of 0.205 in this study may be high due to poor crystal quality.

Table 3
Experimental details

Crystal data
Chemical formula C15H14N2O2·H2O
Mr 272.30
Crystal system, space group Monoclinic, I2/a
Temperature (K) 294
a, b, c (Å) 13.7420 (13), 8.8912 (13), 23.114 (2)
β (°) 94.742 (4)
V3) 2814.5 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.29 × 0.24 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 98978, 2677, 1729
Rint 0.205
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.05
No. of reflections 2677
No. of parameters 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2018[Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(2Z)-3-Oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate top
Crystal data top
C15H14N2O2·H2OF(000) = 1152
Mr = 272.30Dx = 1.285 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 13.7420 (13) ÅCell parameters from 7717 reflections
b = 8.8912 (13) Åθ = 3.2–21.8°
c = 23.114 (2) ŵ = 0.09 mm1
β = 94.742 (4)°T = 294 K
V = 2814.5 (6) Å3Prism, colourless
Z = 80.29 × 0.24 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.205
φ and ω scansθmax = 25.7°, θmin = 2.7°
98978 measured reflectionsh = 1616
2677 independent reflectionsk = 1010
1729 reflections with I > 2σ(I)l = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.2064P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2677 reflectionsΔρmax = 0.14 e Å3
194 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45829 (16)0.6822 (3)0.43032 (9)0.0540 (6)
H10.4080730.6709470.4011100.065*
C20.4445 (2)0.7687 (3)0.47832 (10)0.0710 (7)
H20.3849920.8166100.4812600.085*
C30.5178 (2)0.7850 (3)0.52188 (11)0.0699 (7)
H30.5085150.8451750.5538800.084*
C40.60437 (19)0.7124 (3)0.51790 (10)0.0669 (7)
H40.6536340.7213250.5477950.080*
C50.61958 (16)0.6259 (3)0.47001 (9)0.0532 (6)
H50.6789100.5769570.4676560.064*
C60.54696 (14)0.6122 (2)0.42572 (8)0.0388 (5)
C70.64024 (14)0.5036 (2)0.34901 (8)0.0372 (4)
C80.62601 (13)0.4259 (2)0.29110 (8)0.0361 (4)
C90.63778 (13)0.2768 (2)0.28452 (8)0.0398 (5)
H90.6286730.2413900.2466030.048*
C100.66233 (14)0.1657 (2)0.32780 (8)0.0415 (5)
C110.68283 (17)0.1689 (3)0.38755 (9)0.0547 (6)
H110.6864800.2543120.4108560.066*
C120.69700 (18)0.0209 (3)0.40637 (10)0.0614 (6)
H120.7113830.0101720.4445440.074*
C130.68602 (17)0.0701 (3)0.35893 (10)0.0571 (6)
H130.6913240.1743480.3591270.069*
C140.60180 (14)0.5269 (2)0.24196 (8)0.0445 (5)
C150.57908 (17)0.4655 (3)0.18195 (9)0.0588 (6)
H15A0.5568110.5454330.1562700.088*
H15B0.5290290.3903120.1826270.088*
H15C0.6368660.4212820.1685410.088*
N10.55800 (12)0.52714 (18)0.37468 (7)0.0397 (4)
HN10.5032 (16)0.497 (2)0.3534 (9)0.048*
N20.66617 (13)0.01667 (19)0.31163 (8)0.0472 (4)
HN20.6547 (16)0.017 (2)0.2755 (10)0.057*
O10.72199 (10)0.54315 (16)0.36963 (6)0.0486 (4)
O20.60026 (13)0.66292 (18)0.25062 (6)0.0653 (5)
OW10.88137 (11)0.57116 (18)0.30826 (6)0.0496 (4)
HW10.8260 (19)0.564 (3)0.3282 (10)0.074*
HW20.8891 (18)0.664 (3)0.2981 (11)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0510 (13)0.0643 (14)0.0468 (12)0.0125 (11)0.0048 (10)0.0042 (11)
C20.0739 (17)0.0797 (18)0.0607 (16)0.0279 (14)0.0127 (13)0.0136 (14)
C30.0875 (19)0.0703 (17)0.0534 (14)0.0020 (14)0.0149 (13)0.0227 (13)
C40.0690 (16)0.0836 (19)0.0474 (13)0.0054 (14)0.0004 (11)0.0176 (13)
C50.0487 (12)0.0657 (15)0.0445 (12)0.0039 (11)0.0004 (10)0.0096 (11)
C60.0448 (11)0.0374 (11)0.0347 (10)0.0020 (9)0.0056 (8)0.0001 (8)
C70.0404 (11)0.0299 (10)0.0414 (11)0.0011 (8)0.0053 (8)0.0011 (8)
C80.0360 (10)0.0380 (11)0.0348 (10)0.0003 (8)0.0054 (8)0.0022 (8)
C90.0381 (10)0.0442 (12)0.0376 (11)0.0006 (9)0.0058 (8)0.0054 (9)
C100.0440 (11)0.0355 (11)0.0460 (12)0.0030 (9)0.0086 (9)0.0039 (9)
C110.0725 (15)0.0457 (13)0.0462 (13)0.0066 (11)0.0074 (11)0.0015 (10)
C120.0794 (17)0.0542 (15)0.0508 (13)0.0089 (12)0.0066 (12)0.0085 (12)
C130.0652 (15)0.0375 (12)0.0696 (16)0.0041 (11)0.0108 (12)0.0073 (12)
C140.0416 (11)0.0487 (14)0.0439 (12)0.0040 (9)0.0071 (9)0.0034 (10)
C150.0593 (14)0.0750 (16)0.0414 (12)0.0077 (12)0.0007 (10)0.0015 (11)
N10.0361 (9)0.0454 (10)0.0376 (9)0.0012 (7)0.0030 (7)0.0074 (8)
N20.0526 (10)0.0371 (10)0.0526 (11)0.0007 (8)0.0076 (8)0.0068 (9)
O10.0381 (8)0.0556 (9)0.0523 (8)0.0057 (7)0.0049 (6)0.0094 (7)
O20.0966 (13)0.0433 (10)0.0563 (10)0.0071 (8)0.0070 (8)0.0089 (8)
OW10.0450 (8)0.0511 (9)0.0533 (9)0.0040 (7)0.0078 (7)0.0091 (7)
Geometric parameters (Å, º) top
C1—C21.376 (3)C9—H90.9300
C1—C61.380 (3)C10—N21.379 (3)
C1—H10.9300C10—C111.387 (3)
C2—C31.371 (4)C11—C121.395 (3)
C2—H20.9300C11—H110.9300
C3—C41.363 (4)C12—C131.361 (3)
C3—H30.9300C12—H120.9300
C4—C51.378 (3)C13—N21.347 (3)
C4—H40.9300C13—H130.9300
C5—C61.375 (3)C14—O21.226 (2)
C5—H50.9300C14—C151.500 (3)
C6—N11.420 (2)C15—H15A0.9600
C7—O11.235 (2)C15—H15B0.9600
C7—N11.336 (2)C15—H15C0.9600
C7—C81.505 (3)N1—HN10.91 (2)
C8—C91.346 (3)N2—HN20.89 (2)
C8—C141.465 (3)OW1—HW10.92 (3)
C9—C101.427 (3)OW1—HW20.87 (3)
C2—C1—C6119.7 (2)N2—C10—C9119.18 (18)
C2—C1—H1120.2C11—C10—C9134.50 (19)
C6—C1—H1120.2C10—C11—C12107.6 (2)
C3—C2—C1120.7 (2)C10—C11—H11126.2
C3—C2—H2119.7C12—C11—H11126.2
C1—C2—H2119.7C13—C12—C11107.8 (2)
C4—C3—C2119.5 (2)C13—C12—H12126.1
C4—C3—H3120.3C11—C12—H12126.1
C2—C3—H3120.3N2—C13—C12108.4 (2)
C3—C4—C5120.6 (2)N2—C13—H13125.8
C3—C4—H4119.7C12—C13—H13125.8
C5—C4—H4119.7O2—C14—C8118.96 (18)
C6—C5—C4119.9 (2)O2—C14—C15120.36 (19)
C6—C5—H5120.0C8—C14—C15120.68 (19)
C4—C5—H5120.0C14—C15—H15A109.5
C5—C6—C1119.57 (18)C14—C15—H15B109.5
C5—C6—N1123.05 (18)H15A—C15—H15B109.5
C1—C6—N1117.37 (17)C14—C15—H15C109.5
O1—C7—N1124.06 (18)H15A—C15—H15C109.5
O1—C7—C8121.43 (16)H15B—C15—H15C109.5
N1—C7—C8114.50 (16)C7—N1—C6127.24 (17)
C9—C8—C14122.57 (18)C7—N1—HN1114.1 (13)
C9—C8—C7123.00 (17)C6—N1—HN1117.9 (13)
C14—C8—C7114.39 (16)C13—N2—C10109.86 (18)
C8—C9—C10128.81 (18)C13—N2—HN2125.1 (15)
C8—C9—H9115.6C10—N2—HN2125.0 (15)
C10—C9—H9115.6HW1—OW1—HW2109 (2)
N2—C10—C11106.30 (18)
C6—C1—C2—C30.6 (4)N2—C10—C11—C121.0 (2)
C1—C2—C3—C41.2 (4)C9—C10—C11—C12177.1 (2)
C2—C3—C4—C51.5 (4)C10—C11—C12—C130.4 (3)
C3—C4—C5—C60.1 (4)C11—C12—C13—N20.3 (3)
C4—C5—C6—C11.6 (3)C9—C8—C14—O2173.92 (19)
C4—C5—C6—N1178.9 (2)C7—C8—C14—O23.9 (3)
C2—C1—C6—C52.0 (3)C9—C8—C14—C156.2 (3)
C2—C1—C6—N1178.5 (2)C7—C8—C14—C15176.03 (18)
O1—C7—C8—C984.1 (2)O1—C7—N1—C66.7 (3)
N1—C7—C8—C997.0 (2)C8—C7—N1—C6172.19 (17)
O1—C7—C8—C1493.7 (2)C5—C6—N1—C730.7 (3)
N1—C7—C8—C1485.2 (2)C1—C6—N1—C7149.9 (2)
C14—C8—C9—C10179.17 (18)C12—C13—N2—C101.0 (3)
C7—C8—C9—C101.5 (3)C11—C10—N2—C131.2 (2)
C8—C9—C10—N2176.92 (19)C9—C10—N2—C13177.18 (17)
C8—C9—C10—C111.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C10–C13 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.412.906 (3)113
C13—H13···O1i0.932.563.480 (3)173
N1—HN1···OW1ii0.91 (2)1.99 (2)2.898 (2)179 (2)
N2—HN2···OW1iii0.89 (2)2.02 (2)2.901 (2)173 (2)
OW1—HW1···O10.92 (3)1.80 (3)2.718 (2)177 (2)
OW1—HW2···O2iv0.87 (3)1.92 (3)2.750 (2)160 (2)
C15—H15C···Cg1iii0.962.663.536 (3)151
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y+3/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···HW11.80x, y, z
O1···H132.56x, 1 + y, z
O2···HW21.923/2 - x, 3/2 - y, 1/2 - z
HN1···OW11.99-1/2 + x, 1 - y, z
N2···H15B2.921 - x, -1/2 + y, 1/2 - z
HN2···OW12.023/2 - x, 1/2 - y, 1/2 - z
H15C···N22.763/2 - x, 1/2 - y, 1/2 - z
H5···H52.363/2 - x, y, 1 - z
H3···C113.061 - x, 1 - y, 1 - z
H3···H15A2.59x, 3/2 - y, 1/2 + z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ASS, ANK and FNN; methodology, ASS, ANK and MA; investigation, ASS and IB; writing (original draft), MA and AB; writing (review and editing of the manuscript), MA and ASS; visualization, MA and IB; funding acquisition, ASS, AB and IB; resources, AB, IB and MA; supervision, MA and IGM.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270.  Web of Science CSD CrossRef Google Scholar
First citationAliyeva, V. A., Gurbanov, A. V., Mahmoud, A. G., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Faraday Discuss. 244, 77–95.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. & Sharma, P. (2015). RSC Adv. 5, 15233–15266.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrison, C., Coutrot, P., Genève, S., Didierjean, C. & Marraud, M. (2005). J. Org. Chem. 70, 10753–10764.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322–3330.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPoustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar
First citationWalsh, C. T., Garneau-Tsodikova, S. & Howard-Jones, A. R. (2006). Nat. Prod. Rep. 23, 517–531.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds