metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m206-m207

[Bis(quinolin-2-ylcarbon­yl)amido-κ3N,N′,N′′]bromido­(N,N-di­methyl­formamide-κO)copper(II)

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
*Correspondence e-mail: psen@iitk.ac.in

Edited by G. Smith, Queensland University of Technology, Australia (Received 8 April 2014; accepted 5 May 2014; online 10 May 2014)

In the mononuclear title complex, [CuBr(C20H12N3O2)(C3H7NO)], synthesized from the quinoline-derived reduced Schiff base 4-(quinolin-2-ylmeth­yl)amino­phenol, the coordination geometry around Cu2+ is distorted square-pyramidal, comprising a bromide anion at the apex [Cu—Br = 2.4671 (5) Å]. The base of the pyramid is built up from one di­methyl­formamide O-atom donor [Cu—O = 2.078 (2) Å] and three N-atom donors from the monoanionic, tridentate bis­(quinolin-2-ylcarbon­yl)di­imide ligand [Cu—Ndi­imide = 1.941 (3) Å, and Cu—Nquinol­yl = 2.060 (3) and 2.049 (3) Å]. An intra­molecular C—H⋯O occurs. In the crystal, weak methyl and aromatic C—H⋯Br and formyl C—H⋯Ocarbon­yl hydrogen-bonding inter­actions generate an overall layered structure lying parallel to (001).

Related literature

For applications of the title complex and related structures, see: Castro et al. (1990[Castro, I., Faus, J. & Julve, M. (1990). J. Chem. Soc. Dalton Trans. pp. 891-897.], 1991[Castro, I., Faus, J., Julve, M., Journaux, Y. & Sletten, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2533-2538.], 1999[Castro, I., Calatayud, M. L., Sletten, J., Lloret, F., Cano, J., Julve, M., Seitz, G. & Mann, K. (1999). Inorg. Chem. 38, 4680-4687.]); Vangdal et al. (2002[Vangdal, B., Carranza, J., Lloret, F., Julve, M. & Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566-574.]); Sahu et al. (2010[Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448-1454.]); Carlucci et al. (2011[Carlucci, L., Ciani, G., Maggini, S., Proserpio, D. M., Sessoli, R. & Totti, F. (2011). Inorg. Chim. Acta, 363, 538-548.]); Calatayud et al. (2000[Calatayud, M. L., Castro, I., Sletten, J., Lloret, F. & Julve, M. (2000). Inorg. Chim. Acta, 300-302, 846-854.]); Lebon et al. (1998[Lebon, F., Rosny, E. D., Reboud-Ravaux, M. & Durant, F. (1998). Eur. J. Med. Chem. 33, 733-737.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C20H12N3O2)(C3H7NO)]

  • Mr = 542.87

  • Monoclinic, P 21 /n

  • a = 9.2137 (6) Å

  • b = 23.5220 (16) Å

  • c = 10.4842 (7) Å

  • β = 110.284 (1)°

  • V = 2131.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 100 K

  • 0.26 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.592, Tmax = 0.681

  • 13799 measured reflections

  • 3753 independent reflections

  • 3223 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.06

  • 3753 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯Br1i 0.98 (5) 2.87 (4) 3.663 (5) 138 (3)
C15—H15⋯Br1ii 0.93 2.82 3.655 (4) 151
C20—H20⋯O1 0.93 2.42 3.059 (4) 126
C22—H22⋯O3iii 0.93 2.33 3.060 (4) 135
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: DIAMOND.

Supporting information


Comment top

The new ligand bis(2-quinolylcarbonyl)diimide monoanion (BQCD), formed from the quinoliny derived reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol (R-QMAP), is an important compound widely used in biological applications such as an HIV-1 protease inhibitor and in coordination chemistry (Castro et al., 1990; Castro et al., 1991; Lebon et al., 1998; Castro et al., 1999; Calatayud et al., 2000; Vangdal et al., 2002; Carlucci et al., 2011). In the synthesis of a compound from the reaction of CuBr with BQCD in ethanol with subsequent recrystallization from dimethylformamide generated the title CuII complex [Cu(C20H12N3O2)(C3H7NO)Br] which contains the monoanionic bis(2-quinolylcarbonyl) diimide ligand (BQCD), one bromido anion and an O-bonded dimethylformamide solvent molecule. The ligand, a bis(2-quinolylcarbonyl)diimide monoanion (BQCD) was formed from a reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol (iR-QMAP), by the breaking of the aminophenol and subsequent oxidation of the –CH2– group to a carbonyl group in the presence of dioxygen and copper(I) bromide. This oxidation of the –CH2– group to a carbonyl group in the presence of dioxygen and metal salts has previously been reported (Sahu et al., 2010).

In the title mononuclear complex (Fig. 1), the CuII center is penta-coordinated with a distorted square pyramidal coordination geometry comprising an axial Br anion [Cu—Br = 2.4671 (5) Å] and in the meridional site, a dimethylformamide oxygen atom donor [Cu—O = 2.078 (2) Å] and three N-atom donors from the monoanionic bis(2-quinolylcarbonyl)diimide (BQCD) ligand, viz. two quinolyl nitrogens [Cu—N = 2.060 (3) and 2.049 (3) Å] and one diimide nitrogen [Cu—N = 1.941 (3) Å]. The observed Cu—N bond lengths and bond angles in the title compound are considered normal for this type of CuII complex, e.g. Cu—N(quinolyl) = 2.035 (5) Å] and [Cu—N(diimide) = 1.966 (5) Å] (Sahu et al., 2010).

In the crystal, a weak intermolecular methyl C23—H···Br1i interaction (Table 1) generates a chain structure extending along the c axial direction (Fig. 2), and is further extended into a two-dimensional sheet structure lying parallel to (001) through aromatic C15—H···Brii and formyl C22—H···O3iii hydrogen bonds (Fig. 3). Also present in the structure is an intramolecular aromatic C20—H···O1formyl hydrogen bond.

Related literature top

For applications of the title complex and related structures, see: Castro et al. (1990), 1991, 1999); Vangdal et al. (2002); Sahu et al. (2010); Carlucci et al. (2011); Calatayud et al. (2000); Lebon et al. (1998).

Experimental top

A mixture of reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol (iR-QMAP) (0.10 g, 0.40 mmol), copper(I) bromide (0.060 g, 0.40 mmol), ethanol (5 mL) were stirred vigorously for 30 min, the precipitate was filtered off and dissolved in dimethylformamide and kept for crystallization. Crystals suitable for X-ray analysis were obtained within a week by slow evaporation of the DMF solvent.

Refinement top

The H-atoms of the methyl group involved in the chain formation (C23) were located in a difference-Fourier and were fully refined. All other H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title complex with non-H atoms drawn as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain structure in the title complex extending along c, with weak C—H···Br hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The two-dimensional structure viewed along the c-axial direction.
[Bis(quinolin-2-ylcarbonyl)amido-κ3N,N',N'']bromido(N,N-dimethylformamide-κO)copper(II) top
Crystal data top
[CuBr(C20H12N3O2)(C3H7NO)]F(000) = 1092
Mr = 542.87Dx = 1.692 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7192 reflections
a = 9.2137 (6) Åθ = 2.2–28.3°
b = 23.5220 (16) ŵ = 2.93 mm1
c = 10.4842 (7) ÅT = 100 K
β = 110.284 (1)°Needle, red
V = 2131.3 (2) Å30.26 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3753 independent reflections
Radiation source: fine-focus sealed tube3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.592, Tmax = 0.681k = 2727
13799 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0432P)2 + 2.2471P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[CuBr(C20H12N3O2)(C3H7NO)]V = 2131.3 (2) Å3
Mr = 542.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2137 (6) ŵ = 2.93 mm1
b = 23.5220 (16) ÅT = 100 K
c = 10.4842 (7) Å0.26 × 0.20 × 0.14 mm
β = 110.284 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3223 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.681Rint = 0.033
13799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.81 e Å3
3753 reflectionsΔρmin = 0.45 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2311 (4)0.17727 (13)0.9003 (3)0.0186 (7)
C21.2627 (4)0.11829 (14)0.9138 (3)0.0225 (8)
H21.18180.09220.88720.027*
C31.4112 (4)0.09975 (15)0.9655 (3)0.0276 (8)
H31.43090.06090.97470.033*
C41.5355 (4)0.13798 (16)1.0051 (4)0.0305 (9)
H41.63650.12441.03970.037*
C51.5086 (4)0.19471 (16)0.9931 (4)0.0294 (9)
H51.59160.21991.01910.035*
C61.3571 (4)0.21600 (14)0.9420 (3)0.0245 (8)
C71.3227 (5)0.27458 (15)0.9297 (4)0.0298 (9)
H71.40240.30110.95490.036*
C81.1742 (4)0.29206 (14)0.8811 (4)0.0277 (8)
H81.15110.33070.87470.033*
C91.0551 (4)0.25196 (13)0.8405 (3)0.0219 (8)
C100.8890 (4)0.27133 (14)0.7873 (3)0.0238 (8)
N40.7906 (3)0.22593 (11)0.7571 (3)0.0210 (6)
C120.6353 (4)0.23086 (14)0.7065 (3)0.0249 (8)
C130.5577 (4)0.17340 (14)0.6804 (3)0.0207 (7)
C140.3975 (4)0.17069 (15)0.6286 (3)0.0255 (8)
H140.33880.20380.60700.031*
C150.3275 (4)0.11898 (16)0.6097 (3)0.0292 (8)
H150.22020.11640.57480.035*
C160.4180 (4)0.06968 (15)0.6433 (3)0.0235 (8)
C170.3511 (4)0.01469 (16)0.6265 (4)0.0307 (9)
H170.24410.01060.59030.037*
C180.4423 (4)0.03185 (15)0.6630 (4)0.0304 (9)
H180.39750.06780.65100.036*
C190.6035 (4)0.02662 (14)0.7185 (3)0.0269 (8)
H190.66430.05900.74540.032*
C200.6726 (4)0.02559 (14)0.7337 (3)0.0219 (7)
H200.77990.02850.76880.026*
C210.5808 (4)0.07501 (14)0.6959 (3)0.0195 (7)
C220.9923 (4)0.10622 (13)1.0635 (3)0.0191 (7)
H221.05920.13721.08670.023*
C231.0494 (6)0.09139 (18)1.3042 (4)0.0348 (10)
C240.8692 (5)0.02789 (15)1.1333 (4)0.0341 (9)
H24A0.86940.01161.21730.051*
H24B0.90360.00001.08330.051*
H24C0.76630.03991.08060.051*
N11.0803 (3)0.19603 (11)0.8492 (3)0.0183 (6)
N20.6487 (3)0.12808 (11)0.7128 (3)0.0180 (6)
N30.9720 (3)0.07624 (11)1.1617 (3)0.0219 (6)
O10.9264 (3)0.09523 (9)0.9413 (2)0.0223 (5)
O20.8575 (3)0.32184 (9)0.7751 (3)0.0337 (6)
O30.5551 (3)0.27363 (10)0.6817 (3)0.0399 (7)
Cu10.87800 (5)0.150012 (15)0.77633 (4)0.01711 (12)
Br10.93628 (4)0.090477 (13)0.60641 (3)0.01868 (11)
H23A0.972 (5)0.1009 (16)1.346 (4)0.033 (11)*
H23B1.114 (5)0.0610 (18)1.354 (4)0.038 (11)*
H23C1.111 (4)0.1234 (17)1.315 (4)0.030 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (18)0.0192 (17)0.0137 (16)0.0035 (14)0.0102 (14)0.0026 (13)
C20.032 (2)0.0153 (17)0.0189 (17)0.0025 (14)0.0067 (15)0.0008 (13)
C30.033 (2)0.0251 (19)0.0238 (18)0.0015 (16)0.0085 (16)0.0017 (15)
C40.028 (2)0.034 (2)0.0267 (19)0.0001 (17)0.0058 (16)0.0017 (16)
C50.030 (2)0.034 (2)0.0247 (19)0.0120 (17)0.0100 (16)0.0072 (16)
C60.036 (2)0.0228 (18)0.0163 (17)0.0076 (16)0.0110 (16)0.0064 (14)
C70.040 (2)0.0210 (19)0.030 (2)0.0163 (17)0.0143 (18)0.0087 (15)
C80.045 (2)0.0115 (16)0.031 (2)0.0079 (16)0.0188 (18)0.0034 (14)
C90.038 (2)0.0120 (16)0.0193 (17)0.0020 (14)0.0138 (16)0.0019 (13)
C100.042 (2)0.0134 (17)0.0223 (18)0.0008 (15)0.0191 (17)0.0008 (13)
N40.0318 (17)0.0102 (13)0.0229 (15)0.0016 (12)0.0120 (13)0.0002 (11)
C120.033 (2)0.0202 (18)0.0254 (19)0.0062 (16)0.0154 (16)0.0062 (14)
C130.0279 (19)0.0181 (17)0.0183 (16)0.0049 (15)0.0107 (15)0.0050 (13)
C140.0264 (19)0.0274 (19)0.0229 (18)0.0069 (16)0.0090 (15)0.0060 (15)
C150.0232 (19)0.041 (2)0.0225 (18)0.0011 (17)0.0068 (16)0.0034 (16)
C160.0286 (19)0.0279 (19)0.0141 (16)0.0057 (15)0.0073 (15)0.0014 (14)
C170.029 (2)0.037 (2)0.0237 (18)0.0135 (17)0.0067 (16)0.0029 (16)
C180.040 (2)0.0223 (19)0.0288 (19)0.0165 (17)0.0123 (18)0.0041 (15)
C190.040 (2)0.0159 (17)0.0259 (18)0.0040 (15)0.0120 (17)0.0017 (14)
C200.0268 (18)0.0182 (17)0.0219 (17)0.0022 (14)0.0100 (15)0.0020 (13)
C210.0280 (19)0.0188 (17)0.0133 (16)0.0031 (14)0.0093 (14)0.0027 (13)
C220.0299 (19)0.0083 (15)0.0213 (18)0.0001 (14)0.0115 (15)0.0014 (13)
C230.061 (3)0.028 (2)0.0172 (18)0.000 (2)0.015 (2)0.0017 (16)
C240.039 (2)0.026 (2)0.036 (2)0.0036 (17)0.0112 (18)0.0131 (17)
N10.0292 (16)0.0115 (14)0.0165 (13)0.0043 (11)0.0107 (12)0.0022 (10)
N20.0246 (15)0.0150 (14)0.0163 (14)0.0011 (11)0.0095 (12)0.0005 (11)
N30.0347 (17)0.0133 (14)0.0193 (14)0.0003 (12)0.0114 (13)0.0018 (11)
O10.0359 (14)0.0137 (11)0.0151 (12)0.0038 (10)0.0061 (11)0.0021 (9)
O20.0499 (17)0.0094 (13)0.0490 (17)0.0040 (11)0.0262 (14)0.0010 (11)
O30.0388 (16)0.0192 (14)0.0627 (19)0.0107 (12)0.0188 (14)0.0121 (13)
Cu10.0243 (2)0.0083 (2)0.0190 (2)0.00018 (15)0.00791 (17)0.00038 (15)
Br10.02579 (19)0.01385 (17)0.01721 (17)0.00011 (13)0.00847 (14)0.00126 (12)
Geometric parameters (Å, º) top
Br1—Cu12.4671 (5)C13—C141.386 (5)
Cu1—O12.078 (2)C14—C151.359 (5)
Cu1—N12.060 (3)C15—C161.400 (5)
Cu1—N22.049 (3)C16—C171.417 (5)
Cu1—N41.941 (3)C16—C211.413 (5)
O1—C221.240 (4)C17—C181.352 (5)
O2—C101.219 (4)C18—C191.400 (5)
O3—C121.222 (4)C19—C201.367 (5)
N1—C11.377 (5)C20—C211.411 (5)
N1—C91.334 (4)C2—H20.9300
N2—C131.326 (4)C3—H30.9300
N2—C211.380 (4)C4—H40.9300
N3—C221.314 (4)C5—H50.9300
N3—C231.459 (5)C7—H70.9300
N3—C241.444 (5)C8—H80.9300
N4—C101.365 (4)C14—H140.9300
N4—C121.348 (5)C15—H150.9300
C1—C21.415 (5)C17—H170.9300
C1—C61.420 (5)C18—H180.9300
C2—C31.357 (5)C19—H190.9300
C3—C41.401 (5)C20—H200.9300
C4—C51.355 (5)C22—H220.9300
C5—C61.403 (5)C23—H23A0.98 (5)
C6—C71.410 (5)C23—H23B0.96 (4)
C7—C81.348 (6)C23—H23C0.93 (4)
C8—C91.397 (5)C24—H24A0.9600
C9—C101.506 (5)C24—H24B0.9600
C12—C131.509 (5)C24—H24C0.9600
Br1—Cu1—O1102.21 (6)C15—C16—C17122.0 (3)
Br1—Cu1—N199.83 (8)C15—C16—C21118.9 (3)
Br1—Cu1—N294.61 (8)C17—C16—C21119.1 (3)
Br1—Cu1—N4129.33 (9)C16—C17—C18120.2 (4)
O1—Cu1—N196.41 (11)C17—C18—C19120.8 (3)
O1—Cu1—N290.80 (11)C18—C19—C20120.8 (3)
O1—Cu1—N4128.23 (11)C19—C20—C21119.9 (3)
N1—Cu1—N2162.09 (11)N2—C21—C16120.2 (3)
N1—Cu1—N481.05 (12)N2—C21—C20120.6 (3)
N2—Cu1—N481.60 (11)C16—C21—C20119.2 (3)
Cu1—O1—C22128.2 (2)O1—C22—N3123.1 (3)
Cu1—N1—C1129.6 (2)C1—C2—H2120.00
Cu1—N1—C9112.3 (2)C3—C2—H2120.00
C1—N1—C9118.1 (3)C2—C3—H3119.00
Cu1—N2—C13111.7 (2)C4—C3—H3119.00
Cu1—N2—C21129.8 (2)C3—C4—H4120.00
C13—N2—C21118.4 (3)C5—C4—H4120.00
C22—N3—C23121.3 (3)C4—C5—H5120.00
C22—N3—C24121.5 (3)C6—C5—H5120.00
C23—N3—C24117.2 (3)C6—C7—H7120.00
Cu1—N4—C10118.5 (2)C8—C7—H7120.00
Cu1—N4—C12117.8 (2)C7—C8—H8120.00
C10—N4—C12123.6 (3)C9—C8—H8120.00
N1—C1—C2119.9 (3)C13—C14—H14120.00
N1—C1—C6121.4 (3)C15—C14—H14120.00
C2—C1—C6118.7 (3)C14—C15—H15120.00
C1—C2—C3119.9 (3)C16—C15—H15120.00
C2—C3—C4121.3 (3)C16—C17—H17120.00
C3—C4—C5120.0 (4)C18—C17—H17120.00
C4—C5—C6120.9 (4)C17—C18—H18120.00
C1—C6—C5119.2 (3)C19—C18—H18120.00
C1—C6—C7117.7 (3)C18—C19—H19120.00
C5—C6—C7123.1 (4)C20—C19—H19120.00
C6—C7—C8120.0 (4)C19—C20—H20120.00
C7—C8—C9119.8 (3)C21—C20—H20120.00
N1—C9—C8123.1 (3)O1—C22—H22118.00
N1—C9—C10117.0 (3)N3—C22—H22118.00
C8—C9—C10119.9 (3)N3—C23—H23A110 (2)
O2—C10—N4128.6 (3)N3—C23—H23B111 (2)
O2—C10—C9120.5 (3)N3—C23—H23C113 (2)
N4—C10—C9110.9 (3)H23A—C23—H23B110 (3)
O3—C12—N4129.5 (3)H23A—C23—H23C106 (3)
O3—C12—C13119.0 (3)H23B—C23—H23C108 (4)
N4—C12—C13111.5 (3)N3—C24—H24A109.00
N2—C13—C12117.1 (3)N3—C24—H24B110.00
N2—C13—C14123.8 (3)N3—C24—H24C109.00
C12—C13—C14119.0 (3)H24A—C24—H24B109.00
C13—C14—C15119.0 (3)H24A—C24—H24C109.00
C14—C15—C16119.6 (3)H24B—C24—H24C110.00
C6—C1—C2—C30.1 (5)C12—C13—C14—C15177.7 (3)
N1—C1—C2—C3179.3 (3)N2—C13—C14—C150.4 (5)
C2—C1—C6—C51.0 (5)C12—C13—N2—C21177.2 (3)
C2—C1—C6—C7179.1 (3)C12—C13—N2—Cu15.0 (4)
N1—C1—C6—C5179.8 (3)C14—C13—N2—C210.9 (5)
N1—C1—C6—C70.1 (5)C14—C13—N2—Cu1177.0 (3)
C2—C1—N1—C9178.7 (3)C13—C14—C15—C160.1 (5)
C2—C1—N1—Cu12.9 (5)C14—C15—C16—C17179.6 (3)
C6—C1—N1—C90.4 (5)C14—C15—C16—C210.1 (5)
C6—C1—N1—Cu1177.9 (2)C15—C16—C17—C18178.5 (3)
C1—C2—C3—C40.6 (5)C21—C16—C17—C181.2 (5)
C2—C3—C4—C50.4 (6)C15—C16—C21—C20178.0 (3)
C3—C4—C5—C60.5 (6)C15—C16—C21—N20.4 (5)
C4—C5—C6—C11.3 (5)C17—C16—C21—C201.6 (5)
C4—C5—C6—C7178.9 (4)C17—C16—C21—N2179.9 (3)
C1—C6—C7—C80.8 (5)C16—C17—C18—C190.5 (6)
C5—C6—C7—C8179.3 (4)C17—C18—C19—C201.8 (6)
C6—C7—C8—C91.3 (6)C18—C19—C20—C211.4 (5)
C7—C8—C9—C10179.5 (3)C19—C20—C21—C160.4 (5)
C7—C8—C9—N11.0 (6)C19—C20—C21—N2178.8 (3)
C8—C9—C10—N4178.3 (3)C16—C21—N2—C130.9 (5)
C8—C9—C10—O22.4 (5)C16—C21—N2—Cu1176.5 (2)
N1—C9—C10—N40.4 (4)C20—C21—N2—C13177.5 (3)
N1—C9—C10—O2179.0 (3)C20—C21—N2—Cu15.1 (5)
C8—C9—N1—C10.1 (5)O1—C22—N3—C23178.7 (3)
C8—C9—N1—Cu1178.7 (3)O1—C22—N3—C240.4 (5)
C10—C9—N1—C1178.6 (3)N3—C22—O1—Cu1155.7 (2)
C10—C9—N1—Cu12.7 (4)C1—N1—Cu1—N4178.0 (3)
C9—C10—N4—C12179.4 (3)C1—N1—Cu1—N2163.4 (3)
C9—C10—N4—Cu13.6 (4)C1—N1—Cu1—O150.2 (3)
O2—C10—N4—C120.0 (6)C1—N1—Cu1—Br153.4 (3)
O2—C10—N4—Cu1175.7 (3)C9—N1—Cu1—N43.6 (2)
C10—N4—C12—C13178.7 (3)C9—N1—Cu1—N218.2 (5)
C10—N4—C12—O31.9 (6)C9—N1—Cu1—O1131.4 (2)
Cu1—N4—C12—C133.0 (4)C9—N1—Cu1—Br1125.0 (2)
Cu1—N4—C12—O3177.6 (3)C13—N2—Cu1—N45.1 (2)
C10—N4—Cu1—N14.1 (2)C13—N2—Cu1—N119.6 (5)
C10—N4—Cu1—N2179.6 (3)C13—N2—Cu1—O1133.6 (2)
C10—N4—Cu1—O195.2 (3)C13—N2—Cu1—Br1124.1 (2)
C10—N4—Cu1—Br191.4 (2)C21—N2—Cu1—N4177.4 (3)
C12—N4—Cu1—N1180.0 (3)C21—N2—Cu1—N1162.8 (3)
C12—N4—Cu1—N24.5 (2)C21—N2—Cu1—O148.8 (3)
C12—N4—Cu1—O188.8 (3)C21—N2—Cu1—Br153.5 (3)
C12—N4—Cu1—Br184.6 (3)C22—O1—Cu1—N445.9 (3)
N4—C12—C13—C14179.8 (3)C22—O1—Cu1—N137.8 (3)
N4—C12—C13—N21.6 (4)C22—O1—Cu1—N2125.8 (3)
O3—C12—C13—C140.3 (5)C22—O1—Cu1—Br1139.3 (3)
O3—C12—C13—N2177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···Br1i0.98 (5)2.87 (4)3.663 (5)138 (3)
C15—H15···Br1ii0.932.823.655 (4)151
C20—H20···O10.932.423.059 (4)126
C22—H22···O3iii0.932.333.060 (4)135
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···Br1i0.98 (5)2.87 (4)3.663 (5)138 (3)
C15—H15···Br1ii0.932.823.655 (4)151
C20—H20···O10.932.423.059 (4)126
C22—H22···O3iii0.932.333.060 (4)135
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the project of the Science and Engineering Research Board, Government of India (project No. SR/S11/PC-08/2011)

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalatayud, M. L., Castro, I., Sletten, J., Lloret, F. & Julve, M. (2000). Inorg. Chim. Acta, 300–302, 846–854.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarlucci, L., Ciani, G., Maggini, S., Proserpio, D. M., Sessoli, R. & Totti, F. (2011). Inorg. Chim. Acta, 363, 538–548.  Web of Science CSD CrossRef Google Scholar
First citationCastro, I., Calatayud, M. L., Sletten, J., Lloret, F., Cano, J., Julve, M., Seitz, G. & Mann, K. (1999). Inorg. Chem. 38, 4680–4687.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCastro, I., Faus, J. & Julve, M. (1990). J. Chem. Soc. Dalton Trans. pp. 891–897.  CSD CrossRef Web of Science Google Scholar
First citationCastro, I., Faus, J., Julve, M., Journaux, Y. & Sletten, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2533–2538.  CSD CrossRef Web of Science Google Scholar
First citationLebon, F., Rosny, E. D., Reboud-Ravaux, M. & Durant, F. (1998). Eur. J. Med. Chem. 33, 733–737.  Web of Science CrossRef CAS Google Scholar
First citationSahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448–1454.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVangdal, B., Carranza, J., Lloret, F., Julve, M. & Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566–574.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m206-m207
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds