organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(5-Methyl-2-oxoindolin-3-yl­­idene)-N-phenyl­hydrazinecarbo­thio­amide

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Khartoum, Sudan, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 29 October 2011; accepted 18 November 2011; online 30 November 2011)

In the title compound, C16H14N4OS, the dihedral angle between the nine-membered 5-methyl­indolin-2-one ring system and the benzene ring is 10.21 (7)°. Intra­molecular cyclic N—H⋯O and C—H⋯S hydrogen-bonding inter­actions [graph set S(6)] are present within the N—N—C—N chain between the ring systems. In the crystal, mol­ecules form centrosymmetric cyclic dimers through pairs of N—H⋯O hydrogen bonds [graph set R22(8)].

Related literature

For related structures, see: Qasem Ali et al. (2011[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011). Acta Cryst. E67, o3141-o3142.]); Ferrari et al. (2002[Ferrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argűelles, M. C. (2002). Polyhedron, 21, 2593-2599.]); Pervez et al. (2010[Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609.]); Ramzan et al. (2010[Ramzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387.]). For the biological activity of Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Bhardwaj et al. (2010[Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983-2985.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Ind. J. Pharm. Sci. 61, 358-361.]); Sridhar et al. (2002[Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129-132.]); Suryavanshi & Pai (2006[Suryavanshi, J. P. & Pai, N. R. (2006). Ind. J. Chem. 45B, 1227-1230.]). For the cytotoxic and anti­cancer activiy of isatin and its derivatives, see: Vine et al. (2009[Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397-414.]). For bond-length data, see; Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4OS

  • Mr = 310.37

  • Monoclinic, P 21 /c

  • a = 5.6875 (3) Å

  • b = 17.9405 (8) Å

  • c = 14.5658 (6) Å

  • β = 91.105 (3)°

  • V = 1485.97 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.37 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.980

  • 25266 measured reflections

  • 4645 independent reflections

  • 3565 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.123

  • S = 1.06

  • 4645 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.89 (2) 1.96 (2) 2.848 (2) 173 (2)
N3—H1N3⋯O1 0.91 (2) 2.04 (2) 2.7595 (17) 135.8 (19)
C11—H11A⋯S1 0.95 2.63 3.2712 (18) 125
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain and offer protection against certain types of infections, such as antibacterial (Suryavanshi & Pai, 2006) antifungal, anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2- oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011). In the present paper we describe the single-crystal X-ray diffraction study of title compound, C16H14N4OS.

In this compound (Fig. 1), the dihedral angle between the nine-membered 5-methylindolin-2-one ring system and the benzene ring is 10.21 (7)°. The atoms C8 in the 5-methylindolin-2-one ring and C10 in the benzene ring are connected by a chain of four atoms (N2/N3/C9/N4)) giving a torsion angle of 7.3 (2)°, while the torsion angles (C8/N2/N3/C9) and (C10/N4/C9/N3) are 173.20 (15)° and -177.56 (16)°, respectively. These values are very close to those in the previously mentioned analogous structure (Qasem Ali et al., 2011). The essentially planar conformation of the molecule is maintained by cyclic intramolecular N3—H···O1 and C11—H···S1 hydrogen-bonding interactions [graph set S(6) (Bernstein et al., 1995)] (Table 1) together with an S(5) N4—H···N2 interaction.

In the crystal the molecules form centrosymmetric cyclic dimers through intermolecular N1—H···O1i hydrogen bonds [graph set R22(8)] (Table 1) (Fig. 2). Weak C—H···π interactions are also present: C5—H5A···Cg3ii = 3.6506 (19) Å; C12—H12A···Cg2iii = 3.6600 (19) Å. [Cg3ii is the centroid of the C10—C15 ring; Cg2iii is the centroid of the C1—C6 ring: symmetry code: (ii) = -x + 1, y + 1/2, -z + 1/2; (iii) = -x, y - 1/2, -z + 1/2].

Related literature top

For related structures, see: Qasem Ali et al. (2011); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For the biological activity of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anticancer activiy of isatin and its derivatives, see: Vine et al. (2009). For bond-length data, see; Allen et al. (1987). For graph-set analysis, see Bernstein et al. (1995).

Experimental top

The title compound was synthesized by refluxing the reaction mixture of 4-phenyl-3-thiosemicarbazide (0.01 mol) and 5-methylisatin (0.01 mol) in 60 ml of ethanol for 2 hrs. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH: yield 80%. The orange crystals (m.p. 511.8–512.3 K) were grown in acetone-DMF (3:1) by slow evaporation at room temperature.

Refinement top

H atoms bound to N were located in a difference-Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å (aryl) and 0.98 Å (methyl) and Uiso(H) = 1.2Ueq(aryl C) and Uiso(H) = 1.5Ueq(methyl C). The highest residual electron density peak (0.397 eÅ-3)is located at 0.71 Å from C8 and the deepest hole (-0.303 eÅ-3) is located at 1.33 Å from C6.

Structure description top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain and offer protection against certain types of infections, such as antibacterial (Suryavanshi & Pai, 2006) antifungal, anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2- oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011). In the present paper we describe the single-crystal X-ray diffraction study of title compound, C16H14N4OS.

In this compound (Fig. 1), the dihedral angle between the nine-membered 5-methylindolin-2-one ring system and the benzene ring is 10.21 (7)°. The atoms C8 in the 5-methylindolin-2-one ring and C10 in the benzene ring are connected by a chain of four atoms (N2/N3/C9/N4)) giving a torsion angle of 7.3 (2)°, while the torsion angles (C8/N2/N3/C9) and (C10/N4/C9/N3) are 173.20 (15)° and -177.56 (16)°, respectively. These values are very close to those in the previously mentioned analogous structure (Qasem Ali et al., 2011). The essentially planar conformation of the molecule is maintained by cyclic intramolecular N3—H···O1 and C11—H···S1 hydrogen-bonding interactions [graph set S(6) (Bernstein et al., 1995)] (Table 1) together with an S(5) N4—H···N2 interaction.

In the crystal the molecules form centrosymmetric cyclic dimers through intermolecular N1—H···O1i hydrogen bonds [graph set R22(8)] (Table 1) (Fig. 2). Weak C—H···π interactions are also present: C5—H5A···Cg3ii = 3.6506 (19) Å; C12—H12A···Cg2iii = 3.6600 (19) Å. [Cg3ii is the centroid of the C10—C15 ring; Cg2iii is the centroid of the C1—C6 ring: symmetry code: (ii) = -x + 1, y + 1/2, -z + 1/2; (iii) = -x, y - 1/2, -z + 1/2].

For related structures, see: Qasem Ali et al. (2011); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For the biological activity of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anticancer activiy of isatin and its derivatives, see: Vine et al. (2009). For bond-length data, see; Allen et al. (1987). For graph-set analysis, see Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis of the unit cell. Hydrogen bonds are shown as dashed lines.
(Z)-2-(5-Methyl-2-oxoindolin-3-ylidene)-N- phenylhydrazinecarbothioamide top
Crystal data top
C16H14N4OSF(000) = 648
Mr = 310.37Dx = 1.387 Mg m3
Monoclinic, P21/cMelting point = 511.8–512.3 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.6875 (3) ÅCell parameters from 4470 reflections
b = 17.9405 (8) Åθ = 3.0–30.2°
c = 14.5658 (6) ŵ = 0.23 mm1
β = 91.105 (3)°T = 100 K
V = 1485.97 (12) Å3Block, orange
Z = 40.37 × 0.14 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
4645 independent reflections
Radiation source: fine-focus sealed tube3565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 30.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.921, Tmax = 0.980k = 2522
25266 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.044P)2 + 0.9076P]
where P = (Fo2 + 2Fc2)/3
4645 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H14N4OSV = 1485.97 (12) Å3
Mr = 310.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6875 (3) ŵ = 0.23 mm1
b = 17.9405 (8) ÅT = 100 K
c = 14.5658 (6) Å0.37 × 0.14 × 0.09 mm
β = 91.105 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3565 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.980Rint = 0.080
25266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.40 e Å3
4645 reflectionsΔρmin = 0.30 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07706 (8)0.29276 (3)0.01263 (3)0.02056 (12)
O10.7096 (2)0.44974 (7)0.01110 (8)0.0187 (3)
N10.9164 (3)0.52631 (8)0.11276 (10)0.0179 (3)
N20.3961 (2)0.43175 (8)0.17539 (10)0.0150 (3)
N30.3233 (2)0.39394 (8)0.09997 (10)0.0162 (3)
N40.0280 (2)0.34699 (8)0.18614 (10)0.0159 (3)
C10.6987 (3)0.51350 (9)0.24304 (12)0.0165 (3)
C20.6453 (3)0.52430 (10)0.33500 (12)0.0184 (3)
H2A0.50770.50270.35980.022*
C30.7961 (3)0.56718 (10)0.39045 (12)0.0193 (3)
C40.9965 (3)0.59863 (10)0.35161 (13)0.0206 (4)
H4A1.09890.62760.38950.025*
C51.0518 (3)0.58900 (10)0.25912 (13)0.0208 (4)
H5A1.18790.61100.23380.025*
C60.8998 (3)0.54610 (10)0.20639 (12)0.0169 (3)
C70.7392 (3)0.47997 (9)0.08672 (12)0.0161 (3)
C80.5860 (3)0.47119 (9)0.16929 (11)0.0155 (3)
C90.1363 (3)0.34475 (9)0.10484 (11)0.0149 (3)
C100.1620 (3)0.30520 (9)0.22098 (11)0.0153 (3)
C110.3260 (3)0.26716 (9)0.16670 (12)0.0173 (3)
H11A0.31180.26630.10180.021*
C120.5113 (3)0.23029 (10)0.20818 (13)0.0200 (3)
H12A0.62240.20390.17110.024*
C130.5366 (3)0.23132 (10)0.30262 (13)0.0230 (4)
H13A0.66410.20600.33010.028*
C140.3733 (3)0.26977 (12)0.35662 (13)0.0250 (4)
H14A0.38960.27110.42140.030*
C150.1861 (3)0.30627 (11)0.31617 (12)0.0218 (4)
H15A0.07400.33210.35350.026*
C160.7427 (4)0.58122 (12)0.48997 (13)0.0275 (4)
H16A0.57430.57380.49980.041*
H16B0.78580.63250.50610.041*
H16C0.83320.54650.52870.041*
H1N40.095 (4)0.3741 (12)0.2252 (15)0.021 (5)*
H1N11.034 (4)0.5376 (13)0.0759 (16)0.033 (6)*
H1N30.410 (4)0.3965 (12)0.0486 (15)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0242 (2)0.0211 (2)0.0166 (2)0.00282 (16)0.00367 (15)0.00340 (17)
O10.0170 (6)0.0209 (6)0.0183 (6)0.0005 (5)0.0041 (4)0.0018 (5)
N10.0150 (6)0.0184 (7)0.0205 (7)0.0013 (5)0.0072 (5)0.0019 (6)
N20.0152 (6)0.0132 (7)0.0166 (7)0.0008 (5)0.0025 (5)0.0017 (5)
N30.0167 (6)0.0164 (7)0.0156 (7)0.0017 (5)0.0048 (5)0.0001 (5)
N40.0166 (6)0.0164 (7)0.0146 (7)0.0041 (5)0.0029 (5)0.0003 (6)
C10.0147 (7)0.0148 (8)0.0199 (8)0.0004 (6)0.0020 (6)0.0027 (6)
C20.0191 (8)0.0172 (8)0.0191 (8)0.0015 (6)0.0044 (6)0.0026 (7)
C30.0223 (8)0.0152 (8)0.0206 (8)0.0003 (6)0.0015 (6)0.0008 (7)
C40.0206 (8)0.0162 (8)0.0250 (9)0.0029 (6)0.0011 (7)0.0012 (7)
C50.0161 (7)0.0178 (9)0.0287 (9)0.0025 (6)0.0042 (6)0.0014 (7)
C60.0148 (7)0.0148 (8)0.0212 (8)0.0015 (6)0.0040 (6)0.0026 (6)
C70.0148 (7)0.0135 (8)0.0204 (8)0.0028 (5)0.0041 (6)0.0055 (6)
C80.0136 (7)0.0156 (8)0.0174 (8)0.0007 (6)0.0038 (6)0.0038 (6)
C90.0154 (7)0.0137 (8)0.0157 (8)0.0001 (6)0.0014 (6)0.0025 (6)
C100.0137 (7)0.0137 (8)0.0186 (8)0.0008 (5)0.0031 (6)0.0028 (6)
C110.0172 (7)0.0160 (8)0.0187 (8)0.0011 (6)0.0007 (6)0.0001 (6)
C120.0158 (7)0.0162 (8)0.0279 (9)0.0010 (6)0.0002 (6)0.0001 (7)
C130.0166 (8)0.0206 (9)0.0319 (10)0.0006 (6)0.0053 (7)0.0069 (7)
C140.0205 (8)0.0364 (11)0.0184 (8)0.0023 (7)0.0046 (7)0.0057 (8)
C150.0182 (8)0.0296 (10)0.0175 (8)0.0038 (7)0.0011 (6)0.0013 (7)
C160.0351 (10)0.0269 (10)0.0205 (9)0.0088 (8)0.0030 (7)0.0025 (8)
Geometric parameters (Å, º) top
S1—C91.6643 (17)C4—C51.400 (3)
O1—C71.236 (2)C4—H4A0.9500
N1—C71.355 (2)C5—C61.380 (2)
N1—C61.414 (2)C5—H5A0.9500
N1—H1N10.89 (3)C7—C81.507 (2)
N2—C81.296 (2)C10—C111.390 (2)
N2—N31.349 (2)C10—C151.396 (2)
N3—C91.385 (2)C11—C121.392 (2)
N3—H1N30.91 (2)C11—H11A0.9500
N4—C91.346 (2)C12—C131.386 (3)
N4—C101.417 (2)C12—H12A0.9500
N4—H1N40.84 (2)C13—C141.389 (3)
C1—C21.393 (2)C13—H13A0.9500
C1—C61.400 (2)C14—C151.391 (2)
C1—C81.454 (2)C14—H14A0.9500
C2—C31.397 (2)C15—H15A0.9500
C2—H2A0.9500C16—H16A0.9800
C3—C41.401 (2)C16—H16B0.9800
C3—C161.508 (3)C16—H16C0.9800
C7—N1—C6111.17 (14)N2—C8—C1126.19 (15)
C7—N1—H1N1122.3 (15)N2—C8—C7127.40 (16)
C6—N1—H1N1126.2 (15)C1—C8—C7106.37 (13)
C8—N2—N3117.49 (14)N4—C9—N3113.02 (15)
N2—N3—C9120.16 (14)N4—C9—S1129.63 (13)
N2—N3—H1N3119.0 (14)N3—C9—S1117.35 (12)
C9—N3—H1N3120.3 (14)C11—C10—C15119.59 (15)
C9—N4—C10131.63 (15)C11—C10—N4124.33 (15)
C9—N4—H1N4113.8 (15)C15—C10—N4116.02 (15)
C10—N4—H1N4114.0 (15)C10—C11—C12119.45 (16)
C2—C1—C6120.24 (16)C10—C11—H11A120.3
C2—C1—C8133.01 (15)C12—C11—H11A120.3
C6—C1—C8106.74 (15)C13—C12—C11121.24 (17)
C1—C2—C3119.32 (16)C13—C12—H12A119.4
C1—C2—H2A120.3C11—C12—H12A119.4
C3—C2—H2A120.3C12—C13—C14119.17 (17)
C2—C3—C4118.91 (17)C12—C13—H13A120.4
C2—C3—C16120.98 (16)C14—C13—H13A120.4
C4—C3—C16120.09 (16)C13—C14—C15120.20 (17)
C5—C4—C3122.58 (17)C13—C14—H14A119.9
C5—C4—H4A118.7C15—C14—H14A119.9
C3—C4—H4A118.7C14—C15—C10120.33 (17)
C6—C5—C4117.04 (16)C14—C15—H15A119.8
C6—C5—H5A121.5C10—C15—H15A119.8
C4—C5—H5A121.5C3—C16—H16A109.5
C5—C6—C1121.91 (16)C3—C16—H16B109.5
C5—C6—N1128.63 (15)H16A—C16—H16B109.5
C1—C6—N1109.45 (15)C3—C16—H16C109.5
O1—C7—N1127.33 (15)H16A—C16—H16C109.5
O1—C7—C8126.46 (15)H16B—C16—H16C109.5
N1—C7—C8106.20 (15)
C8—N2—N3—C9173.20 (15)C6—C1—C8—N2178.90 (16)
C6—C1—C2—C30.8 (3)C2—C1—C8—C7177.55 (18)
C8—C1—C2—C3177.80 (17)C6—C1—C8—C71.20 (18)
C1—C2—C3—C40.5 (3)O1—C7—C8—N21.1 (3)
C1—C2—C3—C16179.03 (17)N1—C7—C8—N2179.90 (16)
C2—C3—C4—C50.2 (3)O1—C7—C8—C1176.55 (16)
C16—C3—C4—C5178.40 (18)N1—C7—C8—C12.43 (18)
C3—C4—C5—C60.5 (3)C10—N4—C9—N3177.56 (16)
C4—C5—C6—C10.1 (3)C10—N4—C9—S12.6 (3)
C4—C5—C6—N1178.48 (17)N2—N3—C9—N47.3 (2)
C2—C1—C6—C50.5 (3)N2—N3—C9—S1172.89 (12)
C8—C1—C6—C5178.41 (16)C9—N4—C10—C1121.0 (3)
C2—C1—C6—N1179.35 (15)C9—N4—C10—C15161.84 (18)
C8—C1—C6—N10.42 (19)C15—C10—C11—C120.4 (3)
C7—N1—C6—C5176.62 (17)N4—C10—C11—C12177.43 (16)
C7—N1—C6—C12.1 (2)C10—C11—C12—C130.6 (3)
C6—N1—C7—O1176.20 (16)C11—C12—C13—C140.2 (3)
C6—N1—C7—C82.77 (18)C12—C13—C14—C150.4 (3)
N3—N2—C8—C1177.47 (15)C13—C14—C15—C100.6 (3)
N3—N2—C8—C70.2 (2)C11—C10—C15—C140.2 (3)
C2—C1—C8—N20.2 (3)N4—C10—C15—C14177.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N20.84 (2)2.14 (2)2.5947 (18)114.1 (18)
N1—H1N1···O1i0.89 (2)1.96 (2)2.848 (2)173 (2)
N3—H1N3···O10.91 (2)2.04 (2)2.7595 (17)135.8 (19)
C11—H11A···S10.952.633.2712 (18)125
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14N4OS
Mr310.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.6875 (3), 17.9405 (8), 14.5658 (6)
β (°) 91.105 (3)
V3)1485.97 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.37 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.921, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
25266, 4645, 3565
Rint0.080
(sin θ/λ)max1)0.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 1.06
No. of reflections4645
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.89 (2)1.96 (2)2.848 (2)173 (2)
N3—H1N3···O10.91 (2)2.04 (2)2.7595 (17)135.8 (19)
C11—H11A···S10.952.633.2712 (18)125
Symmetry code: (i) x+2, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave. AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationFerrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argűelles, M. C. (2002). Polyhedron, 21, 2593–2599.  Web of Science CSD CrossRef CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Ind. J. Pharm. Sci. 61, 358–361.  Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011). Acta Cryst. E67, o3141–o3142.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuryavanshi, J. P. & Pai, N. R. (2006). Ind. J. Chem. 45B, 1227–1230.  CAS Google Scholar
First citationVine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397–414.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds