Download citation
Download citation
link to html
A thia­zole-based heterocyclic amide, namely, N-(thia­zol-2-yl)furan-2-carboxamide, C8H6N2O2S, was synthesized and investigated for its anti­microbial activity. The structure was characterized by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy. The mol­ecular and electronic structures were investigated experimentally by single-crystal X-ray diffraction (XRD) and theoretically by density functional theory (DFT) modelling. The com­pound crystallized in the monoclinic space group P21/n and the asymmetric unit con­tains two symmetrically independent mol­ecules. Several noncovalent inter­actions were recorded by XRD and analysed with Hirshfeld surface analysis (HSA) calculations. Natural bond orbital, mol­ecular electrostatic potential, second-order nonlinear optical and thermodynamic property analyses were also carried out using the DFT/B3LYP method. The title com­pound was evaluated for anti­microbial activity against eight microorganisms consisting of Gram-negative bacteria, Gram-positive bacteria and fungi. The com­pound showed good anti­microbial activity against the eight tested microorganisms. This suggests that the compound merits further study for potential pharmacological and medical applications.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622002066/zo3018sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622002066/zo3018Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622002066/zo3018Isup3.cml
Supplementary material

CCDC reference: 2085414

Computing details top

Data collection: APEX3 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

N-(Thiazol-2-yl)furan-2-carboxamide top
Crystal data top
C8H6N2O2SF(000) = 800
Mr = 194.21Dx = 1.493 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.9532 (11) ÅCell parameters from 9964 reflections
b = 11.1161 (10) Åθ = 2.4–28.2°
c = 13.4093 (12) ŵ = 0.34 mm1
β = 104.071 (3)°T = 296 K
V = 1728.3 (3) Å3Block, colourless
Z = 80.17 × 0.12 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.035
φ and ω scansθmax = 28.3°, θmin = 2.4°
44822 measured reflectionsh = 1515
4276 independent reflectionsk = 1414
3424 reflections with I > 2σ(I)l = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.5631P]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
4276 reflectionsΔρmax = 0.41 e Å3
241 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A suitable sample of size 0.17 × 0.312 × 0.11 mm was chosen for the single crystal X-ray study. Reflections were collected in the rotation mode (ω scanning mode) and cell parameters were determined using the X-AREA software (Stoe & Cie, 2002). Absorption correction (µ = 0.339 mm-1) was carried out using the X-RED32 software (Stoe & Cie, 2002). The structure was solved by direct methods using SHELXS2013 (Sheldrick, 2008). The refinement was carried out by full-matrix least-squares method using SHELXL2013 on the positional and anisotropic temperature parameters of the non-H atoms, or equivalently corresponding to 241 crystallographic parameters (Sheldrick, 2015). Under the condition of the I > 2σ(I) threshold, the structure was refined to R = 0.045, wR2 = 0.109, S = 0.941 with 3424 observed reflections. The other data collection conditions and parameters of refinement process are listed in Table 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2190 (2)0.6474 (2)0.2453 (2)0.0499 (6)
H10.16240.70600.22580.060*
C20.2906 (2)0.6111 (2)0.18791 (19)0.0470 (5)
H20.28770.64330.12330.056*
C30.35429 (16)0.49271 (16)0.32135 (15)0.0321 (4)
C40.40753 (17)0.37067 (18)0.47478 (16)0.0356 (4)
C50.47912 (17)0.27130 (19)0.52414 (15)0.0362 (4)
C60.4940 (2)0.2238 (2)0.61889 (18)0.0490 (6)
H60.45880.24900.67000.059*
C70.5732 (2)0.1285 (2)0.62552 (19)0.0533 (6)
H70.60040.07870.68190.064*
C80.6017 (2)0.1233 (2)0.5352 (2)0.0516 (6)
H80.65280.06810.51860.062*
C90.6672 (2)0.1397 (2)0.19249 (18)0.0470 (5)
H90.70050.06440.19020.056*
C100.5916 (2)0.1662 (2)0.24828 (18)0.0455 (5)
H100.56740.10930.28930.055*
C110.59902 (16)0.34353 (18)0.17865 (15)0.0333 (4)
C120.62594 (18)0.53124 (19)0.09742 (16)0.0381 (4)
C130.59577 (19)0.65833 (19)0.08489 (16)0.0391 (5)
C140.6377 (3)0.7464 (2)0.0358 (3)0.0649 (8)
H140.69240.73790.00250.078*
C150.5835 (3)0.8537 (2)0.0531 (2)0.0609 (7)
H150.59560.92990.02910.073*
C160.5120 (3)0.8244 (2)0.1101 (2)0.0694 (8)
H160.46430.87870.13270.083*
N10.36863 (15)0.52284 (16)0.23117 (14)0.0400 (4)
N30.55182 (16)0.28347 (16)0.24137 (14)0.0413 (4)
O10.33984 (15)0.42142 (15)0.51616 (13)0.0518 (4)
O20.54529 (14)0.21034 (15)0.47094 (12)0.0468 (4)
O30.69889 (17)0.48864 (16)0.05720 (15)0.0621 (5)
O40.51695 (18)0.70450 (15)0.13144 (14)0.0587 (5)
S10.24661 (5)0.57033 (5)0.36007 (5)0.04299 (16)
S20.69414 (5)0.26387 (5)0.12559 (5)0.04722 (17)
N20.41974 (15)0.40403 (15)0.37949 (13)0.0339 (4)
H2A0.465 (2)0.369 (2)0.3532 (18)0.041*
N40.57260 (15)0.46326 (15)0.15663 (14)0.0361 (4)
H40.521 (2)0.490 (2)0.1791 (18)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0454 (12)0.0394 (11)0.0671 (15)0.0115 (10)0.0177 (11)0.0092 (11)
C20.0462 (12)0.0440 (12)0.0531 (13)0.0074 (10)0.0167 (10)0.0124 (10)
C30.0323 (9)0.0266 (9)0.0410 (10)0.0028 (7)0.0160 (8)0.0047 (8)
C40.0369 (10)0.0351 (10)0.0377 (10)0.0059 (8)0.0143 (8)0.0040 (8)
C50.0342 (10)0.0393 (11)0.0373 (10)0.0033 (8)0.0133 (8)0.0019 (8)
C60.0463 (12)0.0627 (15)0.0406 (12)0.0050 (11)0.0160 (10)0.0069 (11)
C70.0517 (14)0.0583 (15)0.0492 (13)0.0073 (11)0.0109 (11)0.0151 (11)
C80.0507 (13)0.0467 (13)0.0597 (15)0.0101 (10)0.0175 (11)0.0069 (11)
C90.0536 (13)0.0364 (11)0.0503 (13)0.0112 (10)0.0110 (10)0.0036 (9)
C100.0568 (13)0.0338 (11)0.0483 (13)0.0064 (10)0.0172 (10)0.0061 (9)
C110.0333 (9)0.0341 (10)0.0347 (10)0.0001 (7)0.0126 (8)0.0014 (8)
C120.0426 (11)0.0384 (11)0.0377 (10)0.0048 (8)0.0181 (9)0.0008 (8)
C130.0442 (11)0.0393 (11)0.0367 (10)0.0024 (9)0.0156 (9)0.0035 (8)
C140.0711 (18)0.0509 (14)0.087 (2)0.0061 (13)0.0467 (16)0.0243 (14)
C150.0783 (19)0.0411 (13)0.0668 (17)0.0022 (12)0.0244 (14)0.0167 (12)
C160.110 (2)0.0410 (13)0.0704 (18)0.0182 (15)0.0463 (18)0.0074 (12)
N10.0407 (9)0.0392 (9)0.0444 (10)0.0059 (7)0.0190 (8)0.0051 (8)
N30.0495 (10)0.0334 (9)0.0468 (10)0.0048 (7)0.0231 (8)0.0056 (8)
O10.0610 (10)0.0554 (10)0.0484 (9)0.0130 (8)0.0314 (8)0.0036 (8)
O20.0557 (9)0.0468 (9)0.0438 (8)0.0104 (7)0.0234 (7)0.0034 (7)
O30.0748 (12)0.0491 (10)0.0827 (13)0.0055 (9)0.0581 (11)0.0093 (9)
O40.0855 (13)0.0411 (9)0.0653 (11)0.0094 (9)0.0492 (10)0.0093 (8)
S10.0430 (3)0.0376 (3)0.0552 (3)0.0064 (2)0.0250 (2)0.0036 (2)
S20.0493 (3)0.0451 (3)0.0551 (4)0.0086 (2)0.0279 (3)0.0030 (2)
N20.0361 (8)0.0318 (8)0.0381 (9)0.0022 (7)0.0175 (7)0.0006 (7)
N40.0392 (9)0.0326 (8)0.0432 (9)0.0019 (7)0.0226 (8)0.0021 (7)
Geometric parameters (Å, º) top
C1—C21.344 (3)C9—S21.719 (3)
C1—S11.721 (3)C9—H90.9300
C1—H10.9300C10—N31.383 (3)
C2—N11.381 (3)C10—H100.9300
C2—H20.9300C11—N31.305 (2)
C3—N11.306 (3)C11—N41.383 (3)
C3—N21.377 (3)C11—S21.7252 (19)
C3—S11.7308 (18)C12—O31.226 (3)
C4—O11.224 (2)C12—N41.362 (2)
C4—N21.372 (3)C12—C131.458 (3)
C4—C51.454 (3)C13—C141.342 (3)
C5—C61.347 (3)C13—O41.352 (3)
C5—O21.367 (2)C14—C151.403 (4)
C6—C71.409 (4)C14—H140.9300
C6—H60.9300C15—C161.318 (4)
C7—C81.337 (4)C15—H150.9300
C7—H70.9300C16—O41.362 (3)
C8—O21.360 (3)C16—H160.9300
C8—H80.9300N2—H2A0.81 (2)
C9—C101.339 (3)N4—H40.80 (3)
C2—C1—S1110.64 (17)N3—C11—N4121.20 (17)
C2—C1—H1124.7N3—C11—S2115.77 (15)
S1—C1—H1124.7N4—C11—S2123.03 (14)
C1—C2—N1115.6 (2)O3—C12—N4121.7 (2)
C1—C2—H2122.2O3—C12—C13120.40 (19)
N1—C2—H2122.2N4—C12—C13117.86 (18)
N1—C3—N2121.58 (17)C14—C13—O4109.5 (2)
N1—C3—S1115.13 (15)C14—C13—C12130.7 (2)
N2—C3—S1123.28 (14)O4—C13—C12119.70 (18)
O1—C4—N2121.9 (2)C13—C14—C15107.3 (2)
O1—C4—C5121.62 (19)C13—C14—H14126.4
N2—C4—C5116.43 (17)C15—C14—H14126.4
C6—C5—O2109.72 (19)C16—C15—C14106.0 (2)
C6—C5—C4130.9 (2)C16—C15—H15127.0
O2—C5—C4119.35 (17)C14—C15—H15127.0
C5—C6—C7106.7 (2)C15—C16—O4111.2 (2)
C5—C6—H6126.7C15—C16—H16124.4
C7—C6—H6126.7O4—C16—H16124.4
C8—C7—C6106.9 (2)C3—N1—C2110.11 (18)
C8—C7—H7126.6C11—N3—C10109.25 (18)
C6—C7—H7126.6C8—O2—C5106.43 (17)
C7—C8—O2110.3 (2)C13—O4—C16105.90 (19)
C7—C8—H8124.8C1—S1—C388.55 (10)
O2—C8—H8124.8C9—S2—C1188.36 (10)
C10—C9—S2110.59 (17)C4—N2—C3123.13 (17)
C10—C9—H9124.7C4—N2—H2A120.5 (17)
S2—C9—H9124.7C3—N2—H2A116.3 (17)
C9—C10—N3116.0 (2)C12—N4—C11122.93 (17)
C9—C10—H10122.0C12—N4—H4121.6 (18)
N3—C10—H10122.0C11—N4—H4115.4 (18)
S1—C1—C2—N10.0 (3)S2—C11—N3—C100.5 (2)
O1—C4—C5—C65.9 (4)C9—C10—N3—C110.3 (3)
N2—C4—C5—C6174.3 (2)C7—C8—O2—C50.2 (3)
O1—C4—C5—O2173.91 (19)C6—C5—O2—C80.1 (3)
N2—C4—C5—O25.9 (3)C4—C5—O2—C8179.74 (19)
O2—C5—C6—C70.0 (3)C14—C13—O4—C160.4 (3)
C4—C5—C6—C7179.8 (2)C12—C13—O4—C16176.9 (2)
C5—C6—C7—C80.1 (3)C15—C16—O4—C130.0 (4)
C6—C7—C8—O20.2 (3)C2—C1—S1—C30.3 (2)
S2—C9—C10—N30.0 (3)N1—C3—S1—C10.56 (17)
O3—C12—C13—C142.0 (4)N2—C3—S1—C1178.42 (18)
N4—C12—C13—C14176.5 (3)C10—C9—S2—C110.25 (19)
O3—C12—C13—O4178.6 (2)N3—C11—S2—C90.47 (18)
N4—C12—C13—O40.1 (3)N4—C11—S2—C9179.10 (19)
O4—C13—C14—C150.6 (3)O1—C4—N2—C32.8 (3)
C12—C13—C14—C15176.3 (2)C5—C4—N2—C3176.97 (18)
C13—C14—C15—C160.6 (4)N1—C3—N2—C4179.55 (19)
C14—C15—C16—O40.4 (4)S1—C3—N2—C41.5 (3)
N2—C3—N1—C2178.33 (19)O3—C12—N4—C112.3 (3)
S1—C3—N1—C20.7 (2)C13—C12—N4—C11176.26 (19)
C1—C2—N1—C30.4 (3)N3—C11—N4—C12175.2 (2)
N4—C11—N3—C10179.04 (19)S2—C11—N4—C125.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.423.301 (3)159
N2—H2A···N30.81 (2)2.23 (3)3.023 (2)164 (2)
N4—H4···N10.80 (3)2.14 (3)2.927 (2)168 (2)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Dihedral angles (°) between planes P1, P2 and P3 top
See Fig. 2 for definitions of the planes.
MoleculeP1P2P2P3P1P3
A4.445.969.04
B3.864.126.64
Geometric details (Å, °) of noncovalent interactions for 1 top
Cg1 is the centroid of the S1/C1/C2/N1/C3 ring, Cg2 is the centroid of the O2/C5/C6/C7/C8 ring, Cg3 is the centroid of the S2/C9/C10/N3/C11 ring and Cg4 is the centroid of the O4/C13–C16 ring. α is the dihedral angle between planes CgI and CgJ, β is the angle between the CgICgJ vector and normal to plane I and γ is the angle between the CgICgJ vector and normal to plane J.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.81 (2)2.412.738 (3)106
N4—H4···O40.80 (3)2.472.763 (3)103
N2—H2A···N30.81 (2)2.233.023 (3)164
N4—H4···N10.80 (3)2.142.926 (3)168
C8—H8···O3i0.932.423.300 (3)159
X—H···CgX—HH···CgX···CgX—H···Cg
C7—H7···Cg1ii0.932.863.621 (3)140
Cg···CgCg···Cgαβγ
Cg1···Cg2iii3.782 (3)915.724.2
Cg2···Cg1iii3.782 (3)924.215.7
Cg3···Cg4iv3.890 (4)722.716.3
Cg4···Cg3iv3.890 (4)716.322.7
Selected geometrical parameters (Å, °) top
AB
C4O11.224 (2)C12O31.226 (3)
C4—N21.372 (3)C12—N41.362 (2)
N2—C31.377 (3)N4—C111.383 (3)
C4—C51.454 (3)C12—C131.458 (3)
C3—S11.731 (2)C11—S21.725 (2)
C1—S11.721 (3)C9—S11.719 (3)
N1—C3—N2—C4179.6 (2)N3—C11—N4—C12175.2 (2)
C3—N2—C4—C5176.9 (2)C11—N4-C12—C13-176.3 (2)
N2—C4—C5—C6174.3 (2)N4—C12—–C13—C14176.5 (3)
Electron delocalization and second-order interaction energies top
Donor (i)Acceptor (j)E(2) (kcal mol-1)Ej - Ei (a.u.)Fij (a.u.)
π(C3—N1)π*(C1—C2)18.970.350.075
π(C5—C6)π*(C4—O1)19.690.290.070
π(C5—C6)π*(C7—C8)15.740.290.061
π(C7—C8)π*(C5—C6)16.660.300.066
n1(N1)σ*(C3—S1)15.790.550.084
n2(O1)σ*(C4—C5)18.570.690.104
n2(O1)σ*(C4—N2)24.890.690.119
n2(O2)π*(C5—C6)25.360.370.087
n2(O2)π*(C7—C8)26.890.360.089
n2(S1)π*(C1—C2)19.280.260.066
n2(S1)π*(C3—N1)30.930.240.077
n1(N2)π*(C3—N1)42.740.270.098
n1(N2)π*(C4—O1)59.660.280.116
Thermodynamic properties of 1 at different temperatures top
Temperature (K)Enthalpy (kcal mol-1)Entropy (cal mol-1 K)Heat capacity (cal mol-1 K)
1001.31774.01917.003
1502.36482.61821.891
2003.74590.25627.646
2505.37697.53933.939
3007.321104.65140.266
3509.580111.62246.282
40012.153118.43451.801
45014.977125.06156.754
50017.980131.48261.147
The minimum inhibition concentrations (MIC's) of the tested molecules top
`NT' denotes not tested.
SampleMinimum inhibition concentration (µg ml-1)
Gram-staining-positiveGram-staining-negativeFungi
B. subtilisS. aureusE. faecalisE. coliK. pneumoniaeP. aeruginosaA. nigerC. albicans
N-(Thiazol-2-yl)furan-2-carboxamide5005005001000750100010001000
Amoxicillin<2>1000>100032>1000>1000--
Tetracycline<288<284--
Ketoconazole------12
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds