metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m131-m132

Di­chlorido­[N-(N,N-di­methyl­carbamimido­yl)-N′,N′,4-tri­methyl­benzohydrazonamide]­platinum(II) nitro­methane hemisolvate

aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bDepartment of Chemistry, University of Jyväskylä, Finland, PO Box 35, FI-40014University of Jyväskylä, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi

(Received 3 January 2014; accepted 19 February 2014; online 12 March 2014)

In the title compound, [PtCl2(C13H21N5)]·0.5CH3NO2, the PtII atom is coordinated in a slightly distorted square-planar geometry by two Cl atoms and two N atoms of the bidentate ligand. The (1,3,5-tri­aza­penta­diene)PtII metalla ring is slightly bent and does not conjugate with the aromatic ring. In the crystal, N—H⋯Cl hydrogen bonds link the complex mol­ecules, forming chains along [001]. The nitromethane solvent molecule shows half-occupancy and is disordered over two sets of sites about an inversion centre.

Related literature

For the luminescent properties of 1,3,5-tri­aza­penta­diene metal complexes, see: Gushchin et al. (2008[Gushchin, P. V., Tyan, M. R., Bokach, N. A., Revenco, M. D., Haukka, M., Wang, M.-J., Lai, C.-H., Chou, P.-T. & Kukushkin, V. Y. (2008). Inorg. Chem. 47, 11487-11500.]); Kopylovich & Pombeiro (2011[Kopylovich, M. N. & Pombeiro, A. J. L. (2011). Coord. Chem. Rev. 255, 339-355.]); Sarova et al. (2006[Sarova, G. H., Bokach, N. A., Fedorov, A. A., Berberan-Santos, M. N., Kukushkin, V. Yu., Haukka, M., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2006). Dalton Trans. pp. 3798-3805.]) and for the catalytic activity of related complexes, see: Kopylovich & Pombeiro (2011[Kopylovich, M. N. & Pombeiro, A. J. L. (2011). Coord. Chem. Rev. 255, 339-355.]). For the synthesis of [PtCl2(C13H21N5)] and similar compounds, see: Bolotin et al. (2013[Bolotin, D. S., Bokach, N. A., Kritchenkov, A. S., Haukka, M. & Kukushkin, V. Yu. (2013). Inorg. Chem. 52, 6378-6389.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J Chem Soc. Dalton Trans. 12, S1-S83.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C13H21N5)]·0.5CH3NO2

  • Mr = 543.86

  • Monoclinic, C 2/c

  • a = 20.7561 (3) Å

  • b = 15.1847 (3) Å

  • c = 14.5191 (2) Å

  • β = 126.255 (1)°

  • V = 3690.1 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.91 mm−1

  • T = 100 K

  • 0.44 × 0.29 × 0.20 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.130, Tmax = 0.297

  • 38976 measured reflections

  • 9015 independent reflections

  • 8276 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.035

  • S = 1.06

  • 9015 reflections

  • 226 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N5 1.9809 (11)
Pt1—N1 2.0309 (11)
Pt1—Cl1 2.3223 (3)
Pt1—Cl2 2.3279 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Cl1i 0.87 2.45 3.2154 (11) 147
N5—H5N⋯Cl1ii 0.84 2.67 3.4598 (12) 157
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker Software, 2011[CrystalMaker Software (2011). CrystalMaker for Windows. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

The title complex (I) was obtained in the framework of our project devoted to the intra­molecular rearrangement of carbamimidoyl­amidoxime and di­alkyl­cyanamide ligands to furnish amidrazone complexes (Bolotin et al., 2013). The luminescent properties of 1,3,5-tri­aza­penta­diene metal complexes and the catalytic activity of some related complexes have been reported in the literature (Gushchin et al., 2008; Kopylovich et al., 2011; Sarova et al., 2006).

Experimental top

Synthesis and crystallization top

The platinum complex was synthesized by the described method (Bolotin et al., 2013). Crystals of I suitable for X-ray diffraction were obtained by a slow evaporation of a nitro­methane solution of the complex at room temperature in air.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The solvent of crystallization (MeNO2) was disordered over two sites about an inversion centre with equal occupancies. The NH hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 0.68 Å from atom Pt1 and the deepest hole is located 0.64 Å from atom Pt1.

Results and discussion top

Compound I crystallizes from MeNO2 as hemisolvate [PtCl2(C13H21N5)].0.5MeNO2. Nitro­methane molecules incorporated in the crystals lattice are disordered over two sites with equal occupancies. The coordination polyhedron of platinum exhibits a typical square-planar geometry. All bond angles around the PtII center are close to 90°. The Pt–Cl distances (2.3223 (3) and 2.3279 (3) Å) are specific for the PtII–Cl bonds, the Pt–Nimine bond length of 1.9809 (11) Å is a characteristic value in (imine)PtII species, while the Pt–Nhydrazone bond length (2.0309 (11) Å) is characteristic for PtII–Nsp2 complexes (Orpen et al., 1989).

The C–Nimine and C–Nhydrazone bond lengths are typical C=N double bonds, equal to 1.2966 (16) Å and 1.3049 (16) Å, respectively, while the amide N–(C=N)imine, N–(C=N)hydrazone and the C–NMe2 distances are close to normal single bond values [1.3826 (17), 1.3660 (17), and 1.3408 (17) Å, respectively] (Allen et al., 1987). The N–N distance of 1.4402 (16) Å is specific for a normal single Nsp2–Nsp3 bond (Allen et al., 1987).

In the molecular structure, the (1,3,5-tri­aza­penta­diene)PtII ring is slightly bent and does not conjugate with the aromatic ring. The dihedral angle between the mean plane of the aromatic ring C4/C10 and the atoms N1/C3/N3 is 73.76 (9)°. All bond angles in this metallacycle are close to 120°, except the (N=C)imine–N–(C=N)hydrazone angle, which is equal to 127.96 (11)° and the N–Pt–N angle, which is close to 90° [88.49 (5)°]. Weak inter­molecular H-bondings between the amidoxime amide group and one of the chlorine atoms were observed in the crystal structure.

Related literature top

For the luminescent properties of 1,3,5-triazapentadiene metal complexes, see: Gushchin et al. (2008); Kopylovich & Pombeiro (2011); Sarova et al. (2006) and for the catalytic activity of related complexes, see: Kopylovich & Pombeiro (2011). For the synthesis of [PtCl2(C13H21N5)] and similar compounds, see: Bolotin et al. (2013). For standard bondlengths, see: Allen et al. (1987); Orpen et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (CrystalMaker Software, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. View of the title complex. Thermal ellipsoids are drawn at the 50% probability level. Pt atoms are pale blue, chlorine, carbon, and nitrogen atoms are green, grey, and blue, respectively. The disordered nitromethane of crystallization has been omitted for clarity.
Dichlorido[N-(N,N-dimethylcarbamimidoyl)-N',N',4-trimethylbenzohydrazonamide]platinum(II) nitromethane hemisolvate top
Crystal data top
[PtCl2(C13H21N5)]·0.5CH3NO2F(000) = 2096
Mr = 543.86Dx = 1.958 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9933 reflections
a = 20.7561 (3) Åθ = 3.2–36.4°
b = 15.1847 (3) ŵ = 7.91 mm1
c = 14.5191 (2) ÅT = 100 K
β = 126.255 (1)°Block, yellow
V = 3690.1 (1) Å30.44 × 0.29 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
9015 independent reflections
Radiation source: fine-focus sealed tube8276 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.017
Detector resolution: 16 pixels mm-1θmax = 36.5°, θmin = 2.0°
ϕ scans and ω scans with κ offseth = 3433
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
k = 2524
Tmin = 0.130, Tmax = 0.297l = 2024
38976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0133P)2 + 5.9064P]
where P = (Fo2 + 2Fc2)/3
9015 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.78 e Å3
2 restraintsΔρmin = 1.01 e Å3
Crystal data top
[PtCl2(C13H21N5)]·0.5CH3NO2V = 3690.1 (1) Å3
Mr = 543.86Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.7561 (3) ŵ = 7.91 mm1
b = 15.1847 (3) ÅT = 100 K
c = 14.5191 (2) Å0.44 × 0.29 × 0.20 mm
β = 126.255 (1)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
9015 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
8276 reflections with I > 2σ(I)
Tmin = 0.130, Tmax = 0.297Rint = 0.017
38976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0152 restraints
wR(F2) = 0.035H-atom parameters constrained
S = 1.06Δρmax = 0.78 e Å3
9015 reflectionsΔρmin = 1.01 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.086711 (3)0.544103 (3)0.926821 (4)0.01177 (1)
Cl10.101415 (19)0.39718 (2)0.89820 (3)0.01527 (5)
Cl20.22139 (2)0.56194 (2)1.00525 (4)0.02319 (7)
N10.06341 (7)0.66831 (7)0.95151 (10)0.01384 (18)
N20.10725 (7)0.74645 (8)0.96392 (11)0.0178 (2)
N30.05540 (7)0.62871 (8)0.92740 (10)0.01448 (18)
H3N0.08050.64090.95710.022*
N40.15323 (7)0.52601 (8)0.81191 (10)0.01497 (19)
N50.02759 (7)0.51555 (8)0.84918 (10)0.01401 (18)
H5N0.04940.47620.79880.021*
C10.11579 (9)0.75208 (11)0.87141 (14)0.0222 (3)
H1A0.14480.70030.87340.033*
H1B0.14550.80550.88060.033*
H1C0.06280.75420.79800.033*
C20.18337 (9)0.75253 (11)1.07686 (14)0.0223 (3)
H2A0.17350.75961.13460.033*
H2B0.21340.80341.07930.033*
H2C0.21430.69871.09250.033*
C30.00349 (8)0.68722 (8)0.95483 (11)0.01326 (19)
C40.00996 (8)0.77467 (9)0.98743 (11)0.0143 (2)
C50.03328 (10)0.80236 (10)1.10020 (13)0.0214 (3)
H5A0.07570.76711.15910.026*
C60.01455 (10)0.88207 (11)1.12719 (14)0.0241 (3)
H60.04460.90051.20470.029*
C70.04716 (9)0.93496 (10)1.04312 (14)0.0204 (3)
C80.06930 (11)1.01952 (11)1.07194 (18)0.0287 (3)
H8A0.11821.01071.06650.043*
H8B0.07831.06561.01820.043*
H8C0.02581.03741.14990.043*
C90.09025 (9)0.90607 (10)0.93054 (14)0.0220 (3)
H90.13230.94160.87150.026*
C100.07310 (9)0.82650 (10)0.90270 (13)0.0196 (2)
H100.10450.80720.82550.023*
C110.07838 (8)0.55407 (8)0.86030 (11)0.01253 (19)
C120.17809 (9)0.43894 (9)0.76070 (13)0.0182 (2)
H12A0.20210.44310.67900.027*
H12B0.21740.41510.77090.027*
H12C0.13150.39990.79770.027*
C130.21699 (8)0.58213 (10)0.79291 (13)0.0197 (2)
H13A0.23210.56280.84210.030*
H13B0.26340.57810.71270.030*
H13C0.19840.64330.81110.030*
O10.23109 (19)0.25839 (19)0.8531 (2)0.0342 (6)0.50
N60.24020 (19)0.2509 (2)0.9450 (3)0.0313 (6)0.50
C140.1897 (11)0.1872 (12)0.958 (2)0.0371 (7)0.50
H14A0.13520.18610.88700.056*0.50
H14B0.18830.20621.02110.056*0.50
H14C0.21290.12800.97370.056*0.50
O20.1983 (8)0.1969 (8)0.9556 (13)0.0371 (7)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01165 (2)0.01170 (2)0.01451 (2)0.00007 (1)0.00913 (2)0.00061 (1)
Cl10.01681 (12)0.01324 (12)0.01993 (12)0.00183 (10)0.01316 (11)0.00001 (10)
Cl20.01519 (13)0.02011 (15)0.03501 (18)0.00179 (11)0.01526 (14)0.00348 (13)
N10.0138 (4)0.0127 (4)0.0187 (5)0.0007 (3)0.0116 (4)0.0007 (4)
N20.0186 (5)0.0140 (5)0.0267 (6)0.0036 (4)0.0167 (5)0.0011 (4)
N30.0164 (4)0.0130 (4)0.0197 (5)0.0019 (4)0.0138 (4)0.0030 (4)
N40.0124 (4)0.0142 (5)0.0196 (5)0.0008 (3)0.0102 (4)0.0019 (4)
N50.0132 (4)0.0136 (5)0.0165 (4)0.0017 (4)0.0095 (4)0.0027 (4)
C10.0186 (6)0.0260 (7)0.0252 (6)0.0016 (5)0.0146 (5)0.0058 (5)
C20.0220 (6)0.0211 (6)0.0266 (7)0.0084 (5)0.0159 (6)0.0085 (5)
C30.0149 (5)0.0120 (5)0.0158 (5)0.0003 (4)0.0106 (4)0.0001 (4)
C40.0155 (5)0.0120 (5)0.0192 (5)0.0003 (4)0.0124 (5)0.0009 (4)
C50.0278 (7)0.0177 (6)0.0187 (6)0.0067 (5)0.0137 (5)0.0000 (5)
C60.0300 (7)0.0202 (7)0.0243 (6)0.0044 (5)0.0172 (6)0.0040 (5)
C70.0229 (6)0.0132 (5)0.0346 (7)0.0003 (5)0.0222 (6)0.0019 (5)
C80.0349 (8)0.0158 (6)0.0492 (10)0.0023 (6)0.0326 (8)0.0035 (6)
C90.0180 (6)0.0179 (6)0.0303 (7)0.0045 (5)0.0144 (6)0.0018 (5)
C100.0165 (5)0.0180 (6)0.0226 (6)0.0025 (5)0.0107 (5)0.0013 (5)
C110.0133 (5)0.0117 (5)0.0146 (5)0.0000 (4)0.0094 (4)0.0005 (4)
C120.0175 (5)0.0166 (6)0.0221 (6)0.0038 (4)0.0126 (5)0.0042 (5)
C130.0138 (5)0.0198 (6)0.0246 (6)0.0040 (4)0.0107 (5)0.0023 (5)
O10.0462 (16)0.0301 (13)0.0322 (13)0.0129 (12)0.0263 (13)0.0062 (10)
N60.0300 (14)0.0254 (14)0.0396 (16)0.0101 (11)0.0211 (13)0.0053 (12)
C140.032 (3)0.028 (3)0.0494 (12)0.0033 (15)0.0232 (15)0.0019 (18)
O20.032 (3)0.028 (3)0.0494 (12)0.0033 (15)0.0232 (15)0.0019 (18)
Geometric parameters (Å, º) top
Pt1—N51.9809 (11)C4—C101.3941 (19)
Pt1—N12.0309 (11)C5—C61.396 (2)
Pt1—Cl12.3223 (3)C5—H5A0.9500
Pt1—Cl22.3279 (3)C6—C71.388 (2)
N1—C31.3049 (16)C6—H60.9500
N1—N21.4402 (16)C7—C91.391 (2)
N2—C11.4576 (19)C7—C81.504 (2)
N2—C21.459 (2)C8—H8A0.9800
N3—C31.3660 (17)C8—H8B0.9800
N3—C111.3826 (17)C8—H8C0.9800
N3—H3N0.8702C9—C101.386 (2)
N4—C111.3408 (17)C9—H90.9500
N4—C121.4537 (18)C10—H100.9500
N4—C131.4567 (18)C12—H12A0.9800
N5—C111.2966 (16)C12—H12B0.9800
N5—H5N0.8399C12—H12C0.9800
C1—H1A0.9800C13—H13A0.9800
C1—H1B0.9800C13—H13B0.9800
C1—H1C0.9800C13—H13C0.9800
C2—H2A0.9800O1—N61.237 (3)
C2—H2B0.9800N6—C141.518 (8)
C2—H2C0.9800C14—H14A0.9800
C3—C41.4904 (18)C14—H14B0.9800
C4—C51.3875 (19)C14—H14C0.9800
N5—Pt1—N188.49 (5)C10—C4—C3118.53 (12)
N5—Pt1—Cl185.86 (3)C4—C5—C6120.05 (14)
N1—Pt1—Cl1173.69 (3)C4—C5—H5A120.0
N5—Pt1—Cl2172.48 (3)C6—C5—H5A120.0
N1—Pt1—Cl298.51 (3)C7—C6—C5121.33 (14)
Cl1—Pt1—Cl287.274 (12)C7—C6—H6119.3
C3—N1—N2111.07 (11)C5—C6—H6119.3
C3—N1—Pt1122.86 (9)C6—C7—C9117.95 (13)
N2—N1—Pt1126.04 (8)C6—C7—C8121.61 (15)
N1—N2—C1110.19 (11)C9—C7—C8120.41 (15)
N1—N2—C2112.14 (11)C7—C8—H8A109.5
C1—N2—C2113.01 (11)C7—C8—H8B109.5
C3—N3—C11127.96 (11)H8A—C8—H8B109.5
C3—N3—H3N114.3C7—C8—H8C109.5
C11—N3—H3N117.7H8A—C8—H8C109.5
C11—N4—C12120.52 (11)H8B—C8—H8C109.5
C11—N4—C13123.69 (12)C10—C9—C7121.34 (14)
C12—N4—C13115.29 (11)C10—C9—H9119.3
C11—N5—Pt1128.23 (9)C7—C9—H9119.3
C11—N5—H5N111.7C9—C10—C4120.30 (14)
Pt1—N5—H5N119.9C9—C10—H10119.9
N2—C1—H1A109.5C4—C10—H10119.9
N2—C1—H1B109.5N5—C11—N4124.54 (12)
H1A—C1—H1B109.5N5—C11—N3119.36 (12)
N2—C1—H1C109.5N4—C11—N3116.09 (11)
H1A—C1—H1C109.5N4—C12—H12A109.5
H1B—C1—H1C109.5N4—C12—H12B109.5
N2—C2—H2A109.5H12A—C12—H12B109.5
N2—C2—H2B109.5N4—C12—H12C109.5
H2A—C2—H2B109.5H12A—C12—H12C109.5
N2—C2—H2C109.5H12B—C12—H12C109.5
H2A—C2—H2C109.5N4—C13—H13A109.5
H2B—C2—H2C109.5N4—C13—H13B109.5
N1—C3—N3123.64 (12)H13A—C13—H13B109.5
N1—C3—C4124.71 (12)N4—C13—H13C109.5
N3—C3—C4111.65 (11)H13A—C13—H13C109.5
C5—C4—C10118.99 (13)H13B—C13—H13C109.5
C5—C4—C3122.20 (12)O1—N6—C14121.0 (10)
N5—Pt1—N1—C324.61 (11)N3—C3—C4—C1070.06 (15)
Cl2—Pt1—N1—C3158.15 (10)C10—C4—C5—C61.5 (2)
N5—Pt1—N1—N2153.35 (11)C3—C4—C5—C6175.32 (14)
Cl2—Pt1—N1—N223.89 (11)C4—C5—C6—C70.2 (3)
C3—N1—N2—C1127.66 (12)C5—C6—C7—C90.2 (2)
Pt1—N1—N2—C150.50 (15)C5—C6—C7—C8178.10 (16)
C3—N1—N2—C2105.52 (13)C6—C7—C9—C100.8 (2)
Pt1—N1—N2—C276.31 (14)C8—C7—C9—C10177.14 (15)
N1—Pt1—N5—C1123.40 (12)C7—C9—C10—C42.2 (2)
Cl1—Pt1—N5—C11153.79 (12)C5—C4—C10—C92.5 (2)
N2—N1—C3—N3169.27 (12)C3—C4—C10—C9176.52 (13)
Pt1—N1—C3—N38.97 (18)Pt1—N5—C11—N4173.99 (10)
N2—N1—C3—C410.04 (18)Pt1—N5—C11—N35.04 (18)
Pt1—N1—C3—C4171.73 (9)C12—N4—C11—N512.4 (2)
C11—N3—C3—N122.1 (2)C13—N4—C11—N5159.13 (13)
C11—N3—C3—C4157.24 (12)C12—N4—C11—N3166.66 (12)
N1—C3—C4—C576.83 (18)C13—N4—C11—N321.81 (19)
N3—C3—C4—C5103.79 (15)C3—N3—C11—N524.5 (2)
N1—C3—C4—C10109.32 (16)C3—N3—C11—N4156.34 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.872.453.2154 (11)147
N5—H5N···Cl1ii0.842.673.4598 (12)157
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+3/2.
Selected bond lengths (Å) top
Pt1—N51.9809 (11)Pt1—Cl12.3223 (3)
Pt1—N12.0309 (11)Pt1—Cl22.3279 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl1i0.872.453.2154 (11)146.6
N5—H5N···Cl1ii0.842.673.4598 (12)157.0
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+3/2.
 

Acknowledgements

This work was supported by a Saint Petersburg State University research grant (2013–2015, 12.38.781.2013) and the RFBR 14–03-00080. Financial support provided by the Academy of Finland (project No. 139571) is also gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBolotin, D. S., Bokach, N. A., Kritchenkov, A. S., Haukka, M. & Kukushkin, V. Yu. (2013). Inorg. Chem. 52, 6378–6389.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystalMaker Software (2011). CrystalMaker for Windows. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationGushchin, P. V., Tyan, M. R., Bokach, N. A., Revenco, M. D., Haukka, M., Wang, M.-J., Lai, C.-H., Chou, P.-T. & Kukushkin, V. Y. (2008). Inorg. Chem. 47, 11487–11500.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopylovich, M. N. & Pombeiro, A. J. L. (2011). Coord. Chem. Rev. 255, 339–355.  Web of Science CrossRef CAS Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J Chem Soc. Dalton Trans. 12, S1–S83.  CrossRef Web of Science Google Scholar
First citationSarova, G. H., Bokach, N. A., Fedorov, A. A., Berberan-Santos, M. N., Kukushkin, V. Yu., Haukka, M., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2006). Dalton Trans. pp. 3798–3805.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m131-m132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds