research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,2S,2′R,3a′S,5R)-2′-[(5-bromo-1H-indol-3-yl)meth­yl]-2-iso­propyl-5,5′-di­methyl­di­hydro-2′H-spiro­[cyclo­hexane-1,6′-imidazo[1,5-b]isoxazol]-4′(5′H)-one

CROSSMARK_Color_square_no_text.svg

aUniversité de Monastir, Laboratoire de Synthése Hétérocyclique, Produits Naturels et Réactivités, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia, bLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, and cUniversité Lyon 1, Centre de Diffractométrie Henri Longchambon, Bâtiment 305, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
*Correspondence e-mail: jihedbrahmi85@live.fr

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 June 2016; accepted 5 July 2016; online 12 July 2016)

In the title compound, C24H32BrN3O2, the six-membered cyclo­hexane ring adopts a chair conformation and the isoxasolidine ring adopts a twisted conformation. The mol­ecule has five chiral centres and the absolute configuration has been determined in this analysis. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O and C—H⋯N contacts. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, forming undulating sheets parallel to the bc plane.

1. Chemical context

1,3-Dipolar cyclo­additions of alkenes with nitro­nes produce substituted isoxazolidines. Nitrone cyclo­adducts offer a general route to natural and unnatural amino acids (Aouadi et al., 2006[Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299-3303.], 2007[Aouadi, K., Jeanneau, E., Msaddek, M. & Praly, J.-P. (2007). Synthesis, pp. 3399-3405.]) through opening of the isoxazolidine ring, usually by reductive cleavage of the weak N—O bond. Consequently, isoxazolidines have been used as key inter­mediates for the synthesis of various natural products, anti­fungals (Kumar et al., 2003[Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 159-164.]), anti-tuberculosis (Kumar et al., 2010[Kumar, R. S., Perumal, S., Shetty, K. A., Yogeeswari, P. & Sriram, D. (2010). Eur. J. Med. Chem. 45, 124-133.]) and anti­viral agents (Loh et al., 2010[Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461-474.]). We present herein the synthesis, the mol­ecular structure and the spectroscopic data of the title compound, C24H32BrN3O2, (I)[link].

[Scheme 1]

2. Structural commentary

In the title compound (I)[link] (Fig. 1[link]), the five-membered isoxazolidine ring has a twist conformation. The O1—N2 bond length in the isoxazolidine ring is 1.475 (6) Å which is close to the values in related compounds (Lee et al., 2010[Lee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172-1176.]; Molander & Cavalcanti, 2013[Molander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166-3169.]). The cyclo­hexane ring adopts a chair conformation. The dihedral angle between the mean planes of the isoxazolidine and imidazolidinone rings is 73.1 (3)° while the C8—C9—C10—O1 torsion angle is 74.7 (7)°. In the molecule there are some short C—H⋯O and C—H⋯N contacts present (Table 1[link]). The absolute configuration of (I)[link] has been confirmed as C10(R),C12(S),C14(S),C16(R),C19(S) for the five arbitrarily numbered chiral centres in the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯N2i 0.89 2.34 3.087 (8) 141
C3—H3⋯O2ii 0.93 2.42 3.292 (9) 156
C16—H16⋯O1 0.98 2.55 3.091 (8) 115
C20—H20⋯N3 0.98 2.54 3.032 (10) 111
C21—H21A⋯N2 0.96 2.60 3.236 (9) 124
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal packing of (I)[link], the mol­ecules are linked through an inter­molecular N1—HN1⋯N2i hydrogen bond (Table 1[link]) and a weak N1—HN1⋯O1i inter­action [3.053 (8) Å], forming undulating sheets parallel to the bc plane (Fig. 2[link]). Within the chains, the mol­ecules are stabilized by a weak inter­molecular C3—H3⋯O2ii hydrogen bond (Table 1[link]). Also present in the crystal are 39.3 Å3 solvent-accessible voids.

[Figure 2]
Figure 2
A view of the title structure, showing the mol­ecules of the title compound arranged in zigzag parallel chains sustained by weak N—H⋯N and N—H⋯O hydrogen bonds.

4. Synthesis and crystallization

To a solution of 3-allyl-5-bromo-1H-indole (1.40 mmol, 330 mg) in toluene (10 mL) was added 5(R),6(S),9(R)-6-isopropyl-1,9-dimethyl-1,4-diazo­aspiro­[4,5]-decan-1-ene-3-one-1-oxide (II) (1.19 mmol, 285 mg) and the mixture was stirred and heated at reflux at 383 K for 24 h under argon. TLC indicated the complete conversion of (II). The solution obtained was concentrated and the residue was purified by flash chromatography (petroleum ether–ethyl acetate 7:3) to afford the cyclo­adduct (I)[link] as a white solid (507 mg, 90% yield) (Fig. 3[link]). Colorless plate-shaped crystals of (I)[link] were obtained by slow evaporation of a diethyl ether solution.

[Figure 3]
Figure 3
Reaction scheme for the synthesis of compound (I)[link].

5. Spectroscopic investigations

NMR spectra were recorded on a Bruker Avance II 300 MHz spectrometer operating at 300 MHz for 1H and 75.46 MHz for 13C and were referenced to tetra­methyl­silane (δ = 0 p.p.m.). High-resolution (HR–ESI–QToF) mass spectra were recorded using a Bruker Micro ToF-Q II XL spectrometer.

The1H NMR spectrum of (I)[link] shows the presence of an NH proton at 8.32 p.p.m. and the13C NMR spectrum confirms the existence of the C3 and C5 stereogenic centres at 66.4 p.p.m. and 78.0 p.p.m., respectively. The spectroscopic measurements are consistent with the crystal structure of (I)[link]. High-resolution mass spectrometry in the positive-ion mode exhibits an [M+H]+ fragment of 474.1759 m/z which is very close to the calculated value of 474.1756 m/z.

Rf = 0.33 (PE–EtOAc 7:3). NMR 1H (300 MHz, CDCl3) δ(p.p.m.): 0.62 (d, 3H, J = 6.6 Hz), 0.83 (d, 3H, J = 6.6 Hz), 0.85 (m, 1H), 0.86 (d, 3H, J = 6.3 Hz), 1.11 (t, 1H, J = 12.3 Hz), 1.21–1.43 (m, 2H), 1.57–1.67 (m, 1H), 1.70–1.83 (m, 3H), 1.90–2.02 (m, 1H), 2.26 (ddd, 1H, J = 8.7 Hz, 10.2 Hz and 12 Hz), 2.69 (s, 3H, NCH3), 2.67–2.72 (m, 1H), 2.93–2.97 (m, 2H), 3.88–3.97 (m, 1H), 4.01 (brd, 1H, J = 8.4 Hz), 7.02 (brd, 1H, J = 4.8 Hz), 7.21 (m, 2H), 7.74 (brd, 1H, J = 1.8 Hz), 8.32 (brs, 1H, NH). 13C NMR (CDCl3, 75.46 MHz) δ(p.p.m.): 18.3, 22.0, 22.2 (CH2), 24.1, 24.3, 26.0, 28.1, 29.6, 34.5 (CH2), 38.8 (CH2), 40.3 (CH2), 48.0, 66.4, 78.0, 90.0, 112.3, 112.4, 112.7, 121.6, 123.5, 124.7, 129.1, 134.6, 173.0 (C=O). [α] = + 43.7 (c = 1, CH2Cl2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methyl­ene), 0.96 Å (meth­yl) and 0.93 Å (aromatic), with Uiso(H) = 1.2Ueq(C)(methine, methyl­ene, aromatic) or 1.5UeqC(meth­yl). The H atom on the nitro­gen N1 of the indole ring was found in a difference-Fourier map but was subsequently refined with the coordinates and isotropic displacement parameter also riding with Uiso = 1.2 Ueq(N). The bond length N1—HN1 was restrained to ensure proper geometry using the DFIX instruction of SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The absolute structure Flack parameter [−0.013 (13) for 1005 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])] confirmed the configuration of the mol­ecule as C10(R),C12(S),C14(S),C16(R),C19(S) for the five arbitrarily numbered chiral centres in the mol­ecule.

Table 2
Experimental details

Crystal data
Chemical formula C24H32BrN3O2
Mr 474.43
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.2640 (5), 9.6480 (5), 12.0480 (5)
β (°) 96.204 (5)
V3) 1186.09 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.76
Crystal size (mm) 0.46 × 0.39 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Atlas Gemini Ultra CCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski et al., 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.455, 0.802
No. of measured, independent and observed [I > 2σ(I)] reflections 10653, 4337, 2924
Rint 0.104
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 0.97
No. of reflections 4337
No. of parameters 272
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.51
Absolute structure Flack x determined using 1005 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.013 (13)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Oxfordshire, England.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

(1S,2S,2'R,3a'S,5R)-2'-[(5-Bromo-1H-indol-3-yl)methyl]-2-isopropyl-5,5'-dimethyldihydro-2'H-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-4'(5'H)-one top
Crystal data top
C24H32BrN3O2F(000) = 496
Mr = 474.43Dx = 1.328 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.2640 (5) ÅCell parameters from 8154 reflections
b = 9.6480 (5) Åθ = 1.0–27.9°
c = 12.0480 (5) ŵ = 1.76 mm1
β = 96.204 (5)°T = 293 K
V = 1186.09 (10) Å3Plate, colorless
Z = 20.46 × 0.39 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini Ultra CCD
diffractometer
4337 independent reflections
Radiation source: Enhance (Mo) X-ray source)2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω/2θ scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 1997)
h = 1212
Tmin = 0.455, Tmax = 0.802k = 1111
10653 measured reflectionsl = 1314
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0631P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.31 e Å3
4337 reflectionsΔρmin = 0.51 e Å3
272 parametersAbsolute structure: Flack x determined using 1005 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.013 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.17985 (7)0.23216 (8)0.27079 (6)0.0716 (3)
O10.4307 (4)0.4046 (5)0.6482 (4)0.0455 (11)
N30.3297 (6)0.6276 (6)0.8208 (5)0.0559 (16)
O20.5063 (6)0.6393 (6)0.9554 (4)0.0728 (16)
N20.3578 (5)0.4065 (6)0.7471 (4)0.0419 (12)
N10.6516 (6)0.6022 (6)0.3324 (5)0.0521 (15)
C140.2644 (7)0.5267 (7)0.7427 (5)0.0447 (15)
C60.4147 (7)0.3475 (8)0.3841 (6)0.0472 (16)
H60.40070.28710.44180.057*
C90.6468 (6)0.4016 (8)0.5952 (5)0.0478 (16)
H9A0.73750.41530.62480.057*
H9B0.63170.30250.58850.057*
C10.3301 (7)0.3486 (8)0.2869 (6)0.0523 (18)
C110.5918 (7)0.4126 (9)0.7977 (6)0.0513 (18)
H11A0.61960.31640.80130.062*
H11B0.65940.46980.83720.062*
C100.5591 (6)0.4605 (7)0.6774 (5)0.0426 (15)
H100.55720.56190.67340.051*
C80.6248 (6)0.4659 (7)0.4806 (5)0.0439 (15)
C130.4388 (7)0.5769 (8)0.8831 (6)0.0523 (18)
C190.1319 (7)0.4750 (8)0.7834 (5)0.0485 (17)
H190.07740.55820.78540.058*
C50.5213 (6)0.4378 (7)0.3948 (5)0.0428 (15)
C120.4609 (6)0.4315 (8)0.8439 (5)0.0471 (16)
H120.45180.36480.90390.057*
C160.1585 (6)0.4977 (7)0.5389 (5)0.0472 (16)
H160.21120.41530.52750.057*
C150.2358 (7)0.5914 (7)0.6262 (6)0.0500 (17)
H15A0.31840.61590.59920.060*
H15B0.18670.67640.63280.060*
C70.6991 (6)0.5668 (8)0.4386 (6)0.0503 (17)
H70.77300.60640.47760.060*
C40.5407 (7)0.5268 (7)0.3039 (6)0.0459 (16)
C180.0585 (7)0.3816 (8)0.6964 (6)0.0544 (18)
H18A0.02410.35410.72200.065*
H18B0.10960.29830.68840.065*
C30.4561 (8)0.5248 (8)0.2046 (6)0.056 (2)
H30.47050.58280.14550.068*
C170.0316 (6)0.4521 (9)0.5829 (6)0.0574 (19)
H17A0.01460.38830.53020.069*
H17B0.02410.53220.58960.069*
C210.1702 (8)0.2603 (9)0.9120 (6)0.071 (2)
H21A0.24740.23880.87700.107*
H21B0.18330.23400.98920.107*
H21C0.09680.21050.87540.107*
C20.3522 (8)0.4357 (8)0.1965 (6)0.061 (2)
H20.29540.43240.13090.073*
C200.1432 (7)0.4168 (9)0.9030 (6)0.0554 (18)
H200.21680.46410.94570.066*
C230.1317 (8)0.5741 (9)0.4278 (6)0.068 (2)
H23A0.21330.60150.40220.102*
H23B0.08540.51390.37360.102*
H23C0.07960.65490.43760.102*
C220.0205 (10)0.4502 (13)0.9589 (8)0.097 (3)
H22A0.00320.54790.95350.145*
H22B0.05270.40010.92220.145*
H22C0.03380.42361.03610.145*
C240.2777 (9)0.7638 (8)0.8427 (8)0.081 (3)
H24A0.20150.78150.79120.121*
H24B0.25420.76680.91770.121*
H24C0.34310.83290.83380.121*
HN10.67580.66990.28850.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0695 (5)0.0753 (5)0.0667 (5)0.0179 (5)0.0081 (3)0.0009 (5)
O10.042 (3)0.058 (3)0.036 (3)0.003 (2)0.0033 (19)0.000 (2)
N30.066 (4)0.049 (4)0.052 (4)0.006 (3)0.004 (3)0.008 (3)
O20.078 (4)0.092 (4)0.047 (3)0.029 (3)0.001 (3)0.015 (3)
N20.042 (3)0.053 (3)0.031 (3)0.002 (3)0.002 (2)0.001 (2)
N10.059 (4)0.049 (4)0.049 (4)0.007 (3)0.012 (3)0.004 (3)
C140.051 (4)0.046 (4)0.037 (4)0.000 (3)0.002 (3)0.003 (3)
C60.058 (4)0.048 (4)0.037 (4)0.004 (3)0.009 (3)0.005 (3)
C90.043 (4)0.056 (4)0.045 (4)0.012 (3)0.006 (3)0.011 (3)
C10.067 (5)0.047 (4)0.042 (4)0.001 (4)0.001 (3)0.007 (3)
C110.045 (4)0.070 (5)0.037 (4)0.003 (4)0.002 (3)0.007 (4)
C100.040 (3)0.049 (4)0.038 (4)0.006 (3)0.003 (3)0.000 (3)
C80.042 (3)0.049 (4)0.041 (4)0.000 (3)0.009 (3)0.001 (3)
C130.058 (4)0.062 (5)0.038 (4)0.013 (4)0.008 (3)0.001 (3)
C190.048 (4)0.052 (4)0.046 (4)0.009 (3)0.006 (3)0.002 (3)
C50.048 (4)0.043 (4)0.038 (4)0.004 (3)0.008 (3)0.003 (3)
C120.046 (4)0.060 (5)0.034 (3)0.009 (3)0.003 (3)0.003 (3)
C160.051 (4)0.044 (4)0.045 (4)0.006 (3)0.003 (3)0.004 (3)
C150.058 (4)0.037 (4)0.054 (5)0.008 (3)0.003 (3)0.008 (3)
C70.047 (4)0.054 (4)0.051 (4)0.005 (4)0.009 (3)0.004 (3)
C40.057 (4)0.038 (4)0.043 (4)0.001 (3)0.011 (3)0.003 (3)
C180.044 (4)0.067 (5)0.050 (4)0.002 (3)0.000 (3)0.003 (4)
C30.075 (5)0.055 (5)0.039 (4)0.003 (4)0.009 (4)0.003 (3)
C170.048 (4)0.069 (5)0.052 (4)0.003 (4)0.007 (3)0.001 (4)
C210.073 (5)0.085 (7)0.057 (5)0.006 (5)0.015 (4)0.015 (4)
C20.082 (5)0.061 (5)0.036 (4)0.007 (4)0.008 (3)0.000 (4)
C200.051 (4)0.072 (5)0.045 (4)0.002 (4)0.012 (3)0.002 (4)
C230.090 (6)0.065 (5)0.045 (4)0.011 (5)0.011 (4)0.006 (4)
C220.087 (6)0.139 (9)0.071 (6)0.021 (7)0.037 (5)0.009 (6)
C240.104 (6)0.063 (7)0.075 (6)0.002 (5)0.009 (5)0.021 (5)
Geometric parameters (Å, º) top
Br—C11.901 (7)C5—C41.423 (9)
O1—C101.432 (7)C12—H120.9800
O1—N21.475 (6)C16—C171.523 (10)
N3—C131.369 (10)C16—C231.526 (10)
N3—C241.453 (10)C16—C151.540 (10)
N3—C141.465 (9)C16—H160.9800
O2—C131.212 (9)C15—H15A0.9700
N2—C141.502 (9)C15—H15B0.9700
N2—C121.507 (8)C7—H70.9300
N1—C71.362 (9)C4—C31.401 (11)
N1—C41.362 (9)C18—C171.526 (10)
N1—HN10.8929C18—H18A0.9700
C14—C151.535 (9)C18—H18B0.9700
C14—C191.576 (10)C3—C21.365 (11)
C6—C11.381 (10)C3—H30.9300
C6—C51.394 (10)C17—H17A0.9700
C6—H60.9300C17—H17B0.9700
C9—C81.508 (9)C21—C201.537 (12)
C9—C101.519 (9)C21—H21A0.9600
C9—H9A0.9700C21—H21B0.9600
C9—H9B0.9700C21—H21C0.9600
C1—C21.413 (11)C2—H20.9300
C11—C121.519 (9)C20—C221.525 (10)
C11—C101.524 (9)C20—H200.9800
C11—H11A0.9700C23—H23A0.9600
C11—H11B0.9700C23—H23B0.9600
C10—H100.9800C23—H23C0.9600
C8—C71.368 (9)C22—H22A0.9600
C8—C51.426 (9)C22—H22B0.9600
C13—C121.506 (11)C22—H22C0.9600
C19—C181.519 (10)C24—H24A0.9600
C19—C201.540 (10)C24—H24B0.9600
C19—H190.9800C24—H24C0.9600
C10—O1—N2109.3 (4)C17—C16—H16108.6
C13—N3—C24121.2 (7)C23—C16—H16108.6
C13—N3—C14113.9 (6)C15—C16—H16108.6
C24—N3—C14124.5 (7)C14—C15—C16114.8 (5)
O1—N2—C14111.0 (5)C14—C15—H15A108.6
O1—N2—C12104.6 (4)C16—C15—H15A108.6
C14—N2—C12107.2 (5)C14—C15—H15B108.6
C7—N1—C4107.9 (6)C16—C15—H15B108.6
C7—N1—HN1130.2H15A—C15—H15B107.5
C4—N1—HN1121.3N1—C7—C8111.6 (6)
N3—C14—N2104.1 (5)N1—C7—H7124.2
N3—C14—C15110.2 (5)C8—C7—H7124.2
N2—C14—C15113.9 (5)N1—C4—C3130.3 (7)
N3—C14—C19111.1 (5)N1—C4—C5108.1 (6)
N2—C14—C19108.3 (5)C3—C4—C5121.6 (7)
C15—C14—C19109.1 (5)C19—C18—C17112.5 (6)
C1—C6—C5119.2 (6)C19—C18—H18A109.1
C1—C6—H6120.4C17—C18—H18A109.1
C5—C6—H6120.4C19—C18—H18B109.1
C8—C9—C10113.7 (5)C17—C18—H18B109.1
C8—C9—H9A108.8H18A—C18—H18B107.8
C10—C9—H9A108.8C2—C3—C4118.5 (7)
C8—C9—H9B108.8C2—C3—H3120.7
C10—C9—H9B108.8C4—C3—H3120.7
H9A—C9—H9B107.7C16—C17—C18111.2 (5)
C6—C1—C2121.4 (7)C16—C17—H17A109.4
C6—C1—Br120.7 (6)C18—C17—H17A109.4
C2—C1—Br117.9 (6)C16—C17—H17B109.4
C12—C11—C10101.5 (5)C18—C17—H17B109.4
C12—C11—H11A111.5H17A—C17—H17B108.0
C10—C11—H11A111.5C20—C21—H21A109.5
C12—C11—H11B111.5C20—C21—H21B109.5
C10—C11—H11B111.5H21A—C21—H21B109.5
H11A—C11—H11B109.3C20—C21—H21C109.5
O1—C10—C9107.0 (5)H21A—C21—H21C109.5
O1—C10—C11102.8 (5)H21B—C21—H21C109.5
C9—C10—C11114.9 (5)C3—C2—C1120.5 (7)
O1—C10—H10110.6C3—C2—H2119.7
C9—C10—H10110.6C1—C2—H2119.7
C11—C10—H10110.6C22—C20—C21109.1 (8)
C7—C8—C5105.6 (6)C22—C20—C19110.7 (7)
C7—C8—C9126.7 (6)C21—C20—C19114.7 (6)
C5—C8—C9127.7 (6)C22—C20—H20107.3
O2—C13—N3125.9 (8)C21—C20—H20107.3
O2—C13—C12126.4 (7)C19—C20—H20107.3
N3—C13—C12107.6 (6)C16—C23—H23A109.5
C18—C19—C20114.3 (6)C16—C23—H23B109.5
C18—C19—C14110.7 (6)H23A—C23—H23B109.5
C20—C19—C14115.3 (6)C16—C23—H23C109.5
C18—C19—H19105.2H23A—C23—H23C109.5
C20—C19—H19105.2H23B—C23—H23C109.5
C14—C19—H19105.2C20—C22—H22A109.5
C6—C5—C4118.7 (6)C20—C22—H22B109.5
C6—C5—C8134.6 (6)H22A—C22—H22B109.5
C4—C5—C8106.7 (6)C20—C22—H22C109.5
C13—C12—N2105.9 (6)H22A—C22—H22C109.5
C13—C12—C11113.3 (6)H22B—C22—H22C109.5
N2—C12—C11105.8 (5)N3—C24—H24A109.5
C13—C12—H12110.5N3—C24—H24B109.5
N2—C12—H12110.5H24A—C24—H24B109.5
C11—C12—H12110.5N3—C24—H24C109.5
C17—C16—C23111.4 (6)H24A—C24—H24C109.5
C17—C16—C15109.2 (6)H24B—C24—H24C109.5
C23—C16—C15110.3 (6)
C10—O1—N2—C1214.5 (6)C8—C5—C6—C1179.1 (7)
C10—O1—N2—C14100.9 (5)C4—C5—C8—C70.1 (7)
N2—O1—C10—C9155.8 (5)C4—C5—C8—C9178.3 (6)
N2—O1—C10—C1134.4 (6)C6—C5—C8—C7179.7 (8)
C7—N1—C4—C3179.9 (8)C6—C5—C8—C91.9 (13)
C7—N1—C4—C52.0 (8)N1—C7—C8—C51.2 (8)
C4—N1—C7—C82.0 (8)N1—C7—C8—C9179.6 (6)
O1—N2—C12—C1111.6 (7)C5—C8—C9—C1078.1 (9)
O1—N2—C12—C13109.0 (5)C7—C8—C9—C10100.1 (8)
C14—N2—C12—C11129.6 (6)C8—C9—C10—O174.7 (7)
C14—N2—C12—C139.0 (6)C8—C9—C10—C11171.8 (6)
O1—N2—C14—N3103.0 (5)O1—C10—C11—C1239.7 (7)
O1—N2—C14—C1517.2 (7)C9—C10—C11—C12155.6 (6)
O1—N2—C14—C19138.7 (5)C10—C11—C12—N231.3 (7)
C12—N2—C14—N310.8 (6)C10—C11—C12—C1384.4 (7)
C12—N2—C14—C15130.9 (6)N2—C12—C13—O2175.3 (7)
C12—N2—C14—C19107.6 (5)N2—C12—C13—N33.5 (7)
C14—N3—C13—O2177.5 (7)C11—C12—C13—O259.8 (10)
C14—N3—C13—C123.6 (8)C11—C12—C13—N3119.1 (6)
C24—N3—C13—O24.7 (12)N2—C14—C15—C1667.4 (8)
C24—N3—C13—C12176.5 (6)N3—C14—C15—C16176.0 (6)
C13—N3—C14—N29.2 (7)C19—C14—C15—C1653.7 (7)
C13—N3—C14—C15131.7 (6)N2—C14—C19—C1871.8 (7)
C13—N3—C14—C19107.2 (7)N2—C14—C19—C2059.8 (7)
C24—N3—C14—N2178.3 (6)N3—C14—C19—C18174.4 (6)
C24—N3—C14—C1555.8 (9)N3—C14—C19—C2054.0 (8)
C24—N3—C14—C1965.3 (8)C15—C14—C19—C1852.6 (7)
Br—C1—C2—C3177.9 (6)C15—C14—C19—C20175.8 (6)
C6—C1—C2—C32.2 (12)C14—C15—C16—C1755.4 (8)
Br—C1—C6—C5177.7 (5)C14—C15—C16—C23178.1 (6)
C2—C1—C6—C52.4 (11)C15—C16—C17—C1855.5 (8)
C1—C2—C3—C40.6 (12)C23—C16—C17—C18177.4 (6)
C2—C3—C4—N1178.3 (7)C16—C17—C18—C1958.6 (8)
C2—C3—C4—C50.7 (11)C17—C18—C19—C1456.6 (8)
N1—C4—C5—C6178.5 (6)C17—C18—C19—C20171.3 (6)
N1—C4—C5—C81.3 (8)C14—C19—C20—C2189.9 (8)
C3—C4—C5—C60.4 (10)C14—C19—C20—C22146.0 (7)
C3—C4—C5—C8179.4 (7)C18—C19—C20—C2140.0 (9)
C4—C5—C6—C11.1 (10)C18—C19—C20—C2284.1 (9)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N2/C12/C13/N3/C14 five-membered imidazolidinone ring.
D—H···AD—HH···AD···AD—H···A
N1—HN1···N2i0.892.343.087 (8)141
C3—H3···O2ii0.932.423.292 (9)156
C16—H16···O10.982.553.091 (8)115
C20—H20···N30.982.543.032 (10)111
C21—H21A···N20.962.603.236 (9)124
N1—HN1···O1i0.892.663.053 (8)108
C20—H20···Cg30.982.412.866 (8)104
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Oxfordshire, England.  Google Scholar
First citationAouadi, K., Jeanneau, E., Msaddek, M. & Praly, J.-P. (2007). Synthesis, pp. 3399–3405.  Google Scholar
First citationAouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299–3303.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 159–164.  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. S., Perumal, S., Shetty, K. A., Yogeeswari, P. & Sriram, D. (2010). Eur. J. Med. Chem. 45, 124–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461–474.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMolander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166–3169.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds