organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o68-o69

Crystal structure of 1′,1′′-di­methyl-4′-(4-cholorophen­yl)di­spiro­[11H-indeno[1,2-b]quinoxaline-11,2′-pyrrolidine-3′,3′′-piperidin]-4′′-one

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 27 November 2014; accepted 19 December 2014; online 3 January 2015)

In the title compound, C30H27ClN4O, the central pyrrolidine ring adopts an envelope conformation with the methyl­ene C atom being the flap. The quinoxaline and indane rings are each essentially planar, with r.m.s. deviations of 0.027 (1) and 0.0417 (1) Å, respectively. The pyrrolidine ring forms dihedral angles of 88.25 (1) and 83.76 (1)° with the quinoxaline and indane rings, respectively. A weak intra­molecular C—H⋯N inter­action is observed. In the crystal, C—H⋯π inter­actions lead to supra­molecular chains along [101] that assemble in the ac plane. Connections along the b axis are of the type Cl⋯Cl [3.6538 (16) Å].

1. Related literature

For the importance of quinoxaline derivatives, see: Abasolo et al. (1987[Abasolo, M. I., Gaozza, C. H. & Fernández, B. M. (1987). J. Heterocycl. Chem. 24, 1771-1775.]); Kleim et al. (1995[Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rösner, M., Rübsamen-Waigmann, H., Kaiser, R., Wichers, M. & Schneweis, K. E. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.]); Dailey et al. (2001[Dailey, S., Feast, W. J., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238-2243.]); Rodrigo et al. (2002[Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.]); Seitz et al. (2002[Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604-5606.]). For a related structure, see: Selvanayagam et al. (2011[Selvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H27ClN4O

  • Mr = 495.00

  • Monoclinic, C 2/c

  • a = 22.4220 (13) Å

  • b = 14.3498 (9) Å

  • c = 17.2811 (9) Å

  • β = 116.847 (2)°

  • V = 4960.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Gottingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 18093 measured reflections

  • 3791 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.05

  • 3791 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C41—H41A⋯N3 0.97 2.39 2.988 (3) 120
C11—H11⋯Cg1i 0.93 2.89 3.655 (2) 140
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Chemical context top

Quinoxaline derivatives are an important class of benzoheterocycles. They have found applications as anti-cancer, anti-viral, and anti-bacterial agents (Seitz et al., 2002), and dyes (Dailey et al., 2001). Quinoxaline derivatives were found to exhibit anti-microbial (Kleim et al. 1995), anti­tumor (Abasolo et al., 1987), and anti-tuberculous activity (Rodrigo et al., 2002). Our inter­est in preparing pharmacologically active quinoxaline derivatives led us to the title compound, and we have undertaken X-ray crystal structure determination in order to establish its conformation.

Structural commentary top

In the title compound (Fig. 1), C30H27ClN4O, the central pyrrolidine ring is an envelope on C2 with the asymmetry parameters ΔCs(C2) = 7.6 (2) Å and puckering parameters q2 = 0.433 (2) Å and ϕ2 = 31.2 (3)°. The pyrrolidine ring is almost equatorial with the quinoxaline and indane rings making dihedral angles of 88.34 (1)° and 83.71 (1)°, respectively. The quinoxaline ring system (C12—C17/N3,N4) is planar, with r.m.s. deviation of 0.027 (1) Å. The indane group is also planar with r.m.s.deviation 0.0417 (1)°. The dihedral angle between the mean planes of the fused quinoxaline and the indane groups is 8.39 (1) °, which indicates that the fused rings are slightly twisted about the C12—C13 bond. The C—C bond lengths in the pyrrolidine ring in particular, at two spiro junctions (C3—C4 = 1.558 (3) Å and C4—C5 = 1.605 (3) Å) are somewhat longer than the normal values (C—C = 1.54 Å), as found in a similar structure (Selvanayagam et al., 2011). This may be due to the the steric inter­actions of the bulky substituents at atoms C4 and C5 of the pyrrolidine ring. The short contact H32 ··· H2b of 2.18 Å results in substantial widening of the bond angle C3—C31—C32 to 123.67 (1) °. The sum of the bond angles around N1 (339.87 (1)°) and N2 (330.97 (1)°) indicate that the atoms N1 and N2 exhibit a pyramidal geometry. The six membered ring N2/C41—C45 exhibits a twisted chair conformation, as indicated by the assymetrical parameters ΔCs(N2) = 7.4 (2)°, ΔCs(C45) = 7.4 (2) ° and with the puckering parameters Q = 0.559 (3) Å, θ = 17.4 (3)° and Φ = 24.6 (9)°. The torsion angle C4—C41—N2—C42 is -167.50 ° corresponds to an anti­periplanar conformation.

A weak intra-molecular C—H···N inter­action is observed (Table 1). In the crystal, C—H···π inter­actions lead to supra­molecular chains along [101] that assemble in the ac plane. Connections along the b axis are of the type Cl···Cl (3.6538 (16) Å).

Synthesis and crystallization top

A mixture of 1-methyl-3-[E-(4-chloro­phenyl)­methyl­idene]tetra­hydro-2(1H)- pyridinone (1 mmol), ninhydrin (1 mmol), o-phenyl­enedi­amine (1 mmol) and sarcosine (1 mmol) in methanol was refluxed for 3-4 h. After completion of the reaction as indicated by TLC the reaction mixture was poured into cold water. The solid precipitate obtained was filtered and dried. The product was purified by colum chromatography using petroleum ether:ethyl­acetate mixture (90:10 V/V). Suitable crystals for the single crystal-X-ray studies were obtained by recrystalizing the product from methanol. Yield: 42%, Melting point: 450-452 K.

Refinement top

All the H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The (-1 1 1), (1 1 0) reflections were affected by the beam-stop and were removed from the final refinement. The best crystal investigated was still of poor quality and very weakly diffracting, with no usable data obtanied above θ = 23.8°. Nonetheless, the structure was solved readily and refined to give acceptable uncertainties on the metrical data.

Related literature top

For the importance of quinoxaline derivatives, see: Abasolo et al. (1987); Kleim et al. (1995); Dailey et al. (2001); Rodrigo et al. (2002); Seitz et al. (2002). For a related structure, see: Selvanayagam et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. The partial packing diagram showing C—H···π interactions as dashed lines. All H-atoms are omitted for clarity except for the H atom involved in the intermolecular interaction.
1',1''-Dimethyl-4'-(4-cholorophenyl)dispiro[11H- indeno[1,2-b]quinoxaline-11,2'-pyrrolidine-3',3''-piperidin]-4''-one top
Crystal data top
C30H27ClN4OF(000) = 2080
Mr = 495.00Dx = 1.326 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.4220 (13) ÅCell parameters from 2000 reflections
b = 14.3498 (9) Åθ = 2–31°
c = 17.2811 (9) ŵ = 0.19 mm1
β = 116.847 (2)°T = 293 K
V = 4960.9 (5) Å3Block, colourless
Z = 80.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2758 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
ω and ϕ scansθmax = 23.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2425
Tmin = 0.967, Tmax = 0.974k = 1616
18093 measured reflectionsl = 1913
3791 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.052P)2 + 2.7359P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3791 reflectionsΔρmax = 0.22 e Å3
325 parametersΔρmin = 0.26 e Å3
Crystal data top
C30H27ClN4OV = 4960.9 (5) Å3
Mr = 495.00Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.4220 (13) ŵ = 0.19 mm1
b = 14.3498 (9) ÅT = 293 K
c = 17.2811 (9) Å0.21 × 0.19 × 0.18 mm
β = 116.847 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3791 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2758 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.032
18093 measured reflectionsθmax = 23.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
3791 reflectionsΔρmin = 0.26 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30822 (11)0.05687 (16)0.33108 (14)0.0608 (6)
H1A0.31910.02970.28830.091*
H1B0.34810.08070.37810.091*
H1C0.28880.01030.35260.091*
C20.23954 (11)0.18035 (15)0.34879 (13)0.0523 (5)
H2A0.27670.21040.39650.063*
H2B0.21740.13850.37170.063*
C30.19136 (10)0.25089 (14)0.28740 (12)0.0459 (5)
H30.21840.29620.27460.055*
C40.15164 (10)0.19405 (14)0.20256 (12)0.0457 (5)
C50.20122 (9)0.10932 (14)0.21204 (12)0.0439 (5)
C60.22053 (10)0.09623 (14)0.13862 (12)0.0466 (5)
C70.19965 (10)0.01074 (15)0.09751 (12)0.0492 (5)
C80.21358 (12)0.01455 (18)0.03003 (14)0.0630 (6)
H80.19940.07170.00240.076*
C90.24862 (13)0.0464 (2)0.00475 (16)0.0714 (7)
H90.25750.03080.04130.086*
C100.27083 (12)0.13009 (18)0.04655 (14)0.0650 (6)
H100.29530.16990.02920.078*
C110.25718 (10)0.15583 (16)0.11420 (13)0.0556 (6)
H110.27250.21240.14260.067*
C120.17122 (9)0.01365 (14)0.21185 (12)0.0447 (5)
C130.16878 (10)0.04160 (14)0.14202 (12)0.0462 (5)
C140.12375 (10)0.15970 (15)0.18401 (13)0.0513 (5)
C150.12990 (10)0.10743 (15)0.25619 (13)0.0506 (5)
C160.11002 (11)0.14672 (17)0.31511 (15)0.0628 (6)
H160.11470.11300.36350.075*
C170.08385 (12)0.23439 (19)0.30153 (17)0.0719 (7)
H170.07100.26040.34100.086*
C180.07626 (12)0.28531 (18)0.22925 (18)0.0737 (7)
H180.05760.34460.22020.088*
C190.09589 (11)0.24923 (16)0.17162 (15)0.0623 (6)
H190.09080.28420.12370.075*
C310.15093 (10)0.30600 (14)0.32168 (13)0.0483 (5)
C320.14179 (12)0.27914 (17)0.39179 (14)0.0640 (6)
H320.15980.22280.41880.077*
C330.10678 (13)0.3330 (2)0.42345 (15)0.0742 (7)
H330.10120.31260.47090.089*
C340.08049 (13)0.4154 (2)0.38554 (17)0.0752 (7)
C350.08847 (17)0.4439 (2)0.3162 (2)0.1013 (10)
H350.07040.50050.28980.122*
C360.12311 (15)0.38969 (18)0.28474 (18)0.0839 (8)
H360.12780.41040.23680.101*
C410.08396 (10)0.16135 (16)0.19371 (13)0.0539 (5)
H41A0.09080.12290.24320.065*
H41B0.05760.21510.19340.065*
C420.00945 (13)0.0602 (2)0.1155 (2)0.0974 (10)
H42A0.00600.01930.16470.146*
H42B0.03960.10530.11930.146*
H42C0.03220.02440.06320.146*
C430.02670 (14)0.1710 (2)0.04037 (16)0.0857 (9)
H43A0.00120.21990.04550.103*
H43B0.00040.13690.01280.103*
C440.08668 (14)0.2140 (2)0.03617 (14)0.0824 (8)
H44A0.10790.16720.01640.099*
H44B0.07160.26390.00630.099*
C450.13753 (13)0.25230 (18)0.12140 (14)0.0612 (6)
N10.26100 (8)0.13210 (12)0.29228 (10)0.0486 (4)
N20.04763 (9)0.10806 (14)0.11417 (12)0.0668 (5)
N30.15437 (8)0.01733 (12)0.27018 (10)0.0499 (4)
N40.14498 (8)0.12662 (12)0.12568 (11)0.0532 (5)
O10.16569 (11)0.32522 (13)0.12566 (11)0.0874 (6)
Cl10.03708 (5)0.48362 (8)0.42608 (6)0.1348 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (13)0.0683 (16)0.0540 (13)0.0102 (11)0.0175 (11)0.0012 (11)
C20.0550 (13)0.0562 (13)0.0397 (11)0.0015 (10)0.0160 (10)0.0042 (10)
C30.0513 (12)0.0446 (12)0.0423 (11)0.0033 (9)0.0215 (10)0.0010 (9)
C40.0502 (12)0.0497 (13)0.0360 (10)0.0035 (10)0.0185 (9)0.0018 (9)
C50.0458 (11)0.0479 (12)0.0362 (10)0.0004 (9)0.0168 (9)0.0014 (9)
C60.0451 (11)0.0539 (13)0.0382 (11)0.0029 (10)0.0164 (9)0.0037 (10)
C70.0484 (12)0.0581 (14)0.0380 (11)0.0033 (10)0.0167 (10)0.0017 (10)
C80.0732 (16)0.0713 (16)0.0464 (13)0.0009 (13)0.0287 (12)0.0120 (11)
C90.0785 (17)0.094 (2)0.0515 (14)0.0000 (15)0.0383 (13)0.0059 (14)
C100.0638 (15)0.0843 (19)0.0534 (14)0.0014 (13)0.0322 (12)0.0078 (13)
C110.0566 (13)0.0617 (15)0.0488 (12)0.0004 (11)0.0241 (11)0.0025 (11)
C120.0424 (11)0.0516 (13)0.0371 (11)0.0039 (9)0.0153 (9)0.0017 (9)
C130.0440 (11)0.0480 (13)0.0402 (11)0.0032 (10)0.0133 (9)0.0003 (10)
C140.0428 (11)0.0502 (14)0.0500 (12)0.0033 (10)0.0112 (10)0.0067 (10)
C150.0408 (11)0.0565 (14)0.0470 (12)0.0002 (10)0.0133 (10)0.0055 (10)
C160.0532 (13)0.0751 (17)0.0574 (14)0.0066 (12)0.0226 (11)0.0095 (12)
C170.0577 (15)0.0799 (19)0.0707 (17)0.0117 (13)0.0223 (13)0.0178 (14)
C180.0583 (15)0.0604 (16)0.0869 (19)0.0086 (12)0.0190 (14)0.0120 (15)
C190.0554 (14)0.0506 (14)0.0665 (15)0.0019 (11)0.0149 (12)0.0030 (11)
C310.0535 (12)0.0455 (13)0.0454 (12)0.0062 (10)0.0218 (10)0.0037 (9)
C320.0822 (17)0.0618 (15)0.0521 (13)0.0109 (13)0.0339 (13)0.0044 (11)
C330.0803 (17)0.098 (2)0.0518 (14)0.0089 (16)0.0364 (14)0.0049 (14)
C340.0730 (17)0.085 (2)0.0645 (16)0.0170 (15)0.0286 (14)0.0128 (14)
C350.143 (3)0.0686 (19)0.120 (3)0.0444 (19)0.084 (2)0.0252 (18)
C360.122 (2)0.0625 (17)0.096 (2)0.0280 (16)0.0741 (19)0.0268 (15)
C410.0477 (12)0.0577 (14)0.0505 (12)0.0040 (10)0.0170 (10)0.0077 (10)
C420.0565 (16)0.100 (2)0.111 (2)0.0149 (15)0.0164 (16)0.0301 (18)
C430.0708 (18)0.103 (2)0.0537 (15)0.0192 (16)0.0022 (14)0.0080 (15)
C440.090 (2)0.103 (2)0.0409 (13)0.0323 (17)0.0177 (14)0.0129 (13)
C450.0720 (16)0.0648 (16)0.0493 (13)0.0192 (13)0.0295 (12)0.0092 (12)
N10.0462 (10)0.0531 (11)0.0410 (9)0.0039 (8)0.0148 (8)0.0023 (8)
N20.0516 (11)0.0734 (14)0.0582 (12)0.0014 (10)0.0096 (10)0.0157 (10)
N30.0496 (10)0.0564 (12)0.0424 (10)0.0024 (8)0.0198 (8)0.0016 (8)
N40.0516 (10)0.0521 (11)0.0475 (10)0.0005 (9)0.0151 (9)0.0010 (9)
O10.1327 (17)0.0656 (12)0.0729 (12)0.0032 (12)0.0542 (12)0.0171 (10)
Cl10.1370 (8)0.1672 (9)0.1083 (7)0.0676 (7)0.0626 (6)0.0185 (6)
Geometric parameters (Å, º) top
C1—N11.447 (3)C15—C161.401 (3)
C1—H1A0.9600C16—C171.363 (3)
C1—H1B0.9600C16—H160.9300
C1—H1C0.9600C17—C181.390 (4)
C2—N11.445 (2)C17—H170.9300
C2—C31.511 (3)C18—C191.360 (3)
C2—H2A0.9700C18—H180.9300
C2—H2B0.9700C19—H190.9300
C3—C311.511 (3)C31—C361.371 (3)
C3—C41.558 (3)C31—C321.372 (3)
C3—H30.9800C32—C331.379 (3)
C4—C411.529 (3)C32—H320.9300
C4—C451.538 (3)C33—C341.352 (4)
C4—C51.605 (3)C33—H330.9300
C5—N11.466 (2)C34—C351.352 (4)
C5—C61.526 (3)C34—Cl11.736 (2)
C5—C121.528 (3)C35—C361.374 (4)
C6—C111.378 (3)C35—H350.9300
C6—C71.389 (3)C36—H360.9300
C7—C81.385 (3)C41—N21.458 (3)
C7—C131.455 (3)C41—H41A0.9700
C8—C91.372 (3)C41—H41B0.9700
C8—H80.9300C42—N21.462 (3)
C9—C101.374 (3)C42—H42A0.9600
C9—H90.9300C42—H42B0.9600
C10—C111.386 (3)C42—H42C0.9600
C10—H100.9300C43—N21.457 (3)
C11—H110.9300C43—C441.511 (4)
C12—N31.304 (2)C43—H43A0.9700
C12—C131.424 (3)C43—H43B0.9700
C13—N41.310 (3)C44—C451.501 (4)
C14—N41.379 (3)C44—H44A0.9700
C14—C191.402 (3)C44—H44B0.9700
C14—C151.408 (3)C45—O11.207 (3)
C15—N31.382 (3)
N1—C1—H1A109.5C16—C17—C18120.6 (2)
N1—C1—H1B109.5C16—C17—H17119.7
H1A—C1—H1B109.5C18—C17—H17119.7
N1—C1—H1C109.5C19—C18—C17120.6 (2)
H1A—C1—H1C109.5C19—C18—H18119.7
H1B—C1—H1C109.5C17—C18—H18119.7
N1—C2—C3101.37 (15)C18—C19—C14120.4 (2)
N1—C2—H2A111.5C18—C19—H19119.8
C3—C2—H2A111.5C14—C19—H19119.8
N1—C2—H2B111.5C36—C31—C32116.1 (2)
C3—C2—H2B111.5C36—C31—C3120.23 (19)
H2A—C2—H2B109.3C32—C31—C3123.67 (19)
C2—C3—C31116.15 (16)C31—C32—C33122.1 (2)
C2—C3—C4103.51 (15)C31—C32—H32118.9
C31—C3—C4116.98 (16)C33—C32—H32118.9
C2—C3—H3106.5C34—C33—C32120.0 (2)
C31—C3—H3106.5C34—C33—H33120.0
C4—C3—H3106.5C32—C33—H33120.0
C41—C4—C45106.83 (17)C35—C34—C33119.4 (2)
C41—C4—C3112.00 (15)C35—C34—Cl1120.6 (2)
C45—C4—C3111.62 (17)C33—C34—Cl1119.9 (2)
C41—C4—C5112.83 (16)C34—C35—C36120.3 (3)
C45—C4—C5110.64 (15)C34—C35—H35119.9
C3—C4—C5103.02 (15)C36—C35—H35119.9
N1—C5—C6109.41 (15)C31—C36—C35122.1 (2)
N1—C5—C12114.58 (15)C31—C36—H36118.9
C6—C5—C12100.23 (15)C35—C36—H36118.9
N1—C5—C4102.88 (14)N2—C41—C4111.24 (16)
C6—C5—C4116.86 (15)N2—C41—H41A109.4
C12—C5—C4113.36 (15)C4—C41—H41A109.4
C11—C6—C7120.10 (18)N2—C41—H41B109.4
C11—C6—C5127.65 (19)C4—C41—H41B109.4
C7—C6—C5112.17 (17)H41A—C41—H41B108.0
C8—C7—C6120.7 (2)N2—C42—H42A109.5
C8—C7—C13130.7 (2)N2—C42—H42B109.5
C6—C7—C13108.46 (17)H42A—C42—H42B109.5
C9—C8—C7118.7 (2)N2—C42—H42C109.5
C9—C8—H8120.6H42A—C42—H42C109.5
C7—C8—H8120.6H42B—C42—H42C109.5
C8—C9—C10120.9 (2)N2—C43—C44110.7 (2)
C8—C9—H9119.6N2—C43—H43A109.5
C10—C9—H9119.6C44—C43—H43A109.5
C9—C10—C11120.7 (2)N2—C43—H43B109.5
C9—C10—H10119.6C44—C43—H43B109.5
C11—C10—H10119.6H43A—C43—H43B108.1
C6—C11—C10118.9 (2)C45—C44—C43113.6 (2)
C6—C11—H11120.6C45—C44—H44A108.8
C10—C11—H11120.6C43—C44—H44A108.8
N3—C12—C13123.48 (19)C45—C44—H44B108.8
N3—C12—C5125.84 (17)C43—C44—H44B108.8
C13—C12—C5110.51 (16)H44A—C44—H44B107.7
N4—C13—C12123.85 (18)O1—C45—C44121.4 (2)
N4—C13—C7127.70 (18)O1—C45—C4121.9 (2)
C12—C13—C7108.38 (18)C44—C45—C4116.6 (2)
N4—C14—C19118.7 (2)C2—N1—C1116.20 (16)
N4—C14—C15122.43 (19)C2—N1—C5107.75 (15)
C19—C14—C15118.8 (2)C1—N1—C5115.92 (16)
N3—C15—C16118.7 (2)C43—N2—C41108.79 (19)
N3—C15—C14121.71 (18)C43—N2—C42111.5 (2)
C16—C15—C14119.6 (2)C41—N2—C42110.65 (19)
C17—C16—C15120.0 (2)C12—N3—C15114.47 (17)
C17—C16—H16120.0C13—N4—C14113.86 (17)
C15—C16—H16120.0
N1—C2—C3—C31171.55 (16)C14—C15—C16—C171.1 (3)
N1—C2—C3—C441.92 (19)C15—C16—C17—C180.4 (4)
C2—C3—C4—C4198.92 (19)C16—C17—C18—C191.2 (4)
C31—C3—C4—C4130.2 (2)C17—C18—C19—C140.4 (4)
C2—C3—C4—C45141.35 (17)N4—C14—C19—C18178.0 (2)
C31—C3—C4—C4589.5 (2)C15—C14—C19—C181.1 (3)
C2—C3—C4—C522.61 (18)C2—C3—C31—C36158.8 (2)
C31—C3—C4—C5151.73 (16)C4—C3—C31—C3678.4 (3)
C41—C4—C5—N1125.30 (16)C2—C3—C31—C3218.6 (3)
C45—C4—C5—N1115.08 (18)C4—C3—C31—C32104.2 (2)
C3—C4—C5—N14.34 (18)C36—C31—C32—C330.1 (4)
C41—C4—C5—C6114.83 (18)C3—C31—C32—C33177.4 (2)
C45—C4—C5—C64.8 (2)C31—C32—C33—C340.4 (4)
C3—C4—C5—C6124.21 (17)C32—C33—C34—C350.5 (4)
C41—C4—C5—C121.0 (2)C32—C33—C34—Cl1179.4 (2)
C45—C4—C5—C12120.61 (19)C33—C34—C35—C360.1 (5)
C3—C4—C5—C12119.97 (16)Cl1—C34—C35—C36179.8 (3)
N1—C5—C6—C1151.1 (3)C32—C31—C36—C350.4 (4)
C12—C5—C6—C11171.90 (19)C3—C31—C36—C35177.1 (3)
C4—C5—C6—C1165.2 (3)C34—C35—C36—C310.3 (5)
N1—C5—C6—C7125.62 (18)C45—C4—C41—N257.7 (2)
C12—C5—C6—C74.8 (2)C3—C4—C41—N2179.81 (16)
C4—C5—C6—C7118.06 (19)C5—C4—C41—N264.1 (2)
C11—C6—C7—C81.9 (3)N2—C43—C44—C4547.8 (3)
C5—C6—C7—C8178.92 (18)C43—C44—C45—O1139.5 (3)
C11—C6—C7—C13173.82 (18)C43—C44—C45—C440.4 (3)
C5—C6—C7—C133.2 (2)C41—C4—C45—O1136.3 (2)
C6—C7—C8—C90.2 (3)C3—C4—C45—O113.6 (3)
C13—C7—C8—C9174.4 (2)C5—C4—C45—O1100.5 (2)
C7—C8—C9—C101.4 (4)C41—C4—C45—C4443.6 (2)
C8—C9—C10—C111.3 (4)C3—C4—C45—C44166.30 (19)
C7—C6—C11—C102.0 (3)C5—C4—C45—C4479.6 (2)
C5—C6—C11—C10178.47 (19)C3—C2—N1—C1179.25 (17)
C9—C10—C11—C60.4 (3)C3—C2—N1—C547.3 (2)
N1—C5—C12—N353.5 (3)C6—C5—N1—C2156.77 (16)
C6—C5—C12—N3170.50 (18)C12—C5—N1—C291.62 (19)
C4—C5—C12—N364.2 (2)C4—C5—N1—C231.88 (19)
N1—C5—C12—C13121.80 (17)C6—C5—N1—C171.1 (2)
C6—C5—C12—C134.8 (2)C12—C5—N1—C140.5 (2)
C4—C5—C12—C13120.51 (17)C4—C5—N1—C1164.01 (16)
N3—C12—C13—N45.1 (3)C44—C43—N2—C4162.2 (3)
C5—C12—C13—N4179.49 (18)C44—C43—N2—C42175.5 (2)
N3—C12—C13—C7172.11 (18)C4—C41—N2—C4369.7 (2)
C5—C12—C13—C73.3 (2)C4—C41—N2—C42167.5 (2)
C8—C7—C13—N42.0 (4)C13—C12—N3—C153.6 (3)
C6—C7—C13—N4177.16 (19)C5—C12—N3—C15178.36 (17)
C8—C7—C13—C12175.1 (2)C16—C15—N3—C12179.58 (18)
C6—C7—C13—C120.1 (2)C14—C15—N3—C120.4 (3)
N4—C14—C15—N33.6 (3)C12—C13—N4—C141.7 (3)
C19—C14—C15—N3177.29 (19)C7—C13—N4—C14174.96 (18)
N4—C14—C15—C16177.21 (19)C19—C14—N4—C13178.54 (19)
C19—C14—C15—C161.9 (3)C15—C14—N4—C132.4 (3)
N3—C15—C16—C17178.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C41—H41A···N30.972.392.988 (3)120
C11—H11···Cg1i0.932.893.655 (2)140
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C41—H41A···N30.972.392.988 (3)119.6
C11—H11···Cg1i0.932.893.655 (2)140
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).

References

First citationAbasolo, M. I., Gaozza, C. H. & Fernández, B. M. (1987). J. Heterocycl. Chem. 24, 1771–1775.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDailey, S., Feast, W. J., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.  Web of Science CrossRef CAS Google Scholar
First citationKleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rösner, M., Rübsamen-Waigmann, H., Kaiser, R., Wichers, M. & Schneweis, K. E. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.  CrossRef CAS PubMed Google Scholar
First citationRodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.  CAS Google Scholar
First citationSeitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o68-o69
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds