research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-chlorido-bis­­(chlorido­{N1,N1-di­ethyl-N4-[(pyridin-2-yl-κN)methyl­­idene]benzene-1,4-di­amine-κN4}mercury(II))

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: ekaterina_goleva@list.ru

Edited by G. Smith, Queensland University of Technology, Australia (Received 18 February 2017; accepted 19 April 2017; online 5 May 2017)

The title dinuclear mercury(II) complex, [Hg2Cl4(C16H19N3)2], synthesized from the pyridine-derived Schiff base (E)-N1,N1-diethyl-N4-[(pyridin-2-yl)methyl­idene]benzene-1,4-di­amine (DPMBD), has inversion symmetry. The five-coordinated HgII atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol­ecules are linked by weak C—H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are ππ inter­actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].

1. Chemical context

Mercury is one of the most prevalent toxic metals in the environment and gains access to the body orally or dermally, causing cell dysfunction that consequently leads to health problems (Mandal et al., 2012[Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980-2983.]). Schiff base complexes of 2-pyridine­carboxaldehyde and its derivatives have been found to be good herbicides, used for the protection of plants (Hughes & Prince, 1978[Hughes, M. & Prince, R. H. (1978). J. Inorg. Nucl. Chem. 40, 719-723.]). Transition metal complexes of pyridyl Schiff bases have found applications in catalysis (Kasselouri et al., 1993[Kasselouri, S., Garoufis, G., Kalkanis, A., Perlepes, S. P. & Hadjiliadis, N. (1993). Transition Met. Chem. 18, 531-536.]). Pyridyl derivatives of Schiff bases are important building blocks for many important compounds, widely used in biological applications such as anti­oxidative, anti­cancer agents, as fluorescent probes in industry, in coordination chemistry and in catalysis (Jursic et al., 2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]; Song et al., 2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]; Motswainyana et al., 2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]; Das et al., 2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]). Our research inter­est focuses on a study of Schiff bases derived from N1,N1-diethyl-p-phenyl­enedi­amine and their metal complexes (Faizi & Hussain, 2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]; Faizi et al., 2015[Faizi, M. S. H., Siddiqui, N. & Javed, S. (2015). Acta Cryst. E71, o49-o50.]). We report herein the synthesis and the crystal structure of a new complex of mercury(II), [Hg2Cl4(C16H19N3)2], with the pyridine-derived Schiff base (E)-N1,N1-diethyl-N4-[(pyridin-2-yl)methyl­idene]benzene-1,4-di­amine (DPMBD).

2. Structural commentary

The dinuclear mol­ecule of the title complex is generated by inversion symmetry (Fig. 1[link]). The Schiff base-derived ligand (DPMBD) coordinates to the HgII atom in a bidentate chelating mode through the N atoms of the pyridine ring (N1) and the imine group (N2) [Hg1—N = 2.317 (9) and 2.437 (8) Å, respectively].

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry operation: −x + 2, −y + 1, −z + 1).

The five-coordinated Hg2+ ion has a distorted square-pyramidal geometry completed by three Hg—Cl bonds, one monodentate [Hg1—Cl2 = 2.402 (4) Å] and two bridging Hg1—Cl1 [2.459 (3) Å] and Hg1—Cl1i [2.999 (3) Å; symmetry code: (i) −x + 2, −y + 1, −z + 1]. The environment of a five-coordinated mercuric ion is common among Hg2+ complexes (Baul et al., 2004[Baul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323-2329.]). The longest Hg—Cl distance bridges across the centre of inversion, giving an Hg⋯Hgi separation of 4.1985 (16) Å. The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]; Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]). The benzene and pyridine rings of the DPMBD ligand form a dihedral angle of 7.55 (4)°.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯Cl hydrogen bonds, forming a sheet like arrangement parallel to [001] (see Table 1[link] and Fig. 2[link] for details). The centroid-to-centroid distance between inversion-related benzene rings (−x + 1, −y + 2, −z + 1) is 3.879 (6) Å, indicating a weak ππ inter­action along the c axis (Fig. 2[link]). Also present is a benzene–pyridine ring inter­action with CgCg (−x + 1, −y + 1, −z + 1) = 3.698 (8) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1i 0.93 2.74 3.578 (9) 151
C1—H1⋯Cl1ii 0.93 2.89 3.471 (12) 122
C1—H1⋯Cl2iii 0.93 2.97 3.623 (11) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c axis, with hydrogen bonds (Table 1[link]) shown as dashed lines.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed approximately along the c axis. The ππ inter­actions between the benzene and pyridine rings are shown as dotted lines.

4. Database survey

A search of the Cambridge Structure Database (Version 5.37 with updates May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there is no entry in the literature for a dichloridomercury(II) complex with (E)-N1,N1-diethyl-N4-(pyridin-2-yl­methyl­ene)benzene-1,4-di­amine that has been structurally characterized. A dihalomercury(II) complex has been reported by Baul et al. (2013[Baul, T. S. B., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Lindend, A. (2013). Dalton Trans. 42, 1905-1920.]) in which the HgII atom is coordinated by the bis-chelating N-heterocyclic ligand [(E)-N-(pyridin-2-yl­methyl­idene)aryl­amine)], two bridging Cl ligands and one terminal Cl ligand. Similar HgII complexes have also been reported with a slight modification of the ligand (Nejad et al., 2010[Nejad, M. F., Olyai, M. R. T. B. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 717-718.]), viz. di-μ-chlorido-bis­{chlorido­[2-(phenyl­imino­meth­yl)-pyridine-κ2N,N′]mercury(II)} (Salehzadeh et al., 2011[Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.]) di-μ-chlorido-bis­{chlorido­[4-nitro-N-(pyridin-2-yl­methyl­idene-κN)aniline-κN]mercury(II)} (Hoseyni et al., 2012[Hoseyni, S. J., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m1294.]), di-μ-chlorido-bis{chlorido­[2,3-dimethyl-N-(pyridin-2-yl­methyl­idene)aniline-κ2N,N′]mercury(II)} (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]) and di-μ-chlorido-bis-(chlorido­{N1-phenyl-N4)-[(pyridin-2-yl-κN)methyl­idene]benzene-1,4-di­amine-κN4} mercury(II)). All of the above compounds show the HgII ion in a distorted square-pyramidal coordination environment formed by the N atoms of the di­imine ligand, two bridging Cl atoms and one monodentate Cl atom, as found in the title compound, one of the bridging Hg—Cl bonds being significantly longer than the other.

5. Synthesis and crystallization

The imino­pyridyl compound (E)-N1,N1-diethyl-N4-[(pyridin-2-yl)methyl­idene]benzene-1,4-di­amine (DPMBD) was prepared by adding portionwise pyridine-2-carbaldehyde (0.29 g, 2.71 mmol) to a methano­lic solution (50 ml) of N1,N1-diethyl-p-phenyl­enedi­amine (0.50 g, 2.71 mmol). The reaction mixture was stirred for 3 h at room temperature and filtered. The resulting yellow powder was washed with methanol (2 × 3 ml) and hexane (3 × 10 ml). The compound was recrystallized from hot MeOH to give yellow crystals, which were dried in a vacuum desiccator to give the pure product (yield: 0.60 g, 80%).

The title compound was prepared by reacting DPMBD (0.10 g, 0.39 mmol) with mercury(II) chloride (0.05 g, 0.18 mmol) in methanol (5 ml), with vigorous stirring for 2 h at room temperature. The red precipitate that formed was filtered off and redissolved in di­methyl­formamide. Crystals of the red title complex (yield: 0.31 g, 76%) suitable for X-ray analysis were obtained within 3 d by slow evaporation of the di­methyl­formamide.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93–0.97 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.5Ueq(C) (for methyl H) and Uiso(H) = 1.2Ueq(C) (for other H atoms).

Table 2
Experimental details

Crystal data
Chemical formula [Hg2Cl4(C16H19N3)2]
Mr 1049.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.329 (3), 8.565 (3), 12.936 (4)
α, β, γ (°) 89.043 (8), 81.107 (7), 84.206 (7)
V3) 907.1 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 8.78
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.944, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 6272, 3303, 2779
Rint 0.037
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.06
No. of reflections 3303
No. of parameters 158
No. of restraints 57
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.56, −2.43
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

Di-µ-chlorido-bis(chlorido{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methylidene]benzene-1,4-diamine-κN4}mercury(II)) top
Crystal data top
[Hg2Cl4(C16H19N3)2]Z = 1
Mr = 1049.66F(000) = 500
Triclinic, P1Dx = 1.921 Mg m3
a = 8.329 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.565 (3) ÅCell parameters from 3407 reflections
c = 12.936 (4) Åθ = 2.7–26.6°
α = 89.043 (8)°µ = 8.78 mm1
β = 81.107 (7)°T = 100 K
γ = 84.206 (7)°Needle, red
V = 907.1 (5) Å30.20 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3303 independent reflections
Radiation source: sealed tube2779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.944, Tmax = 0.981k = 710
6272 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0936P)2 + 2.7873P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 1.06Δρmax = 2.56 e Å3
3303 reflectionsΔρmin = 2.43 e Å3
158 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
57 restraintsExtinction coefficient: 0.0154 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.81436 (5)0.66012 (4)0.57709 (3)0.0580 (3)
Cl10.8912 (3)0.3764 (3)0.5896 (2)0.0565 (6)
Cl20.8896 (4)0.8431 (4)0.6955 (3)0.0756 (8)
N20.5206 (9)0.6438 (8)0.5996 (6)0.0418 (16)
N10.7065 (10)0.8114 (9)0.4494 (7)0.0486 (18)
C50.5464 (11)0.8065 (10)0.4459 (7)0.0425 (19)
C70.4285 (19)0.564 (2)0.6811 (12)0.0965 (13)
C60.4541 (11)0.7127 (10)0.5239 (7)0.045 (2)
H60.3454070.7016180.5196740.054*
C40.4711 (14)0.8919 (12)0.3733 (8)0.054 (2)
H40.3610400.8846160.3710990.064*
C80.2645 (12)0.5445 (14)0.6857 (8)0.060 (3)
H80.2077360.5885260.6340690.072*
C20.7167 (15)0.9953 (13)0.3116 (9)0.062 (3)
H20.7766391.0640490.2687720.075*
C100.266 (2)0.389 (2)0.8458 (13)0.1012 (7)
C10.7883 (14)0.9042 (13)0.3803 (10)0.062 (3)
H10.8999380.9056120.3798750.075*
C120.505 (2)0.498 (2)0.7587 (12)0.1012 (7)
H120.6136770.5125650.7601160.121*
N30.1794 (12)0.3036 (16)0.9288 (8)0.1012 (9)
C30.5551 (16)0.9872 (13)0.3044 (9)0.063 (3)
H30.5050471.0445220.2544330.075*
C90.186 (2)0.462 (2)0.7646 (13)0.1012 (7)
H90.0757060.4525410.7661780.121*
C110.424 (2)0.409 (2)0.8348 (13)0.1012 (7)
H110.4846130.3596960.8828840.121*
C150.2584 (16)0.2780 (17)1.0150 (10)0.1012 (7)
H15A0.1823470.2721051.0794380.121*
H15B0.3318680.3570201.0214770.121*
C160.3500 (18)0.1193 (16)0.9831 (12)0.1012 (7)
H16A0.4137100.0825301.0360720.152*
H16B0.2732240.0456190.9751820.152*
H16C0.4209370.1295070.9179220.152*
C130.0131 (13)0.3113 (19)0.9350 (12)0.1012 (7)
H13A0.0239860.4134090.9090470.121*
H13B0.0331640.3071391.0084960.121*
C140.059 (2)0.1883 (19)0.8782 (12)0.1012 (7)
H14A0.1762710.2082540.8894390.152*
H14B0.0192350.1928110.8046570.152*
H14C0.0284580.0860280.9045860.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0436 (3)0.0551 (3)0.0792 (4)0.00681 (18)0.0217 (2)0.0087 (2)
Cl10.0404 (12)0.0548 (13)0.0761 (16)0.0047 (10)0.0161 (11)0.0139 (11)
Cl20.0711 (19)0.0739 (18)0.089 (2)0.0146 (15)0.0278 (16)0.0072 (15)
N20.039 (4)0.037 (4)0.052 (4)0.007 (3)0.010 (3)0.000 (3)
N10.042 (4)0.041 (4)0.065 (5)0.007 (3)0.012 (4)0.004 (3)
C50.040 (5)0.039 (4)0.049 (5)0.001 (4)0.012 (4)0.010 (4)
C70.080 (2)0.124 (2)0.089 (2)0.025 (2)0.018 (2)0.032 (2)
C60.039 (5)0.042 (4)0.057 (5)0.005 (4)0.018 (4)0.007 (4)
C40.056 (6)0.054 (6)0.053 (5)0.000 (5)0.022 (5)0.002 (4)
C80.038 (5)0.087 (8)0.058 (6)0.011 (5)0.012 (4)0.020 (5)
C20.073 (8)0.052 (6)0.060 (6)0.010 (5)0.003 (5)0.007 (5)
C100.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
C10.046 (6)0.056 (6)0.083 (7)0.009 (5)0.005 (5)0.009 (5)
C120.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
N30.0848 (16)0.1290 (17)0.0927 (15)0.0230 (16)0.0183 (15)0.0330 (16)
C30.077 (8)0.049 (5)0.064 (6)0.003 (5)0.018 (6)0.002 (5)
C90.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
C110.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
C150.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
C160.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
C130.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
C140.0849 (13)0.1288 (13)0.0928 (13)0.0231 (13)0.0184 (12)0.0329 (13)
Geometric parameters (Å, º) top
Hg1—Cl12.459 (3)C11—C121.37 (2)
Hg1—Cl22.402 (4)C13—C141.52 (2)
Hg1—N12.317 (9)C15—C161.52 (2)
Hg1—N22.437 (8)C1—H10.9300
Hg1—Cl1i2.999 (3)C2—H20.9300
N1—C11.339 (15)C3—H30.9300
N1—C51.346 (13)C4—H40.9300
N2—C61.302 (12)C6—H60.9300
N2—C71.414 (18)C8—H80.9300
N3—C101.43 (2)C9—H90.9300
N3—C131.370 (15)C11—H110.9300
N3—C151.384 (17)C12—H120.9300
C1—C21.342 (17)C13—H13A0.9700
C2—C31.372 (19)C13—H13B0.9700
C3—C41.360 (16)C14—H14A0.9600
C4—C51.370 (14)C14—H14B0.9600
C5—C61.453 (13)C14—H14C0.9600
C7—C81.385 (19)C15—H15A0.9700
C7—C121.36 (2)C15—H15B0.9700
C8—C91.35 (2)C16—H16A0.9600
C9—C101.43 (2)C16—H16B0.9600
C10—C111.33 (2)C16—H16C0.9600
Cl1—Hg1—Cl2121.69 (10)N1—C1—H1118.00
Cl1—Hg1—N1131.9 (2)C2—C1—H1118.00
Cl1—Hg1—N296.06 (17)C1—C2—H2120.00
Cl1—Hg1—Cl1i79.90 (8)C3—C2—H2120.00
Cl2—Hg1—N1105.7 (2)C2—C3—H3121.00
Cl2—Hg1—N2112.60 (19)C4—C3—H3121.00
Cl1i—Hg1—Cl2102.68 (10)C3—C4—H4120.00
N1—Hg1—N271.2 (3)C5—C4—H4120.00
Cl1i—Hg1—N182.2 (2)N2—C6—H6119.00
Cl1i—Hg1—N2140.17 (19)C5—C6—H6119.00
Hg1—Cl1—Hg1i100.10 (8)C7—C8—H8120.00
Hg1—N1—C1125.9 (7)C9—C8—H8120.00
Hg1—N1—C5116.6 (6)C8—C9—H9119.00
C1—N1—C5117.5 (9)C10—C9—H9119.00
Hg1—N2—C6112.2 (6)C10—C11—H11118.00
Hg1—N2—C7125.9 (8)C12—C11—H11117.00
C6—N2—C7121.8 (10)C7—C12—H12120.00
C10—N3—C13117.2 (12)C11—C12—H12120.00
C10—N3—C15114.4 (11)N3—C13—H13A108.00
C13—N3—C15123.0 (11)N3—C13—H13B108.00
N1—C1—C2123.0 (11)C14—C13—H13A108.00
C1—C2—C3120.1 (11)C14—C13—H13B108.00
C2—C3—C4117.3 (11)H13A—C13—H13B107.00
C3—C4—C5120.9 (11)C13—C14—H14A109.00
N1—C5—C4121.0 (9)C13—C14—H14B110.00
N1—C5—C6118.1 (8)C13—C14—H14C110.00
C4—C5—C6120.8 (9)H14A—C14—H14B109.00
N2—C6—C5121.3 (8)H14A—C14—H14C109.00
N2—C7—C8124.1 (13)H14B—C14—H14C110.00
N2—C7—C12118.6 (14)N3—C15—H15A112.00
C8—C7—C12117.2 (14)N3—C15—H15B112.00
C7—C8—C9120.6 (12)C16—C15—H15A112.00
C8—C9—C10122.8 (15)C16—C15—H15B112.00
N3—C10—C9121.5 (14)H15A—C15—H15B110.00
N3—C10—C11125.2 (15)C15—C16—H16A109.00
C9—C10—C11113.3 (15)C15—C16—H16B109.00
C10—C11—C12125.2 (16)C15—C16—H16C109.00
C7—C12—C11120.7 (16)H16A—C16—H16B109.00
N3—C13—C14118.6 (13)H16A—C16—H16C109.00
N3—C15—C1698.2 (11)H16B—C16—H16C109.00
Cl2—Hg1—Cl1—Hg1i98.74 (12)C7—N2—C6—C5174.3 (10)
N1—Hg1—Cl1—Hg1i69.9 (3)Hg1—N2—C7—C8173.5 (10)
N2—Hg1—Cl1—Hg1i139.95 (19)Hg1—N2—C7—C124.6 (19)
Cl1i—Hg1—Cl1—Hg1i0.00 (7)C6—N2—C7—C83 (2)
Cl1—Hg1—N1—C1104.6 (8)C6—N2—C7—C12178.5 (12)
Cl1—Hg1—N1—C576.4 (7)C13—N3—C10—C98 (2)
Cl2—Hg1—N1—C165.4 (9)C13—N3—C10—C11172.1 (16)
Cl2—Hg1—N1—C5113.6 (6)C15—N3—C10—C9162.9 (15)
N2—Hg1—N1—C1174.4 (9)C15—N3—C10—C1117 (2)
N2—Hg1—N1—C54.6 (6)C10—N3—C13—C1491.1 (18)
Cl1i—Hg1—N1—C135.7 (8)C15—N3—C13—C14116.5 (16)
Cl1i—Hg1—N1—C5145.3 (7)C10—N3—C15—C1692.0 (14)
Cl1—Hg1—N2—C6125.6 (6)C13—N3—C15—C16114.9 (15)
Cl1—Hg1—N2—C751.6 (10)N1—C1—C2—C35.1 (18)
Cl2—Hg1—N2—C6106.4 (6)C1—C2—C3—C44.0 (17)
Cl2—Hg1—N2—C776.5 (10)C2—C3—C4—C50.7 (16)
N1—Hg1—N2—C66.7 (6)C3—C4—C5—N11.7 (15)
N1—Hg1—N2—C7176.1 (10)C3—C4—C5—C6175.9 (9)
Cl1i—Hg1—N2—C644.1 (7)N1—C5—C6—N24.7 (13)
Cl1i—Hg1—N2—C7133.1 (9)C4—C5—C6—N2173.0 (9)
Cl1—Hg1—Cl1i—Hg1i0.00 (9)N2—C7—C8—C9177.8 (14)
Cl2—Hg1—Cl1i—Hg1i120.45 (11)C12—C7—C8—C90 (2)
N1—Hg1—Cl1i—Hg1i135.1 (2)N2—C7—C12—C11174.8 (14)
N2—Hg1—Cl1i—Hg1i87.4 (3)C8—C7—C12—C113 (2)
Hg1—N1—C1—C2176.5 (9)C7—C8—C9—C101 (2)
C5—N1—C1—C22.6 (16)C8—C9—C10—N3179.4 (14)
Hg1—N1—C5—C4179.9 (7)C8—C9—C10—C111 (2)
Hg1—N1—C5—C62.3 (10)N3—C10—C11—C12176.2 (16)
C1—N1—C5—C40.8 (14)C9—C10—C11—C124 (3)
C1—N1—C5—C6176.9 (9)C10—C11—C12—C76 (3)
Hg1—N2—C6—C58.5 (10)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1ii0.932.743.578 (9)151
C1—H1···Cl1i0.932.893.471 (12)122
C1—H1···Cl2iii0.932.973.623 (11)129
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine, for financial support and Dr Igor Fritsky for important discussions.

References

First citationBaul, T. S. B., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Lindend, A. (2013). Dalton Trans. 42, 1905–1920.  PubMed Google Scholar
First citationBaul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323–2329.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Siddiqui, N. & Javed, S. (2015). Acta Cryst. E71, o49–o50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoseyni, S. J., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m1294.  CSD CrossRef IUCr Journals Google Scholar
First citationHughes, M. & Prince, R. H. (1978). J. Inorg. Nucl. Chem. 40, 719–723.  CrossRef CAS Web of Science Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationKasselouri, S., Garoufis, G., Kalkanis, A., Perlepes, S. P. & Hadjiliadis, N. (1993). Transition Met. Chem. 18, 531–536.  CrossRef CAS Web of Science Google Scholar
First citationMandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationNejad, M. F., Olyai, M. R. T. B. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 717–718.  CAS Google Scholar
First citationSalehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds