research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(mesit­yl)(pyrrol-1-yl)borane

crossmark logo

aSchool of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG1 8NS, United Kingdom
*Correspondence e-mail: john.wallis@ntu.ac.uk

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 9 November 2022; accepted 8 December 2022; online 1 January 2023)

In the crystal structure of the title compound, C22H26BN, the B atom acts to reduce the delocalization of the nitro­gen lone-pair electron density into the pyrrole ring, so that the two N—C bonds increase in length to 1.4005 (14) and 1.3981 (14) Å. The N—B bond length is 1.4425 (15) Å, which is longer than a typical N—B bond because the nitro­gen lone pair is not fully available to participate in the bond.

1. Chemical context

The structure of the title compound 1 is of inter­est because of the effect of the bis­(mesit­yl)boron group on the electronic structure of the pyrrole, since the nitro­gen lone pair, which is essential to the heterocycle's aromatic 6π system, now has the possibility of being donated to the boron atom. This mol­ecule has been investigated previously for its fluorescence, and shows a large Stokes shift, which involves twisted intra­molecular charge transfer (TICT) of the excited state, by rotation about the N—B bond (Brittelli & Eaton, 1989[Brittelli, D. R. & Eaton, D. F. (1989). J. Phys. Org. Chem. 2, 89-92.]; Cornelissen & Rettig, 1994[Cornelissen, C. & Rettig, W. (1994). J. Fluoresc. 4, 71-74.]; Cornelissen-Gude & Rettig,1999[Cornelissen-Gude, C. & Rettig, W. (1999). J. Phys. Chem. A, 103, 4371-4377.]). It has been used recently in the preparation of conductive polymers (Wildgoose et al. 2019[Wildgoose, G. G., Ashley, A. E., Courtney, J. M. & Lawrence, E. J. (2019). World Intellectual Property Organisation, WO2019012271 A1 2019-01-17.]).

[Scheme 1]

2. Structural commentary

The crystal structure of bis­(mesit­yl)(pyrrol-1-yl)borane 1 was determined at 120 K and the mol­ecular structure is shown in Fig. 1[link]. The bonding geometries at both the boron and nitro­gen atoms are almost planar, with an angle of 16.13 (8)° between these two bonding planes. The N and B atoms lie 0.0351 (11) and 0.0285 (13) Å, respectively, out of the planes defined by their three attached atoms. The planes of the two mesityl groups lie at 58.53 (3) and 61.46 (4)° to the boron atom's bonding plane, and so there is limited donation of their π-electron densities to boron. These dispositions are controlled by the need to maintain separations between their two adjacent pairs of ortho methyl groups [H3C⋯CH3 = 3.610 (3) and 3.736 (3) Å], and is supported by the widening of the C—B—C bond angle [125.18 (9)°], compared to the two N—B—C bond angles [118.30 (10) and 116.42 (9)°]. The mesityl groups' planes lie at 77.14 (4)° to each other, and at 69.18 (3) and 67.06 (4)° to the pyrrole ring's best plane. The hydrogen atoms of three methyl groups (C12, C13 and C21) were modelled in two orientations. The positions and displacement parameters of hydrogen atoms on the pyrrole ring were refined, and for those attached to the Cα atoms, the H—Cα—Cβ angle showed widening to 131–132°, similar to that in pyrrole (Goddard et al., 1997[Goddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846-1850.]; Lee & Boo, 1996[Lee, S. Y. & Boo, B. H. (1996). J. Phys. Chem. 100, 15073-15078.]).

[Figure 1]
Figure 1
The mol­ecular structure of 1, with anisotropic displacement parameters drawn at the 50% probability level. Only the more populated orientations for methyl groups C12, C13 and C21 are shown.

The N—B bond is 1.4425 (15) Å long. This is ca 0.04 Å longer than in similar compounds where the nitro­gen atom is attached to two sp3 carbon atoms [ROCRAD (two mol­ecules; Morawitz et al., 2008[Morawitz, T., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Z. Anorg. Allg. Chem. 634, 1570-1574.]), TAYYAV (Araki et al., 2012[Araki, T., Wakamiya, A., Mori, K. & Yamaguchi, S. (2012). Chem. Asian J. 7, 1594-1603.]), UWUFID (Smith et al., 2016[Smith, M. F., Cassidy, S. J., Adams, I. A., Vasiliu, M., Gerlach, D. L., Dixon, D. A. & Rupar, P. A. (2016). Organometallics, 35, 3182-3191.]), YOMKAM (Khasnis et al., 1995[Khasnis, D. V., Isom, H. S., Shang, S., Lattman, M., Olmstead, M. M. & Power, P. P. (1995). Inorg. Chem. 34, 1638-1641.]); T ≤ 173 K, N—B range 1.388 (2)-1.412 (3) Å, average 1.40 Å] and where the nitro­gen lone pair is fully available for donation to boron. Compared to the mol­ecular geometry of pyrrole itself, as determined by X-ray crystallography at 103 K (Goddard et al., 1997[Goddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846-1850.]) and by calculation at the B3LYP-631G* level (Lee & Boo, 1996[Lee, S. Y. & Boo, B. H. (1996). J. Phys. Chem. 100, 15073-15078.]), the most notable difference is in the increase of the two N—C bond lengths to 1.4005 (14) and 1.3981 (14) Å from 1.365 (2) Å (experimental) and 1.376 Å (calculated) (Table 1[link]). The Cα—Cβ bond lengths are 1.3536 (16) and 1.3514 (17) Å and the Cβ—Cβ bond length is 1.4290 (17) Å. Thus, in contrast to pyrrole, the N—Cα and Cα—Cβ bonds are no longer similar in length, due to a reduction in the contribution of the nitro­gen atom's lone pair to the electronic π system of the pyrrole ring. When the mesityl groups are replaced by penta­fluoro­phenyl groups in derivative 2, the N—B bond is considerably shorter than in 1 [1.4094 (9) cf. 1.4425 (15) Å] due to greater lone-pair donation from nitro­gen towards the more electron-deficient boron. Consequently, compared to 1, the pyrrole ring shows slightly longer N—C bonds [1.4033 (6) Å] and a longer Cβ—Cβ bond [1.4418 (9) Å], though similar lengths for the Cα—Cβ bonds [1.3553 (6) Å] (Table 1[link]). For comparison, the effect of boron on the pyrrole ring in 1 is similar to that when the pyrrole nitro­gen atom is substituted with a carbonyl group to form an amide (Table 1[link]).

Table 1
Bond lengths (Å) for 1 and related compounds

  1, T = 120 K Pyrrole,a T = 103 K Pyrrole, calculatedb 2,c T = 100 K Pyrrole, N—C=Od
N—B 1.4425 (15) 1.4094 (9)
N—Cα 1.4005 (14) 1.3981 (14) 1.365 (2) 1.376 1.4033 (6) 1.395
Cα—Cβ 1.3536 (16) 1.3514 (17) 1.357 (2) 1.378 1.3553 (6) 1.355
Cβ—Cβ 1.4290 (17) 1.423 (3) 1.425 1.4418 (9) 1.430
Notes: (a) RUVQII (Goddard et al., 1997[Goddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846-1850.]); (b) Lee & Boo (1996[Lee, S. Y. & Boo, B. H. (1996). J. Phys. Chem. 100, 15073-15078.]); (c) CUDZUW01 (Flierler et al., 2009[Flierler, U., Leusser, D., Ott, H., Kehr, G., Erker, G., Grimme, S. & Stalke, D. (2009). Chem. Eur. J. 15, 4595-4601.]); (d) Averaged data for structures containing C-unsubstituted-N-carbonyl pyrrole fragments measured at T < 150 K [BEFFUQ (Hatano et al., 2016[Hatano, M., Yamakawa, K., Kawai, T., Horibe, T. & Ishihara, K. (2016). Angew. Chem. Int. Ed. 55, 4021-4025.]), BOKSUR (Ariyarathna & Tunge, 2014[Ariyarathna, Y. & Tunge, J. A. (2014). Chem. Commun. 50, 14049-14052.]), CIFNIR (O'Brien et al., 2018[O'Brien, H. M., Manzotti, M., Abrams, R. D., Elorriaga, D., Sparkes, H. A., Davis, S. A. & Bedford, R. B. (2018). Nat. Catal. 1, 429-437.]) and LAQFER (Uraguchi et al., 2017[Uraguchi, D., Yoshioka, K. & Ooi, T. (2017). Nat. Commun. 8, 14793.].

3. Supra­molecular features

The mol­ecules are packed in layers in the ab plane (Fig. 2[link]). There are no particularly short inter­molecular contacts, consistent with the low density of the crystal (1.132 g cm−3). Within a layer, the mol­ecules are related by centres of symmetry and translations along a and b. Adjacent layers are related by the twofold screw and n-glide planes. The four shortest inter­molecular C⋯H distances are in the range 2.81–2.83 Å. Two of these involve the meta-C atom, C18, with a methyl hydrogen atom and a pyrrole ring's hydrogen atom, which are directed to opposite sides of the phenyl ring [C18⋯H12A(1 − x, 1 − y, 1 − z) and C18⋯H3(−x, 2 − y, 1 − z)]. The two others involve both a meta and a para-C atom of the second phenyl ring and the pyrrole hydrogen atom H2 [C8⋯H2([{1\over 2}] − x, y − [{1\over 2}], [{3\over 2}] − z) and C9⋯H2([{1\over 2}] − x, y − [{1\over 2}], [{3\over 2}] − z)].

[Figure 2]
Figure 2
The crystal-packing arrangement for 1, viewed down the b axis, with the shortest C⋯H separations (2.81–2.83 Å) shown in blue. Both orientations of the H atoms on methyl groups C12, C13 and C21 are shown.

4. Database survey

The structure of the analogue of 1 bearing two 2′-thienyl groups in the pyrrole's 2- and 5-positions (XEQVUM; Taniguchi et al., 2013[Taniguchi, T., Wang, J., Irle, S. & Yamaguchi, S. (2013). Dalton Trans. 42, 620-624.]) shows a larger angle (35.1°) between the bonding planes at nitro­gen and boron due to avoidance of steric inter­actions between the thio­phene and mesityl groups, and has a longer N—B bond [1.472 (7) Å] though the structure has lower precision. Room-temperature measurements on a series of five indole analogues of bis­(mesit­yl)pyrrolo­borane, 37, show angles of 22.4–32.4° between the two bonding planes and slightly longer N—B bonds [1.442 (3)–1.457 (3) Å] with a correlation between the increasing angle between bonding planes and longer N—B bonds (Cui et al., 2007[Cui, Y., Li, F., Lu, Z.-H. & Wang, S. (2007). Dalton Trans. pp. 2634-2643.]). Two carbazole analogues, 8 and 9, show inter­planar angles between the two bonding planes of 23.1 and 27.9° and N—B bond lengths of 1.442 (3) and 1.440 (3) Å, similar to those in 1 (Taniguchi et al., 2013[Taniguchi, T., Wang, J., Irle, S. & Yamaguchi, S. (2013). Dalton Trans. 42, 620-624.]; Weber et al., 2011[Weber, L., Halama, J., Böhling, L., Chrostowska, A., Dargelos, A., Stamler, H.-G. & Neumann, B. (2011). Eur. J. Inorg. Chem. pp. 3091-3101.]). All structures are reported in the Cambridge Structural Database, release 2021.3 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

5. Synthesis and crystallization

A solution of pyrrole (0.25 g, 3.7 mmol) in THF (10 mL) under nitro­gen was treated with sodium hydride (60% dispersion in oil, 0.16 g, 4.0 mmol) and the mixture stirred at 293 K for 2 h. Dimesitylboron fluoride (CARE: gives HF with moisture) (1.09 g, 4.07 mmol) in dry THF (10 mL) was added at room temperature. The mixture was left to stir overnight. The bright orange–yellow mixture was quenched with water (20 mL), extracted with ether (2 × 30 mL) and the combined organic phase was dried over MgSO4. The crude material was purified by column chromatography (SiO2) using hexa­ne:di­chloro­methane (8:1) as eluent to give 1 (0.76 g, 65%) as a slightly oily white solid, from which crystals were grown using ethyl acetate, m.p. 411 K. 1H NMR (400 MHz, CDCl3) [ppm]: δ = 6.84 (4H, s, 2 × 3′-,5′-H), 6.81 (2H, t, J = 2.2 Hz, 2-,5-H), 6.37 (2H, t, J = 2.2 Hz, 3-,4-H), 2.32 (6H, s, 2 × 4′-CH3), 2.11 (12H, s, 2 × 2′-, 6′-CH3); 13C NMR (100 MHz, CDCl3) [ppm]: δ = 141.7 (2 × 2′-, 6′-C), 139.0 (2 × 4′-C), 136.5 br (2 × 1′-C), 128.3 (2 × 3′-, 5′-C), 126.5 (2-, 5-C), 114.6 (3-, 4-C), 22.8 (2 × 2′-, 6′-CH3), 21.5 (2 × 4′-CH3); IR (ATR): 2920, 2853, 1606, 1472, 1451, 1421, 1399, 1378, 1329, 1310, 1287, 1252, 1156, 1122, 1080, 1074, 1043, 1030, 850, 817, 763, 733, 717, 677, 656, 619, 560, 516 cm−1.

6. Refinement

Crystal data and details of data collection and structure refinement are summarized in Table 2[link]. Pyrrole H-atom positions and displacement parameters were refined. All other H atoms were refined using a riding model with C—H bonds fixed at 0.95 Å for hydrogens attached to phenyl carbon atoms and at 0.98 Å for methyl hydrogen atoms. Three methyl groups were refined in two orientations (C12, C13 and C21). The isotropic atomic displacement parameters of the H atoms were set at 1.2Ueq of the parent atom for aromatic groups and at 1.5Ueq for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C22H26BN
Mr 315.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 11.9157 (2), 8.0223 (1), 19.6440 (3)
β (°) 99.890 (1)
V3) 1849.89 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.48
Crystal size (mm) 0.24 × 0.22 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix-Arc 100
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.589, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12428, 3650, 3305
Rint 0.021
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.06
No. of reflections 3650
No. of parameters 240
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(Pyrrol-1-yl)bis(2,4,6-trimethylphenyl)borane top
Crystal data top
C22H26BNDx = 1.132 Mg m3
Mr = 315.25Melting point: 411 K
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.9157 (2) ÅCell parameters from 8967 reflections
b = 8.0223 (1) Åθ = 4.0–79.1°
c = 19.6440 (3) ŵ = 0.48 mm1
β = 99.890 (1)°T = 120 K
V = 1849.89 (5) Å3Plate, colourless
Z = 40.24 × 0.22 × 0.07 mm
F(000) = 680
Data collection top
XtaLAB Synergy R, DW system, HyPix-Arc 100
diffractometer
3650 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3305 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 80.4°, θmin = 4.1°
ω scansh = 1514
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 310
Tmin = 0.589, Tmax = 1.000l = 2324
12428 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.5405P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.28 e Å3
3650 reflectionsΔρmin = 0.19 e Å3
240 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0035 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.18097 (7)0.77715 (11)0.59306 (5)0.0222 (2)
C10.18799 (10)0.78480 (14)0.66489 (6)0.0252 (3)
H10.2424 (11)0.7174 (17)0.6936 (7)0.027 (3)*
C20.10761 (10)0.89098 (15)0.68019 (6)0.0276 (3)
H20.0938 (12)0.9190 (18)0.7256 (8)0.034 (4)*
C30.04576 (10)0.95241 (15)0.61633 (6)0.0263 (3)
H30.0173 (12)1.0297 (19)0.6110 (7)0.034 (4)*
C40.09209 (9)0.88346 (14)0.56483 (6)0.0243 (2)
H40.0713 (11)0.8919 (17)0.5145 (7)0.028 (3)*
C50.31151 (9)0.51849 (13)0.59337 (5)0.0203 (2)
C60.43044 (9)0.49950 (13)0.59754 (5)0.0204 (2)
C70.48525 (9)0.35880 (14)0.62875 (5)0.0220 (2)
H70.5653530.3484700.6316660.026*
C80.42558 (9)0.23297 (14)0.65577 (5)0.0225 (2)
C90.30873 (9)0.25156 (14)0.65143 (5)0.0224 (2)
H90.2667730.1659070.6691210.027*
C100.25120 (9)0.39203 (14)0.62194 (6)0.0222 (2)
C110.50069 (9)0.63324 (14)0.57070 (6)0.0250 (3)
H11A0.4659940.6625570.5233140.038*
H11B0.5781760.5917500.5711520.038*
H11C0.5034950.7321730.6002040.038*
C120.48501 (11)0.08266 (16)0.69069 (7)0.0324 (3)
H12A0.5666450.0894600.6891140.039*0.459 (14)
H12B0.4737740.0790130.7389260.039*0.459 (14)
H12C0.4533680.0185010.6667840.039*0.459 (14)
H12D0.4292130.0105210.7074350.039*0.541 (14)
H12E0.5220840.0209690.6576240.039*0.541 (14)
H12F0.5424910.1184830.7297660.039*0.541 (14)
C130.12378 (10)0.39744 (16)0.62051 (7)0.0318 (3)
H13A0.0928360.5013800.5987060.038*0.663 (14)
H13B0.0878030.3022900.5940310.038*0.663 (14)
H13C0.1082540.3921610.6678580.038*0.663 (14)
H13D0.0997600.2958400.6416910.038*0.337 (14)
H13E0.1047920.4949310.6463660.038*0.337 (14)
H13F0.0843410.4050600.5725380.038*0.337 (14)
C140.23755 (8)0.71202 (13)0.47517 (5)0.0203 (2)
C150.19186 (9)0.59532 (14)0.42397 (6)0.0227 (2)
C160.17238 (9)0.64178 (15)0.35462 (6)0.0267 (3)
H160.1399380.5627170.3209000.032*
C170.19871 (9)0.79950 (16)0.33310 (6)0.0271 (3)
C180.24852 (9)0.91129 (15)0.38323 (6)0.0245 (2)
H180.2698081.0185470.3693740.029*
C190.26830 (9)0.87098 (14)0.45335 (6)0.0217 (2)
C200.16008 (10)0.42065 (15)0.44205 (7)0.0310 (3)
H20A0.2269740.3649140.4683330.046*
H20B0.1331230.3581180.3995310.046*
H20C0.0995330.4255440.4700290.046*
C210.17317 (13)0.8475 (2)0.25774 (7)0.0422 (3)
H21A0.1974590.9628070.2523490.051*0.603 (17)
H21B0.2143580.7730650.2310770.051*0.603 (17)
H21C0.0911240.8379730.2408470.051*0.603 (17)
H21D0.1378350.7530900.2305000.051*0.397 (17)
H21E0.1209360.9428310.2517720.051*0.397 (17)
H21F0.2441700.8779240.2420020.051*0.397 (17)
C220.32315 (11)1.00106 (15)0.50381 (6)0.0291 (3)
H22A0.2638811.0690830.5191440.044*
H22B0.3725041.0725160.4812510.044*
H22C0.3687050.9460660.5438230.044*
B10.24540 (10)0.67087 (15)0.55475 (6)0.0209 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0223 (4)0.0212 (5)0.0232 (5)0.0039 (4)0.0045 (4)0.0042 (4)
C10.0285 (6)0.0243 (6)0.0233 (5)0.0026 (5)0.0056 (4)0.0045 (5)
C20.0328 (6)0.0251 (6)0.0275 (6)0.0012 (5)0.0124 (5)0.0024 (5)
C30.0235 (5)0.0232 (6)0.0339 (6)0.0043 (5)0.0099 (5)0.0035 (5)
C40.0225 (5)0.0227 (6)0.0276 (6)0.0044 (4)0.0042 (4)0.0047 (4)
C50.0206 (5)0.0198 (5)0.0202 (5)0.0023 (4)0.0028 (4)0.0000 (4)
C60.0207 (5)0.0217 (5)0.0186 (5)0.0015 (4)0.0031 (4)0.0026 (4)
C70.0194 (5)0.0251 (6)0.0209 (5)0.0043 (4)0.0022 (4)0.0022 (4)
C80.0267 (5)0.0211 (5)0.0190 (5)0.0054 (4)0.0018 (4)0.0010 (4)
C90.0263 (5)0.0194 (5)0.0216 (5)0.0002 (4)0.0047 (4)0.0007 (4)
C100.0214 (5)0.0222 (5)0.0230 (5)0.0018 (4)0.0039 (4)0.0003 (4)
C110.0207 (5)0.0253 (6)0.0292 (6)0.0003 (4)0.0046 (4)0.0016 (5)
C120.0328 (6)0.0283 (6)0.0355 (7)0.0095 (5)0.0040 (5)0.0069 (5)
C130.0224 (5)0.0272 (6)0.0467 (7)0.0020 (5)0.0087 (5)0.0082 (5)
C140.0166 (5)0.0205 (5)0.0235 (5)0.0045 (4)0.0028 (4)0.0007 (4)
C150.0164 (5)0.0242 (6)0.0270 (6)0.0034 (4)0.0020 (4)0.0024 (4)
C160.0204 (5)0.0332 (6)0.0255 (6)0.0020 (5)0.0014 (4)0.0063 (5)
C170.0206 (5)0.0383 (7)0.0226 (5)0.0058 (5)0.0043 (4)0.0017 (5)
C180.0223 (5)0.0259 (6)0.0265 (6)0.0047 (4)0.0073 (4)0.0049 (5)
C190.0197 (5)0.0215 (5)0.0245 (5)0.0044 (4)0.0051 (4)0.0008 (4)
C200.0297 (6)0.0246 (6)0.0361 (7)0.0027 (5)0.0015 (5)0.0027 (5)
C210.0445 (7)0.0562 (9)0.0246 (6)0.0007 (7)0.0026 (5)0.0051 (6)
C220.0364 (6)0.0214 (6)0.0295 (6)0.0021 (5)0.0057 (5)0.0009 (5)
B10.0177 (5)0.0188 (6)0.0256 (6)0.0012 (4)0.0023 (4)0.0007 (5)
Geometric parameters (Å, º) top
N1—C11.4005 (14)C13—H13A0.9800
N1—C41.3981 (14)C13—H13B0.9800
N1—B11.4425 (15)C13—H13C0.9800
C1—H10.951 (14)C13—H13D0.9800
C1—C21.3536 (16)C13—H13E0.9800
C2—H20.962 (15)C13—H13F0.9800
C2—C31.4290 (17)C14—C151.4129 (15)
C3—H30.966 (15)C14—C191.4135 (15)
C3—C41.3514 (17)C14—B11.5848 (16)
C4—H40.979 (14)C15—C161.3928 (16)
C5—C61.4135 (14)C15—C201.5097 (16)
C5—C101.4139 (15)C16—H160.9500
C5—B11.5765 (15)C16—C171.3870 (18)
C6—C71.3924 (15)C17—C181.3877 (17)
C6—C111.5106 (15)C17—C211.5093 (16)
C7—H70.9500C18—H180.9500
C7—C81.3913 (16)C18—C191.3950 (15)
C8—C91.3883 (15)C19—C221.5087 (16)
C8—C121.5030 (15)C20—H20A0.9800
C9—H90.9500C20—H20B0.9800
C9—C101.3925 (15)C20—H20C0.9800
C10—C131.5144 (15)C21—H21A0.9800
C11—H11A0.9800C21—H21B0.9800
C11—H11B0.9800C21—H21C0.9800
C11—H11C0.9800C21—H21D0.9800
C12—H12A0.9800C21—H21E0.9800
C12—H12B0.9800C21—H21F0.9800
C12—H12C0.9800C22—H22A0.9800
C12—H12D0.9800C22—H22B0.9800
C12—H12E0.9800C22—H22C0.9800
C12—H12F0.9800
C1—N1—B1127.34 (9)C10—C13—H13C109.5
C4—N1—C1106.43 (9)H13A—C13—H13B109.5
C4—N1—B1126.05 (9)H13A—C13—H13C109.5
N1—C1—H1119.3 (8)H13B—C13—H13C109.5
C2—C1—N1109.23 (10)H13D—C13—H13E109.5
C2—C1—H1131.5 (8)H13D—C13—H13F109.5
C1—C2—H2126.4 (9)H13E—C13—H13F109.5
C1—C2—C3107.45 (10)C15—C14—C19118.05 (10)
C3—C2—H2126.1 (9)C15—C14—B1120.96 (10)
C2—C3—H3126.2 (8)C19—C14—B1120.83 (10)
C4—C3—C2107.50 (10)C14—C15—C20121.94 (10)
C4—C3—H3126.3 (8)C16—C15—C14119.87 (11)
N1—C4—H4119.1 (8)C16—C15—C20118.17 (10)
C3—C4—N1109.38 (10)C15—C16—H16118.9
C3—C4—H4131.4 (8)C17—C16—C15122.27 (11)
C6—C5—C10118.19 (9)C17—C16—H16118.9
C6—C5—B1121.64 (9)C16—C17—C18117.70 (10)
C10—C5—B1120.09 (9)C16—C17—C21120.93 (12)
C5—C6—C11120.89 (9)C18—C17—C21121.38 (12)
C7—C6—C5120.17 (10)C17—C18—H18119.0
C7—C6—C11118.90 (9)C17—C18—C19122.01 (11)
C6—C7—H7119.2C19—C18—H18119.0
C8—C7—C6121.62 (10)C14—C19—C22122.03 (10)
C8—C7—H7119.2C18—C19—C14119.99 (10)
C7—C8—C12121.64 (10)C18—C19—C22117.98 (10)
C9—C8—C7118.13 (10)C15—C20—H20A109.5
C9—C8—C12120.21 (10)C15—C20—H20B109.5
C8—C9—H9119.0C15—C20—H20C109.5
C8—C9—C10121.96 (10)H20A—C20—H20B109.5
C10—C9—H9119.0H20A—C20—H20C109.5
C5—C10—C13123.26 (10)H20B—C20—H20C109.5
C9—C10—C5119.89 (10)C17—C21—H21A109.5
C9—C10—C13116.82 (10)C17—C21—H21B109.5
C6—C11—H11A109.5C17—C21—H21C109.5
C6—C11—H11B109.5H21A—C21—H21B109.5
C6—C11—H11C109.5H21A—C21—H21C109.5
H11A—C11—H11B109.5H21B—C21—H21C109.5
H11A—C11—H11C109.5H21D—C21—H21E109.5
H11B—C11—H11C109.5H21D—C21—H21F109.5
C8—C12—H12A109.5H21E—C21—H21F109.5
C8—C12—H12B109.5C19—C22—H22A109.5
C8—C12—H12C109.5C19—C22—H22B109.5
H12A—C12—H12B109.5C19—C22—H22C109.5
H12A—C12—H12C109.5H22A—C22—H22B109.5
H12B—C12—H12C109.5H22A—C22—H22C109.5
H12D—C12—H12E109.5H22B—C22—H22C109.5
H12D—C12—H12F109.5N1—B1—C5118.30 (10)
H12E—C12—H12F109.5N1—B1—C14116.42 (9)
C10—C13—H13A109.5C5—B1—C14125.18 (9)
C10—C13—H13B109.5
N1—C1—C2—C30.71 (13)C15—C14—C19—C182.85 (15)
C1—N1—C4—C30.47 (13)C15—C14—C19—C22176.89 (10)
C1—N1—B1—C514.84 (16)C15—C14—B1—N1117.91 (11)
C1—N1—B1—C14168.66 (10)C15—C14—B1—C558.32 (14)
C1—C2—C3—C41.00 (14)C15—C16—C17—C181.52 (16)
C2—C3—C4—N10.90 (13)C15—C16—C17—C21178.10 (11)
C4—N1—C1—C20.17 (13)C16—C17—C18—C192.32 (16)
C4—N1—B1—C5159.49 (10)C17—C18—C19—C140.13 (16)
C4—N1—B1—C1417.01 (16)C17—C18—C19—C22179.88 (10)
C5—C6—C7—C80.76 (16)C19—C14—C15—C163.63 (15)
C6—C5—C10—C91.72 (15)C19—C14—C15—C20177.97 (10)
C6—C5—C10—C13179.75 (10)C19—C14—B1—N157.41 (13)
C6—C5—B1—N1122.50 (11)C19—C14—B1—C5126.35 (11)
C6—C5—B1—C1461.33 (15)C20—C15—C16—C17179.94 (10)
C6—C7—C8—C90.56 (16)C21—C17—C18—C19177.29 (11)
C6—C7—C8—C12178.79 (10)B1—N1—C1—C2175.40 (11)
C7—C8—C9—C100.83 (16)B1—N1—C4—C3174.83 (10)
C8—C9—C10—C51.98 (16)B1—C5—C6—C7176.49 (10)
C8—C9—C10—C13179.85 (10)B1—C5—C6—C115.66 (15)
C10—C5—C6—C70.38 (15)B1—C5—C10—C9175.21 (10)
C10—C5—C6—C11177.47 (10)B1—C5—C10—C132.83 (16)
C10—C5—B1—N160.69 (14)B1—C14—C15—C16171.82 (9)
C10—C5—B1—C14115.48 (12)B1—C14—C15—C206.58 (15)
C11—C6—C7—C8178.65 (10)B1—C14—C19—C18172.60 (9)
C12—C8—C9—C10177.43 (10)B1—C14—C19—C227.66 (15)
C14—C15—C16—C171.48 (16)
Bond lengths (Å) for 1 and related compounds top
1, T = 120 KPyrrole,a T = 103 KPyrrole, calculatedb2,c T = 100 KPyrrole, N—COd
N—B1.4425 (15)1.4094 (9)
N—Cα1.4005 (14) 1.3981 (14)1.365 (2)1.3761.4033 (6)1.395
Cα—Cβ1.3536 (16) 1.3514 (17)1.357 (2)1.3781.3553 (6)1.355
Cβ—Cβ1.4290 (17)1.423 (3)1.4251.4418 (9)1.430
Notes: (a) RUVQII (Goddard et al., 1997); (b) Lee & Boo (1996); (c) CUDZUW01 (Flierler et al., 2009); (d) Averaged data for structures containing C-unsubstituted-N-carbonyl pyrrole fragments measured at T < 150 K [BEFFUQ (Hatano et al., 2016), BOKSUR (Ariyarathna & Tunge, 2014), CIFNIR (O'Brien et al., 2018) and LAQFER (Uraguchi et al., 2017.
 

Footnotes

Current address: Istinye University, Faculty of Pharmacy, Basic Pharmacy Sciences, 34010, İstanbul, Turkey; email: onur.sahin@istinye.edu.tr.

Acknowledgements

Nottingham Trent University, UK, is thanked for support for diffraction facilities.

Funding information

OS thanks Tübitak, Turkey, for an Inter­national Postdoctoral Research Fellowship.

References

First citationAraki, T., Wakamiya, A., Mori, K. & Yamaguchi, S. (2012). Chem. Asian J. 7, 1594–1603.  CrossRef CAS PubMed Google Scholar
First citationAriyarathna, Y. & Tunge, J. A. (2014). Chem. Commun. 50, 14049–14052.  CrossRef CAS Google Scholar
First citationBrittelli, D. R. & Eaton, D. F. (1989). J. Phys. Org. Chem. 2, 89–92.  CrossRef CAS Google Scholar
First citationCornelissen, C. & Rettig, W. (1994). J. Fluoresc. 4, 71–74.  CAS PubMed Google Scholar
First citationCornelissen-Gude, C. & Rettig, W. (1999). J. Phys. Chem. A, 103, 4371–4377.  CAS Google Scholar
First citationCui, Y., Li, F., Lu, Z.-H. & Wang, S. (2007). Dalton Trans. pp. 2634–2643.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlierler, U., Leusser, D., Ott, H., Kehr, G., Erker, G., Grimme, S. & Stalke, D. (2009). Chem. Eur. J. 15, 4595–4601.  CrossRef PubMed CAS Google Scholar
First citationGoddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846–1850.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHatano, M., Yamakawa, K., Kawai, T., Horibe, T. & Ishihara, K. (2016). Angew. Chem. Int. Ed. 55, 4021–4025.  CrossRef CAS Google Scholar
First citationKhasnis, D. V., Isom, H. S., Shang, S., Lattman, M., Olmstead, M. M. & Power, P. P. (1995). Inorg. Chem. 34, 1638–1641.  CrossRef CAS Google Scholar
First citationLee, S. Y. & Boo, B. H. (1996). J. Phys. Chem. 100, 15073–15078.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorawitz, T., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Z. Anorg. Allg. Chem. 634, 1570–1574.  CrossRef CAS Google Scholar
First citationO'Brien, H. M., Manzotti, M., Abrams, R. D., Elorriaga, D., Sparkes, H. A., Davis, S. A. & Bedford, R. B. (2018). Nat. Catal. 1, 429–437.  CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, M. F., Cassidy, S. J., Adams, I. A., Vasiliu, M., Gerlach, D. L., Dixon, D. A. & Rupar, P. A. (2016). Organometallics, 35, 3182–3191.  CrossRef CAS Google Scholar
First citationTaniguchi, T., Wang, J., Irle, S. & Yamaguchi, S. (2013). Dalton Trans. 42, 620–624.  CrossRef CAS PubMed Google Scholar
First citationUraguchi, D., Yoshioka, K. & Ooi, T. (2017). Nat. Commun. 8, 14793.  CrossRef PubMed Google Scholar
First citationWeber, L., Halama, J., Böhling, L., Chrostowska, A., Dargelos, A., Stamler, H.-G. & Neumann, B. (2011). Eur. J. Inorg. Chem. pp. 3091–3101.  CrossRef Google Scholar
First citationWildgoose, G. G., Ashley, A. E., Courtney, J. M. & Lawrence, E. J. (2019). World Intellectual Property Organisation, WO2019012271 A1 2019-01-17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds