research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of 4-(4-meth­­oxy­phen­yl)piperazin-1-ium 4-methyl­benzoate monohydrate and bis­­[4-(4-meth­­oxy­phen­yl)piperazin-1-ium] benzene-1,2-di­carboxyl­ate

crossmark logo

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, cDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 29 July 2022; accepted 21 August 2022; online 26 August 2022)

Co-crystallization of N-(4-meth­oxy­phen­yl)piperazine with 4-methyl­benzoic acid and with benzene-1,2-di­carb­oxy­lic acid yields the salts 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-methyl­benzoate monohydrate, C11H17N2O+·C8H7O2·H2O (I), and bis­[4-(4-meth­oxy­phen­yl)piperazin-1-ium] benzene-1,2-di­carboxyl­ate, 2C11H17N2O+·C8H4O42− (II). These salts both crystallize with Z′ = 2, in space groups P[\overline{1}] and Pna21, respectively. In compound (I), a combination of four O—H⋯O, four N—H⋯O, one C—H⋯O and one C—H⋯π(arene) hydrogen bonds link the six independent components into complex sheets, within which the two piperazine rings, the two anions, and the two water mol­ecules are related by an approximate, non-crystallographic translation along the b-axis direction. In compound (II), sheets containing R44(18) and R1012(38) rings are formed by the combined action of eight independent N—H⋯O hydrogen bonds. Comparisons are made with the structures of some related compounds.

1. Chemical context

Piperazine derivatives can exhibit a very wide range of biological activity (Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05. Available from https://ssjournals.com/index.php/ijasr/article/view/1766]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]). In addition, N-(4-meth­oxy­phen­yl)piperazine (MeOPP) is a recreational drug whose action on human physiology resembles that of amphetamines, but which appears to have significantly lower potential for abuse (Nagai et al., 2007[Nagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132-137.]). With these considerations in mind, we have recently initiated a structural study of MeOPP and its derivatives (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]; Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]): this has included the structures of a number of salts derived from simple aromatic acids (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). In a continuation of these earlier studies, we now report the structures of two further salts, namely 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-methyl­benzoate monohydrate (I)[link] and bis­[4-(4-meth­oxy­phen­yl)piperazin-1-ium] benzene-1,2-di­carboxyl­ate (II)[link] (see scheme and Figs. 1[link]–3[link][link]).

[Figure 1]
Figure 1
The six independent components in the structure of compound (I)[link], showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components in the type 1 ion triplet in compound (II)[link], showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected triplet. Displacement ellipsoids are drawn at the 30% probability level
[Figure 3]
Figure 3
The independent components in the type 2 ion triplet in compound (II)[link], showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected triplet. Displacement ellipsoids are drawn at the 30% probability level

2. Structural commentary

Co-crystallization of N-(4-meth­oxy­phen­yl)piperazine and 4-methyl­benzoic acid yielded a 1:1 salt, which crystallized from methanol–ethyl acetate in air as a monohydrate, with Z′ = 2 in space group P[\overline{1}] (Fig. 1[link]). A search for possible additional symmetry revealed none. The possibility of any such symmetry is effectively precluded by the different orientations of the 4-meth­oxy­phenyl unit relative to the piperazine ring in the two independent cations, as indicated by the values of the torsion angles Cx3—Nx4—Cx41—Cx42 (x = 1 or 2, Fig. 1[link]), −5.45 (18)° when x = 1, but −46.92 (17)° when x = 2. Apart from this difference, the other pairs of corresponding units (the two piperazine rings, the two anions, and the two water mol­ecules) are related by an approximate, non-crystallographic translation (x, 0.5 + y, z). Although there are six independent components in the structure, it is possible to select a compact asymmetric unit in which the components are linked by three O—H⋯O hydrogen bonds and two N—H⋯O hydrogen bonds (Fig. 1[link], Table 1[link]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 represent the centroids of the C31–C36 and C41–C46 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O31 0.946 (16) 1.793 (16) 2.7366 (16) 174.5 (13)
N11—H12⋯O61i 0.917 (15) 1.891 (15) 2.7969 (16) 169.2 (13)
N21—H21⋯O41 0.949 (16) 1.813 (16) 2.7592 (16) 174.1 (14)
N21—H22⋯O51i 0.904 (15) 1.909 (15) 2.8047 (16) 170.9 (13)
O51—H51⋯O41ii 0.89 (2) 1.89 (2) 2.7712 (16) 170.0 (18)
O51—H52⋯O32 0.918 (18) 1.739 (18) 2.6539 (16) 174.3 (15)
O61—H61⋯O42 0.906 (19) 1.733 (19) 2.6315 (16) 171.2 (15)
O61—H62⋯O31 0.92 (2) 1.85 (2) 2.7593 (15) 169.1 (19)
C22—H22B⋯O41iii 0.99 2.56 3.5266 (19) 167
C142—H142⋯Cg1i 0.95 2.83 3.5976 (16) 138
C146—H146⋯Cg2iv 0.95 2.73 3.5478 (16) 145
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) x, y+1, z; (iii) [-x+1, -y, -z+1]; (iv) [-x+1, -y+1, -z+1].

Compound (II)[link], formed by co-crystallization of N-(4-meth­oxy­phen­yl)piperazine with benzene-1,2-di­carb­oxy­lic acid (phthalic acid), is a 2:1 salt that crystallizes in solvent-free form with Z′ = 2 in space group Pna21. A search for possible additional symmetry revealed none. As for compound (I)[link], there are six independent components in the structure of (II)[link], four cations and two anions, providing a considerable degree of choice in the specification of the asymmetric unit. The selection here consists of two similar ion triplets, each comprising two cations and one anion, which are linked in each triplet by two N—H⋯O hydrogen bonds (Figs. 2[link] and 3[link]). It will be convenient to refer to the ion triplet containing atom N11 (Fig. 2[link]) as of type 1, and that containing atom N21 (Fig. 3[link]) as of type 2.

In the cations of compound (I)[link], the meth­oxy C atoms are close to the plane of the adjacent rings, with displacements from these planes of 0.118 (3) and 0.073 (4) Å for atoms C147 and C247, respectively. In compound (II)[link], the corresponding displacements are 0.242 (6), 0.070 (6) and 0.097 (6) Å for atoms C147, C247 and C447, respectively, but 0.750 (6) Å for atom C347. At the same time, the pairs of exocyclic O—C—C angles at C144 and C244 in (I)[link], and at C144, C244 and C444 in (II)[link] all differ by ca 10°. This behaviour is characteristic of planar and near-planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). On the other hand, the difference between the exocyclic angles at atom C344 in (II)[link] is only 6.7 (5)°.

3. Supra­molecular features

The supra­molecular assembly of compound (I)[link] is di-periodic (propagates in two-dimensions) and is built from a combination of O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds (Table 1[link]). However, the assembly can readily be analysed in terms of a number of simple substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The two independent anions and the two independent water mol­ecules are linked by O—H⋯O hydrogen bonds to form a C44(12) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction (Fig. 4[link]). Inversion-related pairs of chains of this type are linked by the two types of cation to form a mol­ecular ribbon in the form of a chain of edge-fused R87(20) rings parallel to [010] along the line (1, y, 0.5) (Fig. 5[link]). The ribbons along [010] are linked into sheets lying parallel to (001) by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds, and it is convenient to consider separately the sub-structures formed by these two types of inter­action. In the simpler of these two sub-structures, (Fig. 6[link]), inversion-related ion pairs are linked by C—H⋯O hydrogen bonds (Table 1[link]) to form an R42(10) ring, which links the chains along (1, y, 0.5) and (0, y, 0.5). The second sub-structure (Fig. 7[link]) contains C—H⋯π(arene) hydrogen bonds and also includes water mol­ecules but, again, it links the chains along (1, y, 0.5) and (0, y, 0.5). Propagation of these motifs by inversion thus links adjacent [010] chains into a complex sheet lying parallel to (001).

[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a C44(12) chain of two types of anion and two types of water mol­ecule running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms in the anions have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of a ribbon of R87(20) rings running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link] showing the formation of an R42(10) ring linking adjacent [010] chains. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, −y, 1 − z).
[Figure 7]
Figure 7
Part of the crystal structure of compound (I)[link] showing the formation of a ring containing O—H⋯O, N—H⋯O and C—H⋯π(arene) hydrogen bonds that link adjacent [010] chains. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

There are eight independent N—H⋯O hydrogen bonds in the structure of compound (II)[link] (Table 2[link]). Four of these lie within the two ion triplets that were selected as the asymmetric unit (Figs. 2[link] and 3[link]), and the other four act to link the type 1 and type 2 triplets into sheets of alternating R44(18) and R1210(38) rings lying parallel to (001) (Fig. 8[link]). Two sheets of this type, which are related to one another by the action of the 21 screw axis, pass through each unit cell, in the domains 0.25 < z < 0.75 and 0.75 < z < 1.25, but there are no direction-specific inter­actions between adjacent sheets: the C—H⋯O and C—H⋯π(arene) hydrogen bonds all lie within a single sheet.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 and Cg4 represent the centroids of the C61–C66 and C51–C56 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O51 0.99 (4) 1.73 (4) 2.714 (4) 175 (2)
N11—H12⋯O63i 0.80 (4) 2.03 (4) 2.738 (3) 148 (3)
N21—H21⋯O61 0.99 (4) 1.72 (4) 2.707 (4) 177 (3)
N21—H22⋯O53ii 1.01 (4) 1.88 (4) 2.744 (3) 142 (3)
N31—H31⋯O63iii 0.94 (3) 1.77 (3) 2.685 (3) 163 (3)
N31—H32⋯O52 0.92 (4) 1.83 (4) 2.732 (3) 164 (3)
N41—H41⋯O53iv 1.00 (4) 1.74 (4) 2.711 (3) 163 (3)
N41—H42⋯O62 0.90 (4) 1.89 (4) 2.740 (3) 157 (3)
C36—H36A⋯O51v 0.99 2.40 3.354 (4) 160
C46—H46A⋯O61v 0.99 2.42 3.359 (4) 158
C13—H13BCg3i 0.99 2.84 3.795 (3) 161
C23—H23BCg4i 0.99 2.85 3.800 (3) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, -y+2, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].
[Figure 8]
Figure 8
A schematic representation of part of the crystal structure of compound (II)[link] showing the formation of a sheet of R44(18) and R1210(38) rings. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms of the anions have been omitted and only the NH2 groups of the cations are shown.

4. Database survey

In addition to the structures of a number of salts formed between N-(4-meth­oxy­phen­yl)piperazine and carb­oxy­lic acids (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]; Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]), structures have also been reported for the chloride (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.]) and tetra­(iso­thio­cyanato)­cobaltate(II) salts (Gharbi et al., 2021[Gharbi, C., Fujita, W., Lefebvre, F., Kaminsky, L., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2021). J. Mol. Struct. 1230, 129929.]). By contrast, the only structures reported for salts of the isomeric N-(3-meth­oxy­phen­yl)piperazine are those of the maleate (Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]) and the 4-(3-meth­oxy­phen­yl)piperazin-1-carboxyl­ate (Özdemir, 2021[Özdemir, N. (2021). CSD Communication (refcode JAQZEK). CCDC, Cambridge, England.]). In addition to the structures reported for the picrate (Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]) and 6-chloro-5-isopropyl-2,4-dioxo-3,4-di­hydro-2H-pyrimidin-1-ide (Al-Omary et al., 2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245-o246.]) salts derived from N-(2-meth­oxy­phen­yl)piperazine, we have recently reported (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]) the structures of fifteen salts formed by this piperazine with organic acids, where it was found that the supra­molecular assemblies range from finite (non-periodic) aggregates through mono-, di- and tri-periodic arrangements.

5. Synthesis and crystallization

For the preparation of compounds (I)[link] and (II)[link], a solution of N-(4-meth­oxy­piperazine (100 mg, 0.52 mmol) in methanol (10 ml) was mixed with a solution of the appropriate acid, 4-methyl­benzoic acid (76 mg, 0.52 mmol) for (I)[link], or benzene-1,2-di­carb­oxy­lic acid (phthalic acid, 86 mg, 0.52 mmol) for (II)[link], each in methanol (10 ml). The mixtures were stirred briefly and then set aside at ambient temperature, giving colourless crystals of compounds (I)[link] and (II)[link] after a few days: compound (I)[link], yield 80%, m.p. 413–416 K, compound (II)[link], yield 80%, m.p. 446–447 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol–ethyl acetate (initial composition 1:1, v/v).

6. Data collection and structure refinement

Crystals of (I)[link] shattered on cooling to 90 K, while those of compound (II)[link] showed faint satellite reflections at 90 K that gradually diminished in intensity on warming. At the data collection temperature of 180–K, crystals of (I)[link] remained intact and the satellite reflections observed for (II)[link] were absent. Crystal data, data collection and refinement details are summarized in Table 3[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealised positions with C—H distances 0.95 Å (aromatic), 0.98 Å (CH3 or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Tables 1[link] and 2[link]. For compound (II)[link], Cu Kα radiation was used to facilitate establishing a unique orientation for the structure with respect to the polar axis direction. For the crystal selected for data collection, however, the value of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), obtained in the conventional way via full-matrix least-squares refinement, i.e. x = 0.45 (18) was inconclusive due to its high standard uncertainty, while that calculated using 4511 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) of the type [(I+) − (I)]/[(I+) + (I)] was x = 0.45 (5), strongly suggesting the likelihood of twinning by inversion.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H17N2O+·C8H7O2·H2O 2C11H17N2O+·C8H4O42−
Mr 346.42 550.64
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pna21
Temperature (K) 180 180
a, b, c (Å) 7.4141 (5), 12.3595 (11), 19.9917 (17) 17.8424 (4), 8.8124 (2), 34.9337 (9)
α, β, γ (°) 86.695 (2), 83.654 (2), 82.182 (3) 90, 90, 90
V3) 1802.1 (3) 5492.8 (2)
Z 4 8
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.09 0.76
Crystal size (mm) 0.30 × 0.18 × 0.08 0.26 × 0.24 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.938, 0.971 0.814, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 54020, 8288, 5772 36488, 10053, 9727
Rint 0.050 0.031
(sin θ/λ)max−1) 0.650 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.04 0.037, 0.098, 1.07
No. of reflections 8288 10053
No. of parameters 479 750
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.18 0.27, −0.17
Absolute structure Flack x determined using 4511 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.45 (5)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-(4-Methoxyphenyl)piperazin-1-ium 4-methylbenzoate monohydrate (I) top
Crystal data top
C11H17N2O+·C8H7O2·H2OZ = 4
Mr = 346.42F(000) = 744
Triclinic, P1Dx = 1.277 Mg m3
a = 7.4141 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3595 (11) ÅCell parameters from 8258 reflections
c = 19.9917 (17) Åθ = 1.9–27.5°
α = 86.695 (2)°µ = 0.09 mm1
β = 83.654 (2)°T = 180 K
γ = 82.182 (3)°Needle, colourless
V = 1802.1 (3) Å30.30 × 0.18 × 0.08 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
8288 independent reflections
Radiation source: microsource5772 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.050
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 98
Tmin = 0.938, Tmax = 0.971k = 1616
54020 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.3838P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8288 reflectionsΔρmax = 0.30 e Å3
479 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.76096 (16)0.62068 (10)0.54566 (6)0.0267 (3)
H110.733 (2)0.6044 (12)0.5026 (8)0.032*
H120.880 (2)0.6350 (12)0.5392 (7)0.032*
C120.7518 (2)0.52384 (11)0.59281 (7)0.0310 (3)
H12A0.83590.46100.57420.037*
H12B0.62600.50390.59810.037*
C130.8047 (2)0.54855 (11)0.66075 (7)0.0294 (3)
H13A0.79220.48450.69220.035*
H13B0.93460.56120.65590.035*
N140.69096 (14)0.64449 (9)0.68905 (5)0.0240 (2)
C150.69514 (18)0.74004 (10)0.64205 (6)0.0255 (3)
H15A0.82030.76100.63590.031*
H15B0.61120.80240.66140.031*
C160.63897 (18)0.71658 (11)0.57442 (6)0.0280 (3)
H16A0.51050.70110.57980.034*
H16B0.64720.78140.54330.034*
C1410.71549 (17)0.66404 (11)0.75664 (6)0.0243 (3)
C1420.8279 (2)0.59160 (12)0.79520 (7)0.0355 (3)
H1420.89790.52940.77510.043*
C1430.8388 (2)0.60898 (14)0.86214 (7)0.0426 (4)
H1430.91440.55780.88760.051*
C1440.7416 (2)0.69941 (13)0.89278 (7)0.0369 (3)
C1450.6318 (2)0.77281 (12)0.85531 (7)0.0348 (3)
H1450.56490.83580.87550.042*
C1460.61891 (19)0.75492 (12)0.78825 (7)0.0299 (3)
H1460.54210.80610.76320.036*
O1440.76486 (19)0.70874 (10)0.95950 (5)0.0570 (4)
C1470.6805 (3)0.80445 (16)0.99074 (8)0.0634 (6)
H17A0.72790.86810.96720.095*
H17B0.70690.80091.03780.095*
H17C0.54790.81110.98890.095*
N210.75064 (16)0.11429 (10)0.54577 (6)0.0264 (2)
H210.723 (2)0.0975 (12)0.5026 (8)0.032*
H220.867 (2)0.1300 (12)0.5412 (7)0.032*
C220.7444 (2)0.01754 (11)0.59339 (7)0.0299 (3)
H22A0.83210.04430.57550.036*
H22B0.62020.00480.59820.036*
C230.79276 (19)0.04501 (11)0.66152 (7)0.0291 (3)
H23A0.78290.01890.69330.035*
H23B0.92120.06040.65710.035*
N240.67239 (14)0.14015 (9)0.68904 (5)0.0239 (2)
C250.67558 (18)0.23465 (11)0.64143 (6)0.0257 (3)
H25A0.79990.25690.63560.031*
H25B0.58920.29670.65990.031*
C260.62318 (18)0.20845 (11)0.57381 (6)0.0274 (3)
H26A0.49630.19030.57900.033*
H26B0.62830.27310.54240.033*
C2410.70163 (17)0.16099 (11)0.75612 (6)0.0249 (3)
C2420.7146 (2)0.07628 (13)0.80489 (7)0.0428 (4)
H2420.70530.00410.79290.051*
C2430.7406 (3)0.09470 (14)0.87012 (8)0.0518 (5)
H2430.74850.03520.90240.062*
C2440.7554 (2)0.19800 (14)0.88941 (7)0.0391 (4)
C2450.7391 (2)0.28321 (14)0.84304 (8)0.0441 (4)
H2450.74580.35530.85570.053*
C2460.7126 (2)0.26424 (13)0.77696 (7)0.0402 (4)
H2460.70180.32440.74520.048*
O2440.7874 (2)0.20623 (11)0.95543 (6)0.0610 (4)
C2470.8036 (3)0.31074 (18)0.97722 (10)0.0723 (7)
H27A0.90150.34180.94860.109*
H27B0.83280.30451.02400.109*
H27C0.68770.35860.97420.109*
C310.75414 (17)0.59237 (11)0.30344 (7)0.0263 (3)
C320.8027 (2)0.66491 (12)0.25084 (7)0.0354 (3)
H320.85170.72900.26000.042*
C330.7799 (2)0.64400 (14)0.18531 (8)0.0437 (4)
H330.81260.69460.14990.052*
C340.7104 (2)0.55090 (14)0.17012 (8)0.0399 (4)
C350.6671 (2)0.47747 (13)0.22262 (7)0.0375 (4)
H350.62310.41190.21320.045*
C360.68710 (18)0.49820 (12)0.28865 (7)0.0308 (3)
H360.65460.44750.32400.037*
C370.77205 (18)0.61793 (11)0.37504 (7)0.0289 (3)
O310.69445 (14)0.56144 (8)0.42179 (5)0.0355 (2)
O320.86049 (16)0.69333 (10)0.38415 (6)0.0465 (3)
C380.6821 (3)0.52858 (18)0.09872 (9)0.0619 (5)
H38A0.63730.59720.07530.093*
H38B0.59220.47720.09950.093*
H38C0.79860.49690.07510.093*
C410.78088 (17)0.09275 (11)0.30254 (7)0.0257 (3)
C420.85635 (19)0.16165 (12)0.25294 (8)0.0348 (3)
H420.90180.22520.26520.042*
C430.8655 (2)0.13794 (14)0.18548 (8)0.0433 (4)
H430.91650.18600.15200.052*
C440.8020 (2)0.04568 (14)0.16608 (7)0.0409 (4)
C450.7276 (2)0.02308 (13)0.21581 (7)0.0363 (3)
H450.68310.08680.20340.044*
C460.71718 (18)0.00019 (11)0.28337 (7)0.0290 (3)
H460.66610.04840.31670.035*
C470.77169 (18)0.11822 (12)0.37561 (7)0.0297 (3)
O410.69295 (14)0.05664 (9)0.41930 (5)0.0358 (2)
O420.84243 (17)0.19826 (10)0.38947 (6)0.0529 (3)
C480.8102 (3)0.01966 (18)0.09276 (8)0.0642 (6)
H48A0.85240.08050.06440.096*
H48B0.68800.00870.08230.096*
H48C0.89540.04710.08400.096*
O510.87815 (14)0.85863 (9)0.46119 (5)0.0333 (2)
H510.813 (3)0.9175 (16)0.4445 (9)0.050*
H520.864 (2)0.8028 (15)0.4347 (9)0.050*
O610.86471 (14)0.36156 (9)0.46571 (5)0.0340 (2)
H610.845 (2)0.3057 (16)0.4412 (9)0.051*
H620.797 (3)0.4234 (16)0.4492 (9)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0281 (6)0.0315 (7)0.0209 (6)0.0048 (5)0.0022 (4)0.0048 (5)
C120.0388 (8)0.0254 (7)0.0290 (7)0.0034 (6)0.0017 (6)0.0065 (6)
C130.0397 (8)0.0217 (7)0.0254 (7)0.0019 (6)0.0039 (6)0.0014 (5)
N140.0294 (6)0.0214 (6)0.0205 (5)0.0016 (4)0.0019 (4)0.0019 (4)
C150.0307 (7)0.0219 (7)0.0230 (6)0.0013 (5)0.0019 (5)0.0004 (5)
C160.0310 (7)0.0281 (7)0.0239 (7)0.0009 (5)0.0034 (5)0.0023 (5)
C1410.0263 (6)0.0253 (7)0.0217 (6)0.0048 (5)0.0027 (5)0.0000 (5)
C1420.0426 (8)0.0326 (8)0.0292 (7)0.0058 (6)0.0071 (6)0.0023 (6)
C1430.0540 (10)0.0418 (9)0.0303 (8)0.0071 (7)0.0144 (7)0.0008 (7)
C1440.0487 (9)0.0404 (9)0.0228 (7)0.0058 (7)0.0085 (6)0.0030 (6)
C1450.0422 (8)0.0335 (8)0.0278 (7)0.0012 (6)0.0041 (6)0.0074 (6)
C1460.0340 (7)0.0308 (8)0.0244 (7)0.0021 (6)0.0070 (5)0.0024 (6)
O1440.0881 (10)0.0560 (8)0.0260 (6)0.0075 (7)0.0207 (6)0.0079 (5)
C1470.1103 (17)0.0533 (12)0.0268 (9)0.0018 (11)0.0142 (9)0.0118 (8)
N210.0262 (6)0.0316 (7)0.0220 (6)0.0038 (5)0.0028 (4)0.0047 (5)
C220.0371 (7)0.0245 (7)0.0286 (7)0.0034 (6)0.0038 (6)0.0056 (6)
C230.0362 (7)0.0241 (7)0.0259 (7)0.0017 (6)0.0045 (5)0.0018 (5)
N240.0274 (6)0.0227 (6)0.0213 (5)0.0019 (4)0.0034 (4)0.0015 (4)
C250.0276 (7)0.0228 (7)0.0255 (7)0.0001 (5)0.0018 (5)0.0012 (5)
C260.0283 (7)0.0295 (7)0.0234 (7)0.0007 (5)0.0039 (5)0.0005 (5)
C2410.0238 (6)0.0274 (7)0.0236 (6)0.0035 (5)0.0021 (5)0.0022 (5)
C2420.0697 (11)0.0306 (8)0.0307 (8)0.0103 (8)0.0128 (7)0.0008 (6)
C2430.0867 (14)0.0402 (10)0.0300 (8)0.0060 (9)0.0191 (8)0.0056 (7)
C2440.0463 (9)0.0474 (10)0.0239 (7)0.0008 (7)0.0087 (6)0.0063 (7)
C2450.0665 (11)0.0359 (9)0.0320 (8)0.0076 (8)0.0092 (7)0.0095 (7)
C2460.0646 (11)0.0289 (8)0.0281 (7)0.0080 (7)0.0068 (7)0.0008 (6)
O2440.0957 (10)0.0601 (8)0.0294 (6)0.0005 (7)0.0246 (6)0.0107 (6)
C2470.1032 (18)0.0722 (15)0.0462 (11)0.0022 (12)0.0323 (11)0.0265 (10)
C310.0226 (6)0.0281 (7)0.0281 (7)0.0011 (5)0.0045 (5)0.0063 (6)
C320.0431 (8)0.0276 (8)0.0362 (8)0.0041 (6)0.0080 (6)0.0014 (6)
C330.0572 (10)0.0415 (10)0.0323 (8)0.0056 (8)0.0089 (7)0.0047 (7)
C340.0397 (8)0.0495 (10)0.0304 (8)0.0005 (7)0.0072 (6)0.0083 (7)
C350.0356 (8)0.0440 (9)0.0359 (8)0.0108 (7)0.0032 (6)0.0160 (7)
C360.0291 (7)0.0332 (8)0.0306 (7)0.0068 (6)0.0004 (5)0.0062 (6)
C370.0262 (7)0.0286 (7)0.0314 (7)0.0050 (6)0.0075 (5)0.0097 (6)
O310.0410 (6)0.0402 (6)0.0255 (5)0.0021 (5)0.0049 (4)0.0069 (4)
O320.0521 (7)0.0477 (7)0.0452 (7)0.0166 (5)0.0084 (5)0.0191 (5)
C380.0717 (13)0.0817 (15)0.0349 (9)0.0065 (11)0.0154 (9)0.0130 (9)
C410.0228 (6)0.0271 (7)0.0277 (7)0.0004 (5)0.0065 (5)0.0046 (5)
C420.0324 (7)0.0299 (8)0.0433 (9)0.0060 (6)0.0060 (6)0.0012 (6)
C430.0465 (9)0.0445 (10)0.0359 (8)0.0040 (7)0.0017 (7)0.0074 (7)
C440.0474 (9)0.0446 (9)0.0282 (8)0.0061 (7)0.0055 (6)0.0039 (7)
C450.0446 (9)0.0319 (8)0.0336 (8)0.0004 (6)0.0119 (6)0.0094 (6)
C460.0314 (7)0.0281 (7)0.0280 (7)0.0029 (6)0.0059 (5)0.0023 (6)
C470.0252 (7)0.0313 (8)0.0331 (7)0.0031 (6)0.0090 (5)0.0107 (6)
O410.0398 (6)0.0417 (6)0.0260 (5)0.0015 (5)0.0063 (4)0.0062 (4)
O420.0631 (8)0.0510 (7)0.0516 (7)0.0211 (6)0.0090 (6)0.0239 (6)
C480.0876 (15)0.0710 (14)0.0296 (9)0.0081 (11)0.0063 (9)0.0081 (9)
O510.0338 (5)0.0334 (6)0.0341 (6)0.0057 (4)0.0042 (4)0.0090 (5)
O610.0363 (6)0.0333 (6)0.0340 (6)0.0066 (5)0.0034 (4)0.0104 (5)
Geometric parameters (Å, º) top
N11—C121.4845 (18)C242—C2431.375 (2)
N11—C161.4917 (17)C242—H2420.9500
N11—H110.948 (16)C243—C2441.377 (2)
N11—H120.918 (16)C243—H2430.9500
C12—C131.5131 (18)C244—C2451.364 (2)
C12—H12A0.9900C244—O2441.3784 (17)
C12—H12B0.9900C245—C2461.394 (2)
C13—N141.4617 (16)C245—H2450.9500
C13—H13A0.9900C246—H2460.9500
C13—H13B0.9900O244—C2471.411 (2)
N14—C1411.4216 (16)C247—H27A0.9800
N14—C151.4677 (16)C247—H27B0.9800
C15—C161.5128 (18)C247—H27C0.9800
C15—H15A0.9900C31—C361.3852 (19)
C15—H15B0.9900C31—C321.391 (2)
C16—H16A0.9900C31—C371.5072 (18)
C16—H16B0.9900C32—C331.383 (2)
C141—C1461.3917 (18)C32—H320.9500
C141—C1421.3963 (19)C33—C341.385 (2)
C142—C1431.380 (2)C33—H330.9500
C142—H1420.9500C34—C351.387 (2)
C143—C1441.381 (2)C34—C381.511 (2)
C143—H1430.9500C35—C361.3865 (19)
C144—O1441.3771 (17)C35—H350.9500
C144—C1451.379 (2)C36—H360.9500
C145—C1461.3870 (19)C37—O321.2424 (17)
C145—H1450.9500C37—O311.2678 (17)
C146—H1460.9500C38—H38A0.9800
O144—C1471.406 (2)C38—H38B0.9800
C147—H17A0.9800C38—H38C0.9800
C147—H17B0.9800C41—C461.3885 (19)
C147—H17C0.9800C41—C421.390 (2)
N21—C221.4874 (18)C41—C471.5043 (18)
N21—C261.4902 (17)C42—C431.389 (2)
N21—H210.950 (16)C42—H420.9500
N21—H220.905 (16)C43—C441.382 (2)
C22—C231.5144 (18)C43—H430.9500
C22—H22A0.9900C44—C451.387 (2)
C22—H22B0.9900C44—C481.512 (2)
C23—N241.4706 (16)C45—C461.3876 (19)
C23—H23A0.9900C45—H450.9500
C23—H23B0.9900C46—H460.9500
N24—C2411.4251 (16)C47—O421.2392 (17)
N24—C251.4646 (16)C47—O411.2705 (18)
C25—C261.5113 (18)C48—H48A0.9800
C25—H25A0.9900C48—H48B0.9800
C25—H25B0.9900C48—H48C0.9800
C26—H26A0.9900O51—H510.89 (2)
C26—H26B0.9900O51—H520.918 (19)
C241—C2461.381 (2)O61—H610.904 (19)
C241—C2421.390 (2)O61—H620.92 (2)
C12—N11—C16109.88 (10)N21—C26—H26A109.7
C12—N11—H11110.3 (9)C25—C26—H26A109.7
C16—N11—H11112.7 (9)N21—C26—H26B109.7
C12—N11—H12108.3 (10)C25—C26—H26B109.7
C16—N11—H12110.4 (9)H26A—C26—H26B108.2
H11—N11—H12105.1 (13)C246—C241—C242116.53 (13)
N11—C12—C13110.18 (11)C246—C241—N24123.04 (12)
N11—C12—H12A109.6C242—C241—N24120.40 (12)
C13—C12—H12A109.6C243—C242—C241121.40 (15)
N11—C12—H12B109.6C243—C242—H242119.3
C13—C12—H12B109.6C241—C242—H242119.3
H12A—C12—H12B108.1C242—C243—C244121.06 (15)
N14—C13—C12112.02 (11)C242—C243—H243119.5
N14—C13—H13A109.2C244—C243—H243119.5
C12—C13—H13A109.2C245—C244—C243118.89 (14)
N14—C13—H13B109.2C245—C244—O244125.06 (15)
C12—C13—H13B109.2C243—C244—O244116.05 (14)
H13A—C13—H13B107.9C244—C245—C246119.87 (15)
C141—N14—C13115.21 (10)C244—C245—H245120.1
C141—N14—C15115.05 (10)C246—C245—H245120.1
C13—N14—C15111.21 (10)C241—C246—C245122.22 (14)
N14—C15—C16111.37 (11)C241—C246—H246118.9
N14—C15—H15A109.4C245—C246—H246118.9
C16—C15—H15A109.4C244—O244—C247117.82 (14)
N14—C15—H15B109.4O244—C247—H27A109.5
C16—C15—H15B109.4O244—C247—H27B109.5
H15A—C15—H15B108.0H27A—C247—H27B109.5
N11—C16—C15109.93 (11)O244—C247—H27C109.5
N11—C16—H16A109.7H27A—C247—H27C109.5
C15—C16—H16A109.7H27B—C247—H27C109.5
N11—C16—H16B109.7C36—C31—C32118.79 (13)
C15—C16—H16B109.7C36—C31—C37121.27 (12)
H16A—C16—H16B108.2C32—C31—C37119.93 (13)
C146—C141—C142117.13 (12)C33—C32—C31120.19 (14)
C146—C141—N14120.41 (11)C33—C32—H32119.9
C142—C141—N14122.38 (12)C31—C32—H32119.9
C143—C142—C141120.97 (13)C32—C33—C34121.44 (15)
C143—C142—H142119.5C32—C33—H33119.3
C141—C142—H142119.5C34—C33—H33119.3
C142—C143—C144121.15 (14)C33—C34—C35118.01 (14)
C142—C143—H143119.4C33—C34—C38121.66 (16)
C144—C143—H143119.4C35—C34—C38120.33 (16)
O144—C144—C145125.25 (14)C36—C35—C34121.09 (14)
O144—C144—C143115.95 (13)C36—C35—H35119.5
C145—C144—C143118.79 (13)C34—C35—H35119.5
C144—C145—C146120.21 (13)C31—C36—C35120.44 (14)
C144—C145—H145119.9C31—C36—H36119.8
C146—C145—H145119.9C35—C36—H36119.8
C145—C146—C141121.74 (13)O32—C37—O31124.57 (13)
C145—C146—H146119.1O32—C37—C31117.82 (13)
C141—C146—H146119.1O31—C37—C31117.61 (12)
C144—O144—C147117.49 (13)C34—C38—H38A109.5
O144—C147—H17A109.5C34—C38—H38B109.5
O144—C147—H17B109.5H38A—C38—H38B109.5
H17A—C147—H17B109.5C34—C38—H38C109.5
O144—C147—H17C109.5H38A—C38—H38C109.5
H17A—C147—H17C109.5H38B—C38—H38C109.5
H17B—C147—H17C109.5C46—C41—C42118.81 (12)
C22—N21—C26109.64 (10)C46—C41—C47121.00 (12)
C22—N21—H21110.7 (9)C42—C41—C47120.18 (12)
C26—N21—H21111.8 (9)C43—C42—C41120.21 (14)
C22—N21—H22106.9 (10)C43—C42—H42119.9
C26—N21—H22110.2 (10)C41—C42—H42119.9
H21—N21—H22107.5 (13)C44—C43—C42121.24 (15)
N21—C22—C23109.97 (11)C44—C43—H43119.4
N21—C22—H22A109.7C42—C43—H43119.4
C23—C22—H22A109.7C43—C44—C45118.30 (14)
N21—C22—H22B109.7C43—C44—C48121.61 (16)
C23—C22—H22B109.7C45—C44—C48120.08 (16)
H22A—C22—H22B108.2C44—C45—C46121.03 (14)
N24—C23—C22112.03 (11)C44—C45—H45119.5
N24—C23—H23A109.2C46—C45—H45119.5
C22—C23—H23A109.2C45—C46—C41120.40 (13)
N24—C23—H23B109.2C45—C46—H46119.8
C22—C23—H23B109.2C41—C46—H46119.8
H23A—C23—H23B107.9O42—C47—O41123.97 (13)
C241—N24—C25114.88 (10)O42—C47—C41117.63 (14)
C241—N24—C23113.35 (10)O41—C47—C41118.40 (12)
C25—N24—C23110.62 (10)C44—C48—H48A109.5
N24—C25—C26111.20 (11)C44—C48—H48B109.5
N24—C25—H25A109.4H48A—C48—H48B109.5
C26—C25—H25A109.4C44—C48—H48C109.5
N24—C25—H25B109.4H48A—C48—H48C109.5
C26—C25—H25B109.4H48B—C48—H48C109.5
H25A—C25—H25B108.0H51—O51—H52105.5 (16)
N21—C26—C25110.03 (10)H61—O61—H62106.6 (16)
C16—N11—C12—C1357.49 (14)C241—C242—C243—C2440.2 (3)
N11—C12—C13—N1456.22 (15)C242—C243—C244—C2451.7 (3)
C12—C13—N14—C141171.77 (11)C242—C243—C244—O244177.89 (16)
C12—C13—N14—C1555.02 (15)C243—C244—C245—C2461.6 (3)
C141—N14—C15—C16171.14 (10)O244—C244—C245—C246177.91 (16)
C13—N14—C15—C1655.58 (14)C242—C241—C246—C2451.3 (2)
C12—N11—C16—C1558.26 (14)N24—C241—C246—C245179.21 (14)
N14—C15—C16—N1157.35 (14)C244—C245—C246—C2410.1 (3)
C13—N14—C141—C146177.99 (12)C245—C244—O244—C2470.4 (3)
C15—N14—C141—C14646.58 (16)C243—C244—O244—C247179.97 (18)
C13—N14—C141—C1425.45 (18)C36—C31—C32—C331.5 (2)
C15—N14—C141—C142136.85 (14)C37—C31—C32—C33177.47 (13)
C146—C141—C142—C1431.3 (2)C31—C32—C33—C340.6 (2)
N14—C141—C142—C143175.37 (14)C32—C33—C34—C351.2 (2)
C141—C142—C143—C1441.2 (3)C32—C33—C34—C38178.95 (15)
C142—C143—C144—O144179.29 (15)C33—C34—C35—C362.1 (2)
C142—C143—C144—C1450.2 (3)C38—C34—C35—C36178.08 (15)
O144—C144—C145—C146179.99 (15)C32—C31—C36—C350.7 (2)
C143—C144—C145—C1460.6 (2)C37—C31—C36—C35178.31 (12)
C144—C145—C146—C1410.4 (2)C34—C35—C36—C311.1 (2)
C142—C141—C146—C1450.5 (2)C36—C31—C37—O32168.27 (13)
N14—C141—C146—C145176.20 (13)C32—C31—C37—O3212.75 (19)
C145—C144—O144—C1474.8 (3)C36—C31—C37—O3112.27 (18)
C143—C144—O144—C147174.67 (17)C32—C31—C37—O31166.71 (13)
C26—N21—C22—C2357.46 (14)C46—C41—C42—C430.7 (2)
N21—C22—C23—N2456.44 (15)C47—C41—C42—C43179.74 (13)
C22—C23—N24—C241173.71 (11)C41—C42—C43—C440.5 (2)
C22—C23—N24—C2555.59 (14)C42—C43—C44—C450.2 (2)
C241—N24—C25—C26173.81 (10)C42—C43—C44—C48179.55 (15)
C23—N24—C25—C2656.30 (13)C43—C44—C45—C460.0 (2)
C22—N21—C26—C2558.68 (14)C48—C44—C45—C46179.38 (15)
N24—C25—C26—N2158.38 (14)C44—C45—C46—C410.2 (2)
C25—N24—C241—C2466.68 (18)C42—C41—C46—C450.5 (2)
C23—N24—C241—C246135.22 (14)C47—C41—C46—C45179.56 (12)
C25—N24—C241—C242175.46 (13)C46—C41—C47—O42175.08 (13)
C23—N24—C241—C24246.92 (17)C42—C41—C47—O423.96 (19)
C246—C241—C242—C2431.2 (2)C46—C41—C47—O414.69 (19)
N24—C241—C242—C243179.21 (15)C42—C41—C47—O41176.28 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 represent the centroids of the C31–C36 and C41–C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N11—H11···O310.946 (16)1.793 (16)2.7366 (16)174.5 (13)
N11—H12···O61i0.917 (15)1.891 (15)2.7969 (16)169.2 (13)
N21—H21···O410.949 (16)1.813 (16)2.7592 (16)174.1 (14)
N21—H22···O51i0.904 (15)1.909 (15)2.8047 (16)170.9 (13)
O51—H51···O41ii0.89 (2)1.89 (2)2.7712 (16)170.0 (18)
O51—H52···O320.918 (18)1.739 (18)2.6539 (16)174.3 (15)
O61—H61···O420.906 (19)1.733 (19)2.6315 (16)171.2 (15)
O61—H62···O310.92 (2)1.85 (2)2.7593 (15)169.1 (19)
C22—H22B···O41iii0.992.563.5266 (19)167
C142—H142···Cg1i0.952.833.5976 (16)138
C146—H146···Cg2iv0.952.733.5478 (16)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
Bis[4-(4-methoxyphenyl)piperazin-1-ium] benzene-1,2-dicarboxylate (II) top
Crystal data top
2C11H17N2O+·C8H4O42Dx = 1.332 Mg m3
Mr = 550.64Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 10053 reflections
a = 17.8424 (4) Åθ = 5.0–70.1°
b = 8.8124 (2) ŵ = 0.76 mm1
c = 34.9337 (9) ÅT = 180 K
V = 5492.8 (2) Å3Plate, colourless
Z = 80.26 × 0.24 × 0.04 mm
F(000) = 2352
Data collection top
Bruker D8 Venture dual source
diffractometer
10053 independent reflections
Radiation source: microsource9727 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.031
φ and ω scansθmax = 70.1°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2121
Tmin = 0.814, Tmax = 0.942k = 1010
36488 measured reflectionsl = 4142
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0511P)2 + 1.5447P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.001
wR(F2) = 0.098Δρmax = 0.27 e Å3
S = 1.07Δρmin = 0.17 e Å3
10053 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
750 parametersExtinction coefficient: 0.0018 (2)
1 restraintAbsolute structure: Flack x determined using 4511 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.45 (5)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.87134 (14)0.7550 (3)0.46161 (8)0.0272 (5)
H110.8642 (18)0.778 (4)0.4891 (11)0.033*
H120.909 (2)0.799 (4)0.4563 (10)0.033*
C120.80552 (16)0.8091 (3)0.43903 (9)0.0320 (6)
H12A0.80190.92090.44090.038*
H12B0.75900.76500.44980.038*
C130.81286 (17)0.7636 (3)0.39740 (8)0.0285 (6)
H13A0.76690.79310.38340.034*
H13B0.85580.81780.38570.034*
N140.82434 (12)0.5999 (2)0.39400 (6)0.0235 (5)
C150.89338 (15)0.5558 (3)0.41323 (8)0.0267 (6)
H15A0.93620.61260.40230.032*
H15B0.90260.44600.40950.032*
C160.88572 (16)0.5909 (3)0.45548 (8)0.0297 (6)
H16A0.84390.53100.46640.036*
H16B0.93230.56120.46890.036*
C1410.81224 (15)0.5400 (3)0.35683 (7)0.0230 (5)
C1420.73982 (16)0.5497 (4)0.34152 (9)0.0328 (6)
H1420.70140.59900.35570.039*
C1430.72360 (18)0.4888 (4)0.30617 (10)0.0362 (7)
H1430.67420.49730.29620.043*
C1440.77848 (17)0.4148 (3)0.28482 (8)0.0304 (6)
C1450.84993 (16)0.4047 (3)0.29947 (8)0.0298 (6)
H1450.88800.35460.28530.036*
C1460.86657 (15)0.4677 (3)0.33516 (8)0.0269 (6)
H1460.91630.46090.34480.032*
O1440.75569 (14)0.3577 (3)0.25005 (7)0.0448 (6)
C1470.80702 (19)0.2601 (4)0.23098 (9)0.0379 (7)
H17A0.85330.31570.22540.057*
H17B0.78470.22420.20700.057*
H17C0.81850.17300.24740.057*
N210.62871 (13)0.7455 (3)1.03620 (8)0.0285 (5)
H210.6222 (19)0.722 (4)1.0088 (11)0.034*
H220.676 (2)0.689 (4)1.0436 (10)0.034*
C220.56305 (16)0.6921 (3)1.05899 (9)0.0326 (6)
H22A0.55890.58041.05690.039*
H22B0.51660.73721.04850.039*
C230.57104 (16)0.7362 (3)1.10062 (8)0.0286 (6)
H23A0.52500.70771.11470.034*
H23B0.61360.68031.11210.034*
N240.58379 (12)0.8995 (2)1.10434 (6)0.0237 (5)
C250.65261 (16)0.9418 (3)1.08482 (8)0.0274 (6)
H25A0.69520.88281.09530.033*
H25B0.66301.05101.08880.033*
C260.64373 (17)0.9093 (3)1.04258 (8)0.0310 (6)
H26A0.60180.97011.03220.037*
H26B0.69000.93901.02890.037*
C2410.57153 (15)0.9597 (3)1.14149 (8)0.0230 (5)
C2420.49942 (16)0.9532 (3)1.15652 (9)0.0304 (6)
H2420.46100.90411.14230.036*
C2430.48233 (17)1.0164 (4)1.19163 (10)0.0356 (7)
H2430.43271.01001.20130.043*
C2440.53764 (17)1.0895 (3)1.21301 (8)0.0295 (6)
C2450.60958 (16)1.0977 (3)1.19861 (8)0.0289 (6)
H2450.64771.14761.21280.035*
C2460.62640 (15)1.0326 (3)1.16312 (8)0.0273 (6)
H2460.67621.03821.15360.033*
O2440.51493 (13)1.1490 (3)1.24745 (6)0.0407 (5)
C2470.5690 (2)1.2308 (4)1.26905 (10)0.0433 (8)
H27A0.60941.16211.27690.065*
H27B0.54511.27411.29180.065*
H27C0.58981.31271.25330.065*
N310.59650 (13)0.7174 (3)0.52626 (7)0.0261 (5)
H310.5784 (19)0.718 (4)0.5010 (10)0.031*
H320.640 (2)0.774 (4)0.5272 (10)0.031*
C320.61659 (16)0.5555 (3)0.53320 (8)0.0291 (6)
H32A0.65890.52670.51640.035*
H32B0.57330.49010.52670.035*
C330.63847 (16)0.5297 (3)0.57459 (8)0.0286 (6)
H33A0.64910.42070.57880.034*
H33B0.68450.58780.58050.034*
N340.57770 (13)0.5783 (3)0.59990 (6)0.0247 (5)
C350.56205 (17)0.7403 (3)0.59425 (9)0.0284 (6)
H35A0.60760.80010.60010.034*
H35B0.52200.77270.61210.034*
C360.53783 (16)0.7706 (3)0.55351 (8)0.0291 (6)
H36A0.49010.71720.54830.035*
H36B0.52930.88080.54990.035*
C3410.58380 (15)0.5329 (3)0.63868 (8)0.0245 (5)
C3420.64566 (17)0.4557 (3)0.65329 (8)0.0312 (6)
H3420.68740.43720.63710.037*
C3430.64786 (19)0.4050 (4)0.69096 (9)0.0377 (7)
H3430.69010.35040.70010.045*
C3440.58839 (19)0.4345 (3)0.71498 (8)0.0342 (7)
C3450.52757 (19)0.5138 (4)0.70097 (10)0.0395 (7)
H3450.48680.53600.71760.047*
C3460.52465 (17)0.5612 (4)0.66353 (9)0.0351 (7)
H3460.48170.61400.65450.042*
O3440.58749 (16)0.3975 (3)0.75337 (6)0.0499 (6)
C3470.6144 (2)0.2511 (4)0.76343 (10)0.0434 (8)
H37A0.58440.17360.75040.065*
H37B0.61030.23720.79120.065*
H37C0.66700.24160.75570.065*
N410.35347 (13)0.7834 (3)0.96744 (7)0.0284 (5)
H410.3333 (19)0.780 (4)0.9940 (11)0.034*
H420.394 (2)0.723 (4)0.9660 (10)0.034*
C420.37614 (16)0.9436 (3)0.96097 (9)0.0311 (6)
H42A0.41930.96830.97770.037*
H42B0.33421.01150.96800.037*
C430.39750 (16)0.9709 (3)0.91972 (9)0.0309 (6)
H43A0.41001.07940.91600.037*
H43B0.44240.91010.91320.037*
N440.33606 (13)0.9291 (2)0.89465 (7)0.0267 (5)
C450.31864 (16)0.7675 (3)0.89905 (9)0.0306 (6)
H45A0.36340.70620.89260.037*
H45B0.27790.73910.88120.037*
C460.29473 (16)0.7340 (3)0.93967 (10)0.0315 (6)
H46A0.24720.78770.94530.038*
H46B0.28570.62370.94260.038*
C4410.33856 (16)0.9847 (3)0.85647 (8)0.0266 (6)
C4420.39903 (16)1.0619 (3)0.84117 (8)0.0294 (6)
H4420.44421.06820.85550.035*
C4430.39546 (17)1.1310 (3)0.80501 (9)0.0321 (6)
H4430.43751.18480.79530.038*
C4440.33068 (17)1.1208 (3)0.78350 (8)0.0322 (6)
C4450.27056 (18)1.0369 (4)0.79782 (9)0.0351 (7)
H4450.22651.02520.78280.042*
C4460.27444 (16)0.9710 (3)0.83348 (9)0.0315 (6)
H4460.23270.91500.84270.038*
O4470.31901 (13)1.1870 (2)0.74835 (6)0.0407 (5)
C4470.3794 (2)1.2730 (4)0.73265 (10)0.0438 (8)
H47A0.42361.20780.72990.066*
H47B0.39121.35790.74970.066*
H47C0.36491.31230.70750.066*
C510.77813 (14)0.9274 (3)0.58429 (7)0.0218 (5)
C520.72145 (14)1.0348 (3)0.59017 (8)0.0230 (5)
C530.70626 (16)1.0837 (3)0.62739 (8)0.0290 (6)
H530.66751.15550.63160.035*
C540.74701 (18)1.0288 (3)0.65831 (9)0.0343 (6)
H540.73561.06200.68350.041*
C550.80426 (18)0.9257 (3)0.65224 (8)0.0335 (6)
H550.83310.88930.67320.040*
C560.81934 (15)0.8757 (3)0.61533 (8)0.0269 (6)
H560.85860.80470.61130.032*
C570.79259 (14)0.8587 (3)0.54501 (7)0.0216 (5)
O510.85883 (12)0.8253 (3)0.53699 (6)0.0442 (6)
O520.73774 (11)0.8367 (3)0.52362 (6)0.0339 (5)
C580.67939 (15)1.1118 (3)0.55757 (8)0.0258 (6)
O530.72016 (11)1.1881 (2)0.53494 (6)0.0315 (4)
O540.61057 (11)1.1038 (3)0.55663 (7)0.0431 (6)
C610.53754 (14)0.5763 (3)0.91267 (7)0.0203 (5)
C620.48063 (14)0.4705 (3)0.90566 (7)0.0210 (5)
C630.46708 (15)0.4225 (3)0.86845 (8)0.0261 (6)
H630.42800.35180.86370.031*
C640.50944 (16)0.4758 (3)0.83823 (8)0.0289 (6)
H640.49920.44230.81290.035*
C650.56708 (16)0.5782 (3)0.84487 (8)0.0290 (6)
H650.59680.61420.82420.035*
C660.58113 (15)0.6279 (3)0.88205 (8)0.0245 (5)
H660.62080.69760.88660.029*
C670.55033 (15)0.6439 (3)0.95187 (7)0.0234 (5)
O610.61608 (11)0.6799 (3)0.96078 (6)0.0408 (6)
O620.49458 (10)0.6629 (2)0.97323 (6)0.0325 (5)
C680.43777 (14)0.3927 (3)0.93738 (8)0.0237 (5)
O630.47775 (10)0.3110 (2)0.95979 (6)0.0296 (4)
O640.36920 (11)0.4038 (3)0.93907 (7)0.0391 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0225 (12)0.0352 (14)0.0239 (13)0.0028 (9)0.0018 (9)0.0044 (10)
C120.0274 (13)0.0363 (16)0.0322 (15)0.0080 (12)0.0026 (12)0.0077 (12)
C130.0339 (15)0.0227 (13)0.0289 (16)0.0054 (11)0.0026 (11)0.0008 (11)
N140.0225 (11)0.0220 (11)0.0260 (11)0.0025 (8)0.0030 (9)0.0003 (9)
C150.0245 (13)0.0246 (13)0.0310 (15)0.0054 (11)0.0033 (11)0.0005 (11)
C160.0307 (14)0.0315 (15)0.0270 (15)0.0028 (12)0.0048 (11)0.0054 (11)
C1410.0237 (13)0.0200 (12)0.0254 (13)0.0003 (10)0.0019 (10)0.0027 (10)
C1420.0214 (13)0.0361 (15)0.0408 (17)0.0055 (11)0.0035 (12)0.0078 (13)
C1430.0283 (15)0.0392 (17)0.0410 (18)0.0071 (13)0.0119 (13)0.0059 (14)
C1440.0372 (15)0.0284 (14)0.0257 (14)0.0041 (12)0.0049 (11)0.0011 (11)
C1450.0313 (15)0.0303 (14)0.0279 (14)0.0047 (12)0.0035 (11)0.0003 (11)
C1460.0227 (13)0.0294 (14)0.0286 (14)0.0008 (10)0.0016 (10)0.0011 (11)
O1440.0509 (14)0.0496 (13)0.0339 (12)0.0120 (11)0.0116 (10)0.0124 (10)
C1470.0454 (18)0.0378 (17)0.0304 (17)0.0048 (14)0.0010 (13)0.0046 (13)
N210.0239 (12)0.0360 (14)0.0255 (13)0.0028 (10)0.0014 (9)0.0068 (10)
C220.0287 (14)0.0328 (16)0.0363 (16)0.0043 (12)0.0029 (12)0.0096 (12)
C230.0308 (14)0.0245 (14)0.0303 (16)0.0054 (11)0.0044 (11)0.0027 (11)
N240.0243 (11)0.0232 (11)0.0237 (11)0.0015 (9)0.0022 (8)0.0015 (8)
C250.0307 (14)0.0270 (13)0.0245 (14)0.0036 (11)0.0073 (11)0.0010 (10)
C260.0324 (15)0.0352 (16)0.0254 (14)0.0030 (12)0.0029 (11)0.0037 (12)
C2410.0246 (12)0.0215 (12)0.0228 (13)0.0015 (10)0.0005 (10)0.0023 (10)
C2420.0252 (13)0.0311 (14)0.0349 (16)0.0031 (11)0.0001 (11)0.0046 (12)
C2430.0264 (15)0.0391 (16)0.0415 (18)0.0004 (13)0.0109 (12)0.0053 (13)
C2440.0362 (15)0.0254 (14)0.0268 (14)0.0045 (12)0.0080 (11)0.0002 (11)
C2450.0323 (15)0.0278 (14)0.0265 (14)0.0031 (11)0.0011 (11)0.0015 (11)
C2460.0249 (13)0.0285 (14)0.0286 (14)0.0027 (11)0.0036 (10)0.0018 (11)
O2440.0462 (13)0.0436 (12)0.0324 (11)0.0027 (10)0.0121 (10)0.0096 (10)
C2470.064 (2)0.0368 (17)0.0291 (17)0.0086 (16)0.0008 (15)0.0085 (13)
N310.0213 (11)0.0293 (12)0.0277 (12)0.0055 (10)0.0030 (9)0.0005 (9)
C320.0314 (14)0.0299 (14)0.0261 (14)0.0022 (11)0.0014 (11)0.0025 (11)
C330.0277 (14)0.0298 (14)0.0283 (14)0.0071 (11)0.0021 (11)0.0036 (11)
N340.0249 (11)0.0250 (11)0.0243 (11)0.0035 (9)0.0006 (9)0.0028 (9)
C350.0308 (14)0.0226 (13)0.0317 (15)0.0038 (11)0.0021 (11)0.0029 (11)
C360.0255 (14)0.0298 (14)0.0321 (16)0.0002 (11)0.0011 (11)0.0015 (11)
C3410.0263 (13)0.0219 (12)0.0252 (13)0.0009 (10)0.0012 (10)0.0036 (10)
C3420.0304 (14)0.0353 (15)0.0280 (15)0.0096 (12)0.0045 (11)0.0021 (12)
C3430.0406 (17)0.0391 (17)0.0334 (16)0.0147 (13)0.0032 (13)0.0021 (13)
C3440.0477 (18)0.0302 (14)0.0246 (14)0.0027 (13)0.0026 (12)0.0023 (11)
C3450.0422 (17)0.0413 (17)0.0352 (17)0.0090 (14)0.0097 (13)0.0011 (13)
C3460.0304 (15)0.0411 (16)0.0337 (16)0.0101 (13)0.0030 (12)0.0018 (13)
O3440.0782 (18)0.0450 (12)0.0265 (11)0.0175 (12)0.0065 (11)0.0069 (10)
C3470.063 (2)0.0353 (17)0.0322 (18)0.0003 (15)0.0069 (15)0.0080 (13)
N410.0229 (11)0.0298 (12)0.0323 (13)0.0036 (10)0.0035 (9)0.0000 (10)
C420.0279 (14)0.0310 (15)0.0342 (15)0.0008 (11)0.0022 (11)0.0042 (12)
C430.0274 (14)0.0315 (15)0.0337 (15)0.0063 (12)0.0032 (11)0.0015 (12)
N440.0249 (11)0.0239 (11)0.0313 (12)0.0033 (9)0.0018 (9)0.0027 (9)
C450.0286 (14)0.0253 (14)0.0379 (17)0.0005 (11)0.0013 (12)0.0059 (12)
C460.0233 (13)0.0267 (14)0.0445 (18)0.0036 (11)0.0023 (12)0.0016 (12)
C4410.0272 (14)0.0242 (13)0.0282 (14)0.0005 (11)0.0009 (10)0.0065 (11)
C4420.0247 (13)0.0286 (14)0.0350 (16)0.0020 (11)0.0027 (11)0.0044 (11)
C4430.0319 (15)0.0301 (15)0.0342 (15)0.0029 (12)0.0024 (12)0.0029 (12)
C4440.0390 (16)0.0291 (14)0.0287 (14)0.0013 (12)0.0013 (12)0.0057 (11)
C4450.0330 (16)0.0376 (17)0.0346 (16)0.0006 (13)0.0079 (12)0.0075 (12)
C4460.0257 (14)0.0353 (15)0.0337 (15)0.0051 (11)0.0004 (11)0.0041 (12)
O4470.0459 (12)0.0435 (12)0.0328 (11)0.0014 (10)0.0040 (9)0.0028 (9)
C4470.058 (2)0.0386 (17)0.0344 (18)0.0009 (16)0.0035 (15)0.0054 (14)
C510.0206 (12)0.0217 (12)0.0230 (13)0.0033 (10)0.0008 (10)0.0014 (10)
C520.0206 (12)0.0213 (12)0.0271 (13)0.0047 (9)0.0028 (10)0.0021 (10)
C530.0256 (14)0.0299 (14)0.0314 (15)0.0030 (11)0.0065 (11)0.0042 (11)
C540.0424 (17)0.0340 (16)0.0266 (14)0.0041 (13)0.0063 (12)0.0063 (12)
C550.0444 (17)0.0321 (14)0.0239 (14)0.0039 (12)0.0060 (12)0.0014 (11)
C560.0273 (13)0.0232 (13)0.0303 (15)0.0014 (11)0.0001 (11)0.0009 (10)
C570.0206 (12)0.0208 (12)0.0233 (13)0.0002 (9)0.0015 (10)0.0021 (10)
O510.0259 (10)0.0750 (17)0.0317 (11)0.0149 (10)0.0033 (9)0.0179 (11)
O520.0216 (10)0.0508 (13)0.0292 (10)0.0074 (9)0.0000 (8)0.0124 (9)
C580.0206 (13)0.0235 (13)0.0334 (14)0.0003 (10)0.0014 (10)0.0036 (11)
O530.0265 (10)0.0337 (11)0.0344 (11)0.0034 (8)0.0065 (8)0.0084 (9)
O540.0178 (10)0.0556 (14)0.0558 (14)0.0019 (9)0.0016 (9)0.0104 (12)
C610.0178 (11)0.0188 (12)0.0244 (13)0.0037 (9)0.0009 (9)0.0011 (10)
C620.0168 (11)0.0222 (12)0.0240 (13)0.0031 (9)0.0000 (9)0.0011 (10)
C630.0250 (13)0.0247 (13)0.0286 (14)0.0007 (10)0.0049 (10)0.0032 (11)
C640.0348 (15)0.0321 (14)0.0198 (13)0.0065 (12)0.0033 (11)0.0026 (11)
C650.0317 (14)0.0302 (14)0.0252 (14)0.0025 (11)0.0043 (11)0.0054 (11)
C660.0256 (13)0.0211 (12)0.0268 (13)0.0008 (10)0.0031 (10)0.0006 (10)
C670.0223 (13)0.0224 (12)0.0254 (13)0.0014 (10)0.0005 (10)0.0015 (10)
O610.0218 (10)0.0699 (16)0.0307 (11)0.0123 (10)0.0018 (8)0.0169 (11)
O620.0207 (9)0.0486 (12)0.0281 (10)0.0055 (8)0.0001 (8)0.0112 (9)
C680.0208 (12)0.0238 (13)0.0266 (13)0.0007 (10)0.0008 (10)0.0028 (10)
O630.0248 (9)0.0344 (11)0.0296 (10)0.0059 (8)0.0050 (8)0.0063 (8)
O640.0181 (9)0.0556 (14)0.0436 (12)0.0006 (9)0.0027 (9)0.0092 (10)
Geometric parameters (Å, º) top
N11—C161.484 (4)C36—H36B0.9900
N11—C121.493 (4)C341—C3461.389 (4)
N11—H110.99 (4)C341—C3421.394 (4)
N11—H120.79 (4)C342—C3431.390 (4)
C12—C131.514 (4)C342—H3420.9500
C12—H12A0.9900C343—C3441.378 (4)
C12—H12B0.9900C343—H3430.9500
C13—N141.462 (3)C344—O3441.380 (4)
C13—H13A0.9900C344—C3451.380 (5)
C13—H13B0.9900C345—C3461.374 (5)
N14—C1411.418 (3)C345—H3450.9500
N14—C151.456 (3)C346—H3460.9500
C15—C161.514 (4)O344—C3471.420 (4)
C15—H15A0.9900C347—H37A0.9800
C15—H15B0.9900C347—H37B0.9800
C16—H16A0.9900C347—H37C0.9800
C16—H16B0.9900N41—C421.485 (4)
C141—C1461.385 (4)N41—C461.493 (4)
C141—C1421.401 (4)N41—H411.00 (4)
C142—C1431.378 (5)N41—H420.91 (4)
C142—H1420.9500C42—C431.510 (4)
C143—C1441.393 (4)C42—H42A0.9900
C143—H1430.9500C42—H42B0.9900
C144—O1441.376 (4)C43—N441.451 (4)
C144—C1451.377 (4)C43—H43A0.9900
C145—C1461.397 (4)C43—H43B0.9900
C145—H1450.9500N44—C4411.422 (4)
C146—H1460.9500N44—C451.465 (4)
O144—C1471.422 (4)C45—C461.511 (5)
C147—H17A0.9800C45—H45A0.9900
C147—H17B0.9800C45—H45B0.9900
C147—H17C0.9800C46—H46A0.9900
N21—C261.485 (4)C46—H46B0.9900
N21—C221.493 (4)C441—C4421.383 (4)
N21—H210.99 (4)C441—C4461.403 (4)
N21—H221.01 (4)C442—C4431.404 (4)
C22—C231.512 (4)C442—H4420.9500
C22—H22A0.9900C443—C4441.381 (4)
C22—H22B0.9900C443—H4430.9500
C23—N241.463 (4)C444—O4471.375 (4)
C23—H23A0.9900C444—C4451.395 (5)
C23—H23B0.9900C445—C4461.376 (4)
N24—C2411.419 (3)C445—H4450.9500
N24—C251.453 (3)C446—H4460.9500
C25—C261.512 (4)O447—C4471.427 (4)
C25—H25A0.9900C447—H47A0.9800
C25—H25B0.9900C447—H47B0.9800
C26—H26A0.9900C447—H47C0.9800
C26—H26B0.9900C51—C561.387 (4)
C241—C2421.391 (4)C51—C521.400 (4)
C241—C2461.394 (4)C51—C571.522 (3)
C242—C2431.381 (4)C52—C531.396 (4)
C242—H2420.9500C52—C581.523 (4)
C243—C2441.395 (4)C53—C541.389 (4)
C243—H2430.9500C53—H530.9500
C244—O2441.374 (3)C54—C551.384 (5)
C244—C2451.380 (4)C54—H540.9500
C245—C2461.398 (4)C55—C561.389 (4)
C245—H2450.9500C55—H550.9500
C246—H2460.9500C56—H560.9500
O244—C2471.422 (4)C57—O521.246 (3)
C247—H27A0.9800C57—O511.250 (3)
C247—H27B0.9800C58—O541.230 (3)
C247—H27C0.9800C58—O531.267 (4)
N31—C321.490 (4)C61—C661.399 (4)
N31—C361.491 (4)C61—C621.400 (4)
N31—H310.94 (4)C61—C671.511 (4)
N31—H320.92 (4)C62—C631.388 (4)
C32—C331.515 (4)C62—C681.511 (4)
C32—H32A0.9900C63—C641.380 (4)
C32—H32B0.9900C63—H630.9500
C33—N341.463 (3)C64—C651.388 (4)
C33—H33A0.9900C64—H640.9500
C33—H33B0.9900C65—C661.393 (4)
N34—C3411.416 (3)C65—H650.9500
N34—C351.468 (3)C66—H660.9500
C35—C361.511 (4)C67—O611.255 (3)
C35—H35A0.9900C67—O621.255 (3)
C35—H35B0.9900C68—O641.229 (3)
C36—H36A0.9900C68—O631.281 (3)
C16—N11—C12111.8 (2)N34—C35—H35B109.5
C16—N11—H11111 (2)C36—C35—H35B109.5
C12—N11—H11110.2 (19)H35A—C35—H35B108.1
C16—N11—H12107 (3)N31—C36—C35110.2 (2)
C12—N11—H12113 (3)N31—C36—H36A109.6
H11—N11—H12104 (3)C35—C36—H36A109.6
N11—C12—C13110.8 (2)N31—C36—H36B109.6
N11—C12—H12A109.5C35—C36—H36B109.6
C13—C12—H12A109.5H36A—C36—H36B108.1
N11—C12—H12B109.5C346—C341—C342117.4 (3)
C13—C12—H12B109.5C346—C341—N34119.3 (2)
H12A—C12—H12B108.1C342—C341—N34123.3 (2)
N14—C13—C12110.6 (2)C343—C342—C341121.7 (3)
N14—C13—H13A109.5C343—C342—H342119.1
C12—C13—H13A109.5C341—C342—H342119.1
N14—C13—H13B109.5C344—C343—C342119.6 (3)
C12—C13—H13B109.5C344—C343—H343120.2
H13A—C13—H13B108.1C342—C343—H343120.2
C141—N14—C15116.9 (2)C343—C344—O344123.8 (3)
C141—N14—C13114.9 (2)C343—C344—C345119.0 (3)
C15—N14—C13110.1 (2)O344—C344—C345117.1 (3)
N14—C15—C16108.6 (2)C346—C345—C344121.4 (3)
N14—C15—H15A110.0C346—C345—H345119.3
C16—C15—H15A110.0C344—C345—H345119.3
N14—C15—H15B110.0C345—C346—C341120.8 (3)
C16—C15—H15B110.0C345—C346—H346119.6
H15A—C15—H15B108.4C341—C346—H346119.6
N11—C16—C15110.8 (2)C344—O344—C347116.8 (2)
N11—C16—H16A109.5O344—C347—H37A109.5
C15—C16—H16A109.5O344—C347—H37B109.5
N11—C16—H16B109.5H37A—C347—H37B109.5
C15—C16—H16B109.5O344—C347—H37C109.5
H16A—C16—H16B108.1H37A—C347—H37C109.5
C146—C141—C142117.7 (2)H37B—C347—H37C109.5
C146—C141—N14124.4 (2)C42—N41—C46111.7 (2)
C142—C141—N14117.8 (2)C42—N41—H41105 (2)
C143—C142—C141120.8 (3)C46—N41—H41110 (2)
C143—C142—H142119.6C42—N41—H42109 (2)
C141—C142—H142119.6C46—N41—H42111 (2)
C142—C143—C144121.0 (3)H41—N41—H42109 (3)
C142—C143—H143119.5N41—C42—C43111.4 (2)
C144—C143—H143119.5N41—C42—H42A109.3
O144—C144—C145125.3 (3)C43—C42—H42A109.3
O144—C144—C143115.8 (3)N41—C42—H42B109.3
C145—C144—C143118.8 (3)C43—C42—H42B109.3
C144—C145—C146120.2 (3)H42A—C42—H42B108.0
C144—C145—H145119.9N44—C43—C42110.2 (2)
C146—C145—H145119.9N44—C43—H43A109.6
C141—C146—C145121.5 (3)C42—C43—H43A109.6
C141—C146—H146119.3N44—C43—H43B109.6
C145—C146—H146119.3C42—C43—H43B109.6
C144—O144—C147116.4 (2)H43A—C43—H43B108.1
O144—C147—H17A109.5C441—N44—C43117.1 (2)
O144—C147—H17B109.5C441—N44—C45116.1 (2)
H17A—C147—H17B109.5C43—N44—C45110.1 (2)
O144—C147—H17C109.5N44—C45—C46110.4 (2)
H17A—C147—H17C109.5N44—C45—H45A109.6
H17B—C147—H17C109.5C46—C45—H45A109.6
C26—N21—C22111.6 (2)N44—C45—H45B109.6
C26—N21—H21112 (2)C46—C45—H45B109.6
C22—N21—H21111 (2)H45A—C45—H45B108.1
C26—N21—H22107 (2)N41—C46—C45110.8 (2)
C22—N21—H22111 (2)N41—C46—H46A109.5
H21—N21—H22104 (3)C45—C46—H46A109.5
N21—C22—C23111.0 (2)N41—C46—H46B109.5
N21—C22—H22A109.4C45—C46—H46B109.5
C23—C22—H22A109.4H46A—C46—H46B108.1
N21—C22—H22B109.4C442—C441—C446117.2 (3)
C23—C22—H22B109.4C442—C441—N44123.8 (3)
H22A—C22—H22B108.0C446—C441—N44118.8 (3)
N24—C23—C22110.7 (2)C441—C442—C443121.7 (3)
N24—C23—H23A109.5C441—C442—H442119.1
C22—C23—H23A109.5C443—C442—H442119.1
N24—C23—H23B109.5C444—C443—C442119.9 (3)
C22—C23—H23B109.5C444—C443—H443120.0
H23A—C23—H23B108.1C442—C443—H443120.0
C241—N24—C25117.6 (2)O447—C444—C443125.8 (3)
C241—N24—C23115.1 (2)O447—C444—C445115.4 (3)
C25—N24—C23110.0 (2)C443—C444—C445118.9 (3)
N24—C25—C26108.7 (2)C446—C445—C444120.6 (3)
N24—C25—H25A109.9C446—C445—H445119.7
C26—C25—H25A109.9C444—C445—H445119.7
N24—C25—H25B109.9C445—C446—C441121.5 (3)
C26—C25—H25B109.9C445—C446—H446119.2
H25A—C25—H25B108.3C441—C446—H446119.2
N21—C26—C25110.4 (2)C444—O447—C447117.0 (2)
N21—C26—H26A109.6O447—C447—H47A109.5
C25—C26—H26A109.6O447—C447—H47B109.5
N21—C26—H26B109.6H47A—C447—H47B109.5
C25—C26—H26B109.6O447—C447—H47C109.5
H26A—C26—H26B108.1H47A—C447—H47C109.5
C242—C241—C246117.6 (2)H47B—C447—H47C109.5
C242—C241—N24118.2 (2)C56—C51—C52119.4 (2)
C246—C241—N24124.1 (2)C56—C51—C57119.0 (2)
C243—C242—C241121.5 (3)C52—C51—C57121.6 (2)
C243—C242—H242119.2C53—C52—C51119.0 (3)
C241—C242—H242119.2C53—C52—C58117.6 (2)
C242—C243—C244120.4 (3)C51—C52—C58123.2 (2)
C242—C243—H243119.8C54—C53—C52121.0 (3)
C244—C243—H243119.8C54—C53—H53119.5
O244—C244—C245125.0 (3)C52—C53—H53119.5
O244—C244—C243115.9 (3)C55—C54—C53119.7 (3)
C245—C244—C243119.1 (3)C55—C54—H54120.1
C244—C245—C246120.1 (3)C53—C54—H54120.1
C244—C245—H245120.0C54—C55—C56119.6 (3)
C246—C245—H245120.0C54—C55—H55120.2
C241—C246—C245121.3 (3)C56—C55—H55120.2
C241—C246—H246119.4C51—C56—C55121.2 (3)
C245—C246—H246119.4C51—C56—H56119.4
C244—O244—C247117.3 (3)C55—C56—H56119.4
O244—C247—H27A109.5O52—C57—O51124.9 (2)
O244—C247—H27B109.5O52—C57—C51118.0 (2)
H27A—C247—H27B109.5O51—C57—C51117.1 (2)
O244—C247—H27C109.5O54—C58—O53125.9 (3)
H27A—C247—H27C109.5O54—C58—C52119.1 (3)
H27B—C247—H27C109.5O53—C58—C52114.8 (2)
C32—N31—C36111.5 (2)C66—C61—C62119.1 (2)
C32—N31—H31104 (2)C66—C61—C67118.8 (2)
C36—N31—H31111 (2)C62—C61—C67122.0 (2)
C32—N31—H32108 (2)C63—C62—C61119.5 (2)
C36—N31—H32113 (2)C63—C62—C68117.4 (2)
H31—N31—H32109 (3)C61—C62—C68122.8 (2)
N31—C32—C33111.2 (2)C64—C63—C62121.1 (3)
N31—C32—H32A109.4C64—C63—H63119.4
C33—C32—H32A109.4C62—C63—H63119.4
N31—C32—H32B109.4C63—C64—C65119.9 (3)
C33—C32—H32B109.4C63—C64—H64120.0
H32A—C32—H32B108.0C65—C64—H64120.0
N34—C33—C32110.0 (2)C64—C65—C66119.6 (3)
N34—C33—H33A109.7C64—C65—H65120.2
C32—C33—H33A109.7C66—C65—H65120.2
N34—C33—H33B109.7C65—C66—C61120.7 (3)
C32—C33—H33B109.7C65—C66—H66119.6
H33A—C33—H33B108.2C61—C66—H66119.6
C341—N34—C33116.0 (2)O61—C67—O62124.1 (2)
C341—N34—C35114.7 (2)O61—C67—C61117.8 (2)
C33—N34—C35110.1 (2)O62—C67—C61118.2 (2)
N34—C35—C36110.7 (2)O64—C68—O63124.7 (3)
N34—C35—H35A109.5O64—C68—C62120.2 (2)
C36—C35—H35A109.5O63—C68—C62114.9 (2)
C16—N11—C12—C1351.3 (3)C344—C345—C346—C3411.1 (5)
N11—C12—C13—N1454.6 (3)C342—C341—C346—C3450.3 (5)
C12—C13—N14—C141164.1 (2)N34—C341—C346—C345177.6 (3)
C12—C13—N14—C1561.4 (3)C343—C344—O344—C34744.2 (5)
C141—N14—C15—C16163.5 (2)C345—C344—O344—C347139.9 (3)
C13—N14—C15—C1663.1 (3)C46—N41—C42—C4352.1 (3)
C12—N11—C16—C1554.0 (3)N41—C42—C43—N4456.6 (3)
N14—C15—C16—N1159.3 (3)C42—C43—N44—C441163.5 (2)
C15—N14—C141—C14612.7 (4)C42—C43—N44—C4561.0 (3)
C13—N14—C141—C146118.6 (3)C441—N44—C45—C46162.8 (2)
C15—N14—C141—C142165.0 (2)C43—N44—C45—C4661.2 (3)
C13—N14—C141—C14263.7 (3)C42—N41—C46—C4551.8 (3)
C146—C141—C142—C1430.2 (4)N44—C45—C46—N4156.2 (3)
N14—C141—C142—C143177.6 (3)C43—N44—C441—C4426.8 (4)
C141—C142—C143—C1440.5 (5)C45—N44—C441—C442126.0 (3)
C142—C143—C144—O144179.6 (3)C43—N44—C441—C446168.4 (3)
C142—C143—C144—C1450.6 (5)C45—N44—C441—C44658.7 (3)
O144—C144—C145—C146179.7 (3)C446—C441—C442—C4433.4 (4)
C143—C144—C145—C1460.0 (4)N44—C441—C442—C443171.9 (3)
C142—C141—C146—C1450.9 (4)C441—C442—C443—C4441.1 (4)
N14—C141—C146—C145176.8 (2)C442—C443—C444—O447177.8 (3)
C144—C145—C146—C1410.7 (4)C442—C443—C444—C4452.1 (4)
C145—C144—O144—C14710.7 (4)O447—C444—C445—C446177.1 (3)
C143—C144—O144—C147169.6 (3)C443—C444—C445—C4462.8 (5)
C26—N21—C22—C2351.3 (3)C444—C445—C446—C4410.4 (5)
N21—C22—C23—N2454.2 (3)C442—C441—C446—C4452.7 (4)
C22—C23—N24—C241163.3 (2)N44—C441—C446—C445172.9 (3)
C22—C23—N24—C2561.0 (3)C443—C444—O447—C4470.5 (4)
C241—N24—C25—C26162.1 (2)C445—C444—O447—C447179.6 (3)
C23—N24—C25—C2663.4 (3)C56—C51—C52—C532.0 (4)
C22—N21—C26—C2554.4 (3)C57—C51—C52—C53174.2 (2)
N24—C25—C26—N2160.0 (3)C56—C51—C52—C58172.7 (2)
C25—N24—C241—C242164.0 (3)C57—C51—C52—C5811.1 (4)
C23—N24—C241—C24263.8 (3)C51—C52—C53—C540.8 (4)
C25—N24—C241—C24612.4 (4)C58—C52—C53—C54174.2 (3)
C23—N24—C241—C246119.8 (3)C52—C53—C54—C550.9 (4)
C246—C241—C242—C2430.0 (4)C53—C54—C55—C561.3 (5)
N24—C241—C242—C243176.6 (3)C52—C51—C56—C551.6 (4)
C241—C242—C243—C2440.2 (5)C57—C51—C56—C55174.8 (3)
C242—C243—C244—O244179.8 (3)C54—C55—C56—C510.1 (4)
C242—C243—C244—C2450.0 (5)C56—C51—C57—O52141.7 (3)
O244—C244—C245—C246179.9 (3)C52—C51—C57—O5234.5 (4)
C243—C244—C245—C2460.3 (4)C56—C51—C57—O5136.7 (4)
C242—C241—C246—C2450.3 (4)C52—C51—C57—O51147.0 (3)
N24—C241—C246—C245176.0 (3)C53—C52—C58—O5460.9 (4)
C244—C245—C246—C2410.5 (4)C51—C52—C58—O54124.3 (3)
C245—C244—O244—C2472.9 (4)C53—C52—C58—O53114.5 (3)
C243—C244—O244—C247176.9 (3)C51—C52—C58—O5360.2 (3)
C36—N31—C32—C3353.7 (3)C66—C61—C62—C632.0 (4)
N31—C32—C33—N3456.5 (3)C67—C61—C62—C63174.2 (2)
C32—C33—N34—C341167.6 (2)C66—C61—C62—C68171.6 (2)
C32—C33—N34—C3560.0 (3)C67—C61—C62—C6812.3 (4)
C341—N34—C35—C36166.1 (2)C61—C62—C63—C640.9 (4)
C33—N34—C35—C3660.9 (3)C68—C62—C63—C64173.0 (2)
C32—N31—C36—C3553.6 (3)C62—C63—C64—C650.5 (4)
N34—C35—C36—N3157.2 (3)C63—C64—C65—C660.8 (4)
C33—N34—C341—C346173.4 (3)C64—C65—C66—C610.4 (4)
C35—N34—C341—C34656.4 (3)C62—C61—C66—C651.7 (4)
C33—N34—C341—C3424.3 (4)C67—C61—C66—C65174.6 (2)
C35—N34—C341—C342125.9 (3)C66—C61—C67—O6134.9 (4)
C346—C341—C342—C3431.6 (4)C62—C61—C67—O61149.0 (3)
N34—C341—C342—C343176.1 (3)C66—C61—C67—O62144.0 (3)
C341—C342—C343—C3441.6 (5)C62—C61—C67—O6232.2 (4)
C342—C343—C344—O344175.6 (3)C63—C62—C68—O6464.0 (3)
C342—C343—C344—C3450.2 (5)C61—C62—C68—O64122.3 (3)
C343—C344—C345—C3461.2 (5)C63—C62—C68—O63112.2 (3)
O344—C344—C345—C346177.3 (3)C61—C62—C68—O6361.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 represent the centroids of the C61–C66 and C51–C56 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N11—H11···O510.99 (4)1.73 (4)2.714 (4)175 (2)
N11—H12···O63i0.80 (4)2.03 (4)2.738 (3)148 (3)
N21—H21···O610.99 (4)1.72 (4)2.707 (4)177 (3)
N21—H22···O53ii1.01 (4)1.88 (4)2.744 (3)142 (3)
N31—H31···O63iii0.94 (3)1.77 (3)2.685 (3)163 (3)
N31—H32···O520.92 (4)1.83 (4)2.732 (3)164 (3)
N41—H41···O53iv1.00 (4)1.74 (4)2.711 (3)163 (3)
N41—H42···O620.90 (4)1.89 (4)2.740 (3)157 (3)
C36—H36A···O51v0.992.403.354 (4)160
C46—H46A···O61v0.992.423.359 (4)158
C13—H13B···Cg3i0.992.843.795 (3)161
C23—H23B···Cg4i0.992.853.800 (3)162
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z1/2; (iv) x+1, y+2, z+1/2; (v) x1/2, y+3/2, z.
 

Acknowledgements

HJS is grateful to the University of Mysore for research facilities.

Funding information

HSY thanks UGC for a BSR Faculty fellowship for three years.

References

First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245–o246.  CSD CrossRef IUCr Journals Google Scholar
First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 05. Available from https://ssjournals.com/index.php/ijasr/article/view/1766  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGharbi, C., Fujita, W., Lefebvre, F., Kaminsky, L., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2021). J. Mol. Struct. 1230, 129929.  CSD CrossRef Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132–137.  CrossRef PubMed CAS Google Scholar
First citationÖzdemir, N. (2021). CSD Communication (refcode JAQZEK). CCDC, Cambridge, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVerdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds