research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of the ligand N-(quinolin-8-yl)pyrazine-2-carboxamide and of a tetra­nuclear copper(II) complex

CROSSMARK_Color_square_no_text.svg

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by M. Zeller, Purdue University, USA (Received 17 April 2019; accepted 21 April 2019; online 10 May 2019)

The title tridentate ligand, C14H10N4O, N-(quinolin-8-yl)pyrazine-2-carboxamide (HL1), crystallizes with three independent mol­ecules (A, B and C) in the asymmetric unit. All three mol­ecules are relatively planar (r.m.s. deviations are 0.068, 0.055 and 0.06 Å, respectively), with the NH H atom forming three-centered (bifurcated) intra­molecular N—H⋯N hydrogen bonds in each mol­ecule. There is also an intra­molecular C—H⋯O contact present in each mol­ecule, involving the benzene ring of the quinoline unit and the amide carboxamide O atom. In the crystal, the three mol­ecules stack in columns with the various mol­ecules being linked by offset π-π inter­actions [inter­centroid distances vary from 3.367 (5) to 3.589 (5) Å], forming layers parallel to the ab plane. The title complex, [Cu4(C42H44N8O16)]·2CH3OH, {hexa-μ-acetato-1:2κ2O:O′;2:3κ8O:O′;3:4κ2O:O′-di­methanol-1κO,2κO-bis­[N-(quinolin-8-yl)pyrazine-2-carboxamide]-1κ3N,N′,N′′;4κ3N,N′,N′′-tetra­copper(II) methanol disolvate} (I), was obtained by the reaction of HL1 with Cu(CH3CO2)2. It consists of a tetra­nuclear complex with a central tetra­kis­(μ-acetato)­dicopper paddle-wheel moiety linked on either side via bridging acetato ions to a mononuclear copper(II)–(L1) complex; it crystallizes as a methanol disolvate. The complex possesses inversion symmetry, being located about a center of symmetry situated at the mid-point of the Cu⋯Cu bond of the paddle-wheel moiety. In the crystal, the complex mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains along the [01[\overline{1}]] direction, which are linked by offset ππ inter­actions [inter­centroid distance = 3.7367 (11) Å] and C—H⋯O hydrogen bonds, leading to the formation of a supra­molecular framework.

1. Chemical context

The crystal structures of a number of hetero bimetallic iron–manganese cyano complexes of the ligand HL1 have been synthesized in order to explore their super-exchange magnetic properties (Kim et al., 2007[Kim, J. I., Yoo, H. S., Koh, E. K. & Hong, C. S. (2007). Inorg. Chem. 46, 10461-10463.]; Zhou et al., 2014[Zhou, H., Wang, Y., Mou, F., Shen, X. & Liu, Y. (2014). New J. Chem. 38, 5925-5934.]). To the best of our knowledge (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the crystal structure of the ligand itself has never been described, although the structure of the pyridine analogue, N-(8-quinol­yl)pyridine-2-carboxamide, has been reported (Zhang et al., 2001[Zhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109-110.]). There is only one previous report of a copper(II) complex of ligand HL1, viz. (acetato)[N-(quinolin-8-yl)pyrazine-2-carboxamidato]copper(II) monohydrate, a mononuclear complex with the ligand coordinating in a tridentate fashion (Meghdadi et al., 2013[Meghdadi, S., Amirnasr, M., Azarkamanzad, Z., Schenk Joss, K., Fadaee, F., Amiri, A. & Abbasi, S. (2013). J. Coord. Chem. 66, 4330-4343.]). It has been shown previously that pyrazine carboxamide ligands are useful for the synthesis of transition-metal complexes that exhibit magnetic super-exchange and anion encapsulation (Hausmann et al., 2003[Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992-2993.]; Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]; Klingele et al., 2007[Klingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633-645.]). During further work in this area (Cati, 2002[Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.]), the title copper(II) complex, I, of ligand HL1 was synthesized, and we report herein on the crystal structures of ligand HL1 and complex I. The various inter­molecular inter­actions in the crystal of HL1 have been studied by Hirshfeld surface analysis.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The ligand HL1 crystallized with three independent mol­ecules (A, B and C) in the asymmetric unit, and their mol­ecular structures are illustrated in Fig. 1[link]. In each mol­ecule the carboxamide NH H atom forms three-centered (bifurcated) intra­molecular N—H⋯N hydrogen bonds involving the quinoline and the adjacent pyrazine N atoms (Fig. 1[link] and Table 1[link]). This arrangement is similar to that observed in 1,3-bis­(2-pyridyl­imino)­isoindoline (Schilf, 2004[Schilf, W. (2004). J. Mol. Struct. 691, 141-148.]) and its pyrazine analogue, bis­(pyridin-2-yl)-6,7-di­hydro-pyrrolo­[3,4-b]pyrazine-5,7-di­imine (Posel & Stoeckli-Evans, 2018[Posel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682.]). There is also a short C—H⋯O contact present in each mol­ecule (Fig. 1[link] and Table 1[link]). Hence, the three mol­ecules have similar conformations, with the pyrazine ring being inclined to the quinoline ring by 4.5 (4)° in mol­ecule A, 3.1 (4)° in B and 4.1 (4)° in C. For the three mol­ecules, the r.m.s. deviations for the mean planes of the non-H atoms are 0.068, 0.055 and 0.06 Å, respectively. Inverted mol­ecule A on mol­ecule B has an r.m.s. deviation of 0.054 Å for the 19 non-H atoms, while inverted mol­ecule B on mol­ecule C has an r.m.s. deviation of 0.054 Å, and mol­ecule A and mol­ecule C have an r.m.s. deviation of 0.057 Å.

Table 1
Hydrogen-bond geometry (Å, °) for HL1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.87 2.21 2.661 (10) 112
N3—H3N⋯N4 0.87 2.23 2.667 (10) 111
C7—H7⋯O1 0.94 2.36 2.967 (13) 122
N23—H23N⋯N21 0.87 2.22 2.662 (10) 112
N23—H23N⋯N24 0.87 2.24 2.675 (11) 110
C27—H27⋯O2 0.94 2.34 2.912 (13) 119
N33—H33N⋯N31 0.87 2.21 2.667 (10) 113
N33—H33N⋯N34 0.87 2.26 2.674 (11) 109
C47—H47⋯O3 0.94 2.27 2.893 (12) 123
[Figure 1]
Figure 1
A view of the mol­ecular structure of the three independent mol­ecules (A, B and C) of ligand HL1, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular N—H⋯O and C—H⋯O contacts (see Table 1[link]) are shown as dashed lines.

Reaction of HL1 with Cu(CH3CO2)2 produced a tetra­nuclear complex, I, with a central tetra­kis­(μ-acetato)-dicopper paddle-wheel moiety linked on either side via a bridging acetate anion to a mononuclear copper(II)–(L1) complex, illustrated in Fig. 2[link]. Selected geometrical parameters are given in Table 2[link]. The complex possesses inversion symmetry, being located about a center of symmetry situated at the mid-point of the Cu2⋯Cu2i bond [2.6202 (6) Å; symmetry code: (i) −x + 1, −y, −z + 1)] of the paddle-wheel moiety (Table 2[link]). Both copper atoms are fivefold coordinate; CuN3O2 for Cu1 and CuO5 for Cu2. Atom Cu1 is ligated in the equatorial plane by the three N atoms of the ligand and an O atom, O3, of the bridging acetate ion, and with a coordinated methanol O atom, O2, in the apical position. It has an irregular coordination sphere with a τ5 factor of 0.17 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Atom Cu2 is ligated by four acetate O atoms (O5, O6, O7 and O8) of the paddle-wheel moiety in the equatorial plane and by atom O4 of the bridging acetate ion in the apical position. It has a perfect square-pyramidal coordination sphere with a τ5 factor of 0.01. There are two intra­molecular C—H⋯O contacts present involving the quinoline unit and oxygen atoms O1 of the carb­oxy­mide group and O4 of the bridging acetate ion (Fig. 2[link] and Table 3[link]).

Table 2
Selected geometric parameters (Å, °) for I[link]

Cu1—N1 2.037 (2) Cu2—O4 2.1255 (16)
Cu1—N3 1.9457 (18) Cu2—O5 1.9703 (17)
Cu1—N4 1.998 (2) Cu2—O6 1.9793 (15)
Cu1—O2 2.3541 (16) Cu2—O7 1.9692 (18)
Cu1—O3 1.9401 (15) Cu2—O8 1.9671 (16)
Cu2—Cu2i 2.6202 (6)    
       
O3—Cu1—N3 172.66 (8) O7—Cu2—O5 169.04 (7)
N4—Cu1—N1 162.67 (8) O8—Cu2—O6 168.74 (7)
Symmetry code: (i) -x+1, -y, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1ii 0.86 (3) 1.84 (3) 2.689 (3) 178 (3)
O9—H9O⋯O4 0.84 2.33 2.955 (3) 132
O9—H9O⋯O6 0.84 2.30 3.000 (3) 141
C3—H3⋯O8iii 0.95 2.56 3.508 (3) 174
C7—H7⋯O1 0.95 2.36 2.943 (3) 119
C9—H9⋯O9iv 0.95 2.57 3.415 (3) 149
C13—H13⋯O4 0.95 2.54 3.175 (3) 124
C21—H21C⋯O8v 0.98 2.59 3.563 (3) 170
Symmetry codes: (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z; (v) x+1, y, z.
[Figure 2]
Figure 2
A view of the mol­ecular structure of complex I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to labelled atoms by inversion symmetry [symmetry code: (i) −x + 1, −y, −z + 1]. The intramolecular C-H...O contacts are shown as dashed lines (Table 3[link]). For clarity, the methanol solvate molecules have been omitted.

3. Supra­molecular features

In the crystal of ligand HL1, and as can be seen from Fig. 1[link], mol­ecule B is closely related to mol­ecules A and C by non-crystallographic inversion symmetry, while mol­ecules A and C are closely related by non-space group translation. An analysis with PLATON/ADDSYM (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), however, concluded that no obvious extra crystallographic symmetry was present and no change in the space group (Cc) was required. In the crystal, packets of the three mol­ecules stack in the order (ABC), (ABC) etc (Fig. 3[link]; A blue, B red, C green). They are linked by offset ππ inter­actions, so forming layers lying parallel to the ab plane (Fig. 4[link] and Table 4[link]).

Table 4
π–π inter­actions (Å, °) in the crystal of ligand HL1

Cg1, Cg5 and Cg9 are the centroids of the pyrazine rings (N1/N2/C1–C4) in mol­ecule A, (N22/N23/C21–C24) in mol­ecule B and (N31/N32/C41–C44) in mol­ecule C, respectively. Cg4, Cg8 and Cg12 are the centroids of the quinoline ring systems (N4/C6–C14)in mol­ecule A, (N24/C26–C34) in mol­ecule B and (N34/C46–C54) in mol­ecule C, respectively.

Ringpz ringquin centroid–centroid α β γ inter­planar_1 inter­planar_2 offset
Cg1 Cg8i 3.589 (5) 2.9 (4) 9.2 8.2 3.552 (4) 3.543 (4) 0.572
Cg1 Cg12i 3.493 (5) 4.1 (4) 12.2 8.6 3.453 (4) 3.414 (3) 0.737
Cg5 Cg4ii 3.367 (5) 3.8 (4) 4.7 2.3 3.364 (4) 3.355 (4) 0.275
Cg5 Cg12iii 3.492 (5) 4.1 (4) 2.7 6.7 3.468 (4) 3.488 (3) 0.163
Cg9 Cg4iv 3.455 (6) 4.2 (4) 11.0 8.0 3.420 (4) 3.390 (4) 0.662
Cg9 Cg8v 3.532 (6) 2.9 (4) 3.4 5.7 3.515 (4) 3.526 (4) 0.211
Symmetry codes: (i) x, y + 1, z − [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iii) x − [{1\over 2}], y − [{1\over 2}], z; (iv) x, −y + 1, z + [{1\over 2}]; (v) x + [{1\over 2}], y + [{1\over 2}], z.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of ligand HL1. The ππ inter­actions, represented here by dashed lines, are given in Table 4[link]. Colour code: A mol­ecules are blue, B are red and C are green.
[Figure 4]
Figure 4
A view normal to plane (110) of the crystal packing of ligand HL1 (colour code: A mol­ecules are blue, B are red and C are green).

In the crystal of I, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds involving the coordinated methanol mol­ecule and the carboxamide O atom, O1, forming chains propagating along [01[\overline{1}]]; see Table 3[link] and Fig. 5[link]. The chains thus formed enclose R22(12) ring motifs, as illustrated in Fig. 5[link]. The methanol solvent mol­ecule is linked to the chain via bifurcated O—H⋯O/O hydrogen bonds, which enclose an R12(4) ring motif (Fig. 5[link] and Table 3[link]). Inversion-related chains are linked by offset ππ inter­actions involving the quinoline ring systems [Figs. 5[link] and 6[link]; CgCgvi = 3.7367 (11) Å, Cg is the centroid of the N4/C6–C14 ring, α = 0.04 (7)°, β = 25.7°, inter­planar distance = 3.3684 (8) Å, offset 1.618 Å; symmetry code: (vi) −x + 1, −y, −z]. The chains are also linked by C—H⋯O hydrogen bonds, resulting in the formation of a supra­molecular framework (Table 3[link] and Fig. 6[link]).

[Figure 5]
Figure 5
A partial view along the a axis of the crystal packing of complex I. The hydrogen bonds (see Table 3[link]) are shown as dashed lines and C-bound H atoms have been omitted.
[Figure 6]
Figure 6
A view along the a axis of the crystal pack of complex I. The hydrogen bonds (see Table 3[link]) are shown as dashed lines and only the H atoms involved in these inter­molecular inter­actions have been included (the two methanol hydroxyl H atoms are shown as grey balls).

4. Hirshfeld surface analysis of ligand HL1

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) `outlines the various procedures and what can be learned by using CrystalExplorer'.

The Hirshfeld surface of HL1 mapped over dnorm is given in Fig. 7[link]a, where short inter­atomic contacts are indicated by the faint red spots. The ππ stacking is confirmed by the small blue regions surrounding bright red spots in the various aromatic rings in Fig. 7[link]b, the Hirshfeld surface mapped over the shape-index, and by the flat regions around the aromatic regions in Fig. 7[link]c, the Hirshfeld surface mapped over the curvedness.

[Figure 7]
Figure 7
Hirshfeld surfaces for HL1 (mol­ecules A, B and C) mapped over (a) dnorm, −0.164 to 1.208 arbitrary units, (b) shape-index and (c) curvedness.

The full two-dimensional fingerprint plots for HL1 and for the individual mol­ecules are given in Fig. 8[link]a. The principal inter­molecular inter­actions for HL1 (Fig. 8[link]b), are delineated into H⋯H at 43.0%, N⋯H/H⋯N at 14.5%, followed by C⋯H/H⋯C inter­actions at 11.8%. The contributions of the C⋯C and C⋯N inter­actions, which are 10.8 and 10.7%, respectively, are superior to the contribution of the O⋯H/H⋯O inter­actions at 8.1%. The relative percentage contributions of close contacts to the Hirshfeld surface for HL1 and for the individual mol­ecules are similar, as indicated in Table 5[link].

Table 5
Relative percentage contributions of close contacts to the Hirshfeld surface of ligand HL1, and for the individual mol­ecules

Contact HL1 Mol­ecule A Mol­ecule B Mol­ecule C
H⋯H 43.0 44.5 41.7 43.0
N⋯H/H⋯N 14.5 13.5 14.6 14.3
C⋯H/H⋯C 11.8 10.5 11.7 11.1
O⋯H/H⋯O 8.1 9.2 10.2 9.4
C⋯C 10.8 10.6 10.6 10.5
C⋯N 10.7 10.5 10.1 10.7
[Figure 8]
Figure 8
(a) The overall fingerprint plot for HL1 (all three mol­ecules), and for the individual mol­ecules (A, B and C). (b) Fingerprint plots for HL1 (all three mol­ecules) delineated into H⋯H, N⋯H/H⋯N, C⋯H/H⋯C, C⋯C, C⋯N, and O⋯H/H⋯O contacts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of ligand HL1 yielded nine hits. The majority of these compounds are hetero bimetallic iron–manganese cyano complexes that exhibit super-exchange magnetic properties [e.g. CSD refcodes JIVGIF and JIVGOL (Kim et al., 2007[Kim, J. I., Yoo, H. S., Koh, E. K. & Hong, C. S. (2007). Inorg. Chem. 46, 10461-10463.]) and BOLJOD, BOLJUJ and BOLKIY (Zhou et al., 2014[Zhou, H., Wang, Y., Mou, F., Shen, X. & Liu, Y. (2014). New J. Chem. 38, 5925-5934.])]. Only one hit concerns a copper(II) complex, namely (acetato)(N-(quinolin-8-yl)pyrazine-2-carboxamidato)copper(II) monohydrate, with the ligand coordinating in a tridentate fashion (AYIFOF; Meghdadi et al., 2013[Meghdadi, S., Amirnasr, M., Azarkamanzad, Z., Schenk Joss, K., Fadaee, F., Amiri, A. & Abbasi, S. (2013). J. Coord. Chem. 66, 4330-4343.]). The copper ion is ligated by the three N atoms of the ligand, and the two O atoms of the acetate anion, hence the copper atom is CuN3O2 five-coordinate with an irregular coordination sphere; τ5 = 0.17. This value is similar to that for atom Cu1 in the title complex I (τ5 factor of 0.17).

A search for complexes of the pyridine analogue of HL1 yielded 16 hits, including the analogue itself, N-(8-quinol­yl)pyridine-2-carboxamide (WOVYAH; Zhang et al., 2001[Zhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109-110.]). A number of hits involve again hetero bimetallic (Fe–Mn) cyano complexes (e.g. BARTUL and BARVUN; Senapati et al., 2012[Senapati, T., Pichon, C., Ababei, R., Mathonière, C. & Clérac, R. (2012). Inorg. Chem. 51, 3796-3812.]), and trimetallic (Fe–Mn–Fe) cyano complexes (CEBYIS, CEBYOY and CEBYUE; Ni et al., 2005[Ni, Z.-H., Kou, H.-Z., Zhang, L.-F., Ni, W.-W., Jiang, Y.-B., Cui, A.-L., Ribas, J. & Sato, O. (2005). Inorg. Chem. 44, 9631-9633.]); they all exhibit super-exchange magnetic properties. The structure of a copper(II) acetate complex, (acetato-O)-aqua-[N-(8-quinol­yl)pyridine-2-carboxamide-N,N′,N′′]copper(II) has also been reported (XAFKUL; Zhang et al., 2007[Zhang, J.-Y., Ke, X.-K, Tu, C., Lin, J., Ding, J., Lin, L., Fun, H.-K., You X.-Z. & Guo. Z.-J. (2013). BioMetals, 16, 485-96.]). In this mononuclear copper(II) complex, the copper ion is ligated by the three N atoms of the ligand, an O atom of the acetate anion and a water O atom, hence the copper atom is CuN3O2 five-coord­inate with an irregular coordination sphere; τ5 = 0.13. This geometry is similar to that of atom Cu1 in the title complex I (τ5 factor of 0.17), and that in compound AYIFOF mentioned above.

A search for the tetra­kis­(μ-acetato)­dicopper paddle-wheel moiety gave 356 hits. Limiting the search for a tetra­kis­(μ-acetato)-dicopper paddle-wheel moiety bridged on either side by an acetato group to a second copper atom gave 15 hits for 14 structures (see supporting information file S1). Eight of these compounds are polymeric structures, for example, the network structure catena-[octa­kis­(μ2-acetato-O,O′)[μ2-2,5-bis­(2-pyrid­yl)pyrazine-N,N′,N′′,N′′′]tetra­copper(II)] [YOM­TUP; Neels et al., 1995[Neels, A., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1995). Inorg. Chem. 34, 1946-1949.]]. Only six are tetra­nuclear compounds similar to compound I; for example, hexa­kis­(μ2-acetato)-bis­[1-(5-bromo­salicylaldimino)-3-(2-methyl­piperidino)­prop­ane]­tetra­copper(II) (PIBXOU; Chiari et al., 1993[Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). Inorg. Chem. 32, 4834-4838.]), hexa­kis(μ2-acetato)­bis­(2-{[(2,2,6,6-tetra­methyl­piperidin-4-yl)imino] meth­yl}phenolato)tetra­copper(II) [UJOWEX; Huang & Liu, 2016[Huang, G. & Liu, X. (2016). Acta Cryst. E72, 597-599.]], and tetra­kis­(μ2-acetato-O,O′)bis­(μ2-acetato-O,O,O′)tetra­kis­(tri­phenyl­phosphine-P)dicopper(I)dicopper(II) [CER­TOI; Koman et al., 1984[Koman, M., Valigura, D., Ďurčanská, E. & Ondrejovič, G. (1984). J. Chem. Soc. Chem. Commun. pp. 381-383.]: CERTOI10; Valigura et al., 1986[Valigura, D., Koman, M., Ďurčanská, E., Ondrejovič, G. & Mroziński, J. (1986). J. Chem. Soc. Dalton Trans. pp. 2339-2344.]]. The Cu⋯Cu distance in the paddle-wheel unit varies from ca 2.604 to 2.669 Å; in I this distance, Cu2⋯Cu2i, is 2.6201 (6) Å. The Cu⋯Cu distance involving the two copper atoms bridged by a single acetato group varies from ca 3.772 to 5.441 Å. The longer distance is observed when only one O atom bridges the two copper atoms as in compound I, where distance Cu2⋯Cu1 is ca 5.147 Å, close to the distance of ca 5.392 Å observed in UJOWEX. A shorter distance is observed when one O atom bridges the two copper atoms and the second O atom coordinates to the second copper atom, in a (μ2-acetato-O,O,O′) manner, as in CERTOI/CERTOI10 where this Cu⋯Cu distance is ca 3.772 Å.

6. Synthesis and crystallization

Synthesis of N-(quinolin-8-yl)pyrazine-2-carboxamide (HL1):

A suspension of pyrazine-2-carb­oxy­lic acid (1.49 g, 12 mmol) and 8-amino­quinoline (1.15 g, 8 mmol) in 80 ml of 1,2-di­chloro­ethane was distilled to azeotropically remove any solvated H2O (vapour temperature 355 K). The mixture was allowed to cool, and then 1,1′-carbonyl­diimidazole (1.95 g, 12 mmol) was added. After gas evolution had diminished, the solution was heated at reflux for 16 h. The reaction mixture was allowed to cool to RT and then added directly to a column (R = 1.2 cm, 30 g of SiO2) and eluted with CHCl3. On evaporation of the solvent the residue obtained was recrystallized from ethanol giving block-like colourless crystals of HL1 (yield 75%, m.p. 461 K).

Spectroscopic data for HL1 (for the numbering scheme see mol­ecule A in Fig. 1[link]): 1H NMR (400 MHz, DMSO-d6): 11.95 (s, 1H, HN3); 9.41 (d, J2,3 = 1.4, 1H, H2); 9.02 (m, 2H, H3 & H4); 8.93 (m, 1H, H13); 8.89 (dd, 1H, J7,8 = 7.6, J7,9 = 1.2, H7); 8.48 (dd, 1H, J11,12 = 8.3, J11,13 = 1.6, H11); 7.78 (dd, 1H, J9,8 = 8.3, J9,7 = 1.2, H9); 7.69 (m, 2H, H12 & H8). 13C NMR (400 MHz, DMSO-d6): 161.7 (C5), 150.3 (C13), 149.2 (C4), 144.9 (C1), 144.6 (C2), 144.5 (C3), 139.0 (C14), 137.7 (C11), 134.2 (C6), 128.8 (C10), 128.0 (C8), 123.7 (C12), 123.4 (C7), 117.0 C(9). IR (KBr pellet, cm−1): 1686 (vs), 1559 (s), 1533 (vs), 1485 (vs), 1471 (s), 1460 (s), 1425 (s), 1403 (s), 1384 (s), 1325 (s), 1129 (s), 1058 (s), 1020 (s), 830 (s), 796 (s), 763 (s), 741 (s), 710 (s), 599 (s). Analysis for C14H10N4O (Mr = 250.26 g mol−1); calculated (%) C 67.19, H 4.03, N 22.39; found (%) C 67.00, H 4.04, N 22.37.

Synthesis of compound I:

Cu(Ac)2·H2O (74.9 mg; 0.375 mmol) was added to a solution of HL1 (37.5 mg; 0.150 mmol) dissolved in 15 ml of methanol. The green solution was stirred at room temperature for 30 min. It was then left to allow slow evaporation of the solvent giving finally green block-like crystals of I. The crystals were filtered off and washed with diethyl ether (yield 61 mg, 67%). IR (KBr pellet, cm−1): 3422 (s), 1624 (vs), 1581 (vs), 1430 (s), 1396 (vs).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Intensity data for ligand HL1 were measured at 223 K on a four-circle diffractometer assuming a C-centered unit cell and only one equivalent of data were measured; hence Rint = 0 and the h,k,l reflections for which h + k = 2n + 1 were not measured. For compound I, data were measured at 173 K on a Stoe IPDS1, a one-circle image-plate diffractometer. For compound I a small cusp of data is missing. This is common with data measured using the IPDS1 for monoclinic and triclinic crystal systems.

Table 6
Experimental details

  HL1 I
Crystal data
Chemical formula C14H10N4O [Cu4(C42H44N8O16)]·2CH4O
Mr 250.26 1235.09
Crystal system, space group Monoclinic, Cc Triclinic, P[\overline{1}]
Temperature (K) 223 153
a, b, c (Å) 11.5047 (9), 23.410 (3), 13.4115 (11) 8.1485 (7), 11.2132 (9), 14.2662 (12)
α, β, γ (°) 90, 104.305 (8), 90 98.352 (9), 93.668 (10), 103.578 (9)
V3) 3500.0 (6) 1247.11 (19)
Z 12 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 1.76
Crystal size (mm) 0.50 × 0.40 × 0.30 0.50 × 0.30 × 0.25
 
Data collection
Diffractometer STOE–Siemens AED2, 4-circle STOE IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.564, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4090, 4090, 2851 9825, 4499, 3906
Rint 0.0 0.050
(sin θ/λ)max−1) 0.605 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.134, 1.17 0.031, 0.083, 0.98
No. of reflections 4090 4499
No. of parameters 515 344
No. of restraints 2 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.21 0.66, −0.66
Computer programs: STADI4, EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For ligand HL1 the NH H atoms could be located in a difference-Fourier map, but during refinement they were included in calculated positions and treated as riding: N—H = 0.87 Å with Uiso(H) = 1.2Ueq(N). The OH H atom of the coordinated methanol mol­ecule in complex I was located in a difference-Fourier map and freely refined. The OH H atom of the solvent methanol mol­ecule in I was included in a calculated position and treated as riding: O—H = 0.84 Å with Uiso(H) = 1.5Ueq(O). For HL1 and complex I the C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).

Supporting information


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997) for HL1; EXPOSE in IPDS-I (Stoe & Cie, 2004) for (I). Cell refinement: STADI4 (Stoe & Cie, 1997) for HL1; CELL in IPDS-I (Stoe & Cie, 2004) for (I). Data reduction: X-RED (Stoe & Cie, 1997) for HL1; INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (I). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

N-(quinolin-8-yl)pyrazine-2-carboxamide (HL1) top
Crystal data top
C14H10N4OF(000) = 1560
Mr = 250.26Dx = 1.425 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 11.5047 (9) ÅCell parameters from 38 reflections
b = 23.410 (3) Åθ = 10.1–19.2°
c = 13.4115 (11) ŵ = 0.10 mm1
β = 104.305 (8)°T = 223 K
V = 3500.0 (6) Å3Block, colourless
Z = 120.50 × 0.40 × 0.30 mm
Data collection top
STOE-Siemens AED2, 4-circle
diffractometer
Rint = 0.0
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.0°
Plane graphite monochromatorh = 1313
ω/\2q scansk = 028
4090 measured reflectionsl = 1516
4090 independent reflections2 standard reflections every 60 min
2851 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0283P)2 + 4.6085P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.003
4090 reflectionsΔρmax = 0.19 e Å3
515 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7337 (5)0.0790 (3)0.8655 (4)0.0463 (14)
N10.7597 (7)0.1224 (4)1.1248 (6)0.0382 (19)
N20.6261 (8)0.2143 (4)1.0247 (7)0.044 (2)
N30.8141 (6)0.0339 (3)1.0201 (5)0.0360 (15)
H3N0.8222070.0378881.0859690.043*
N40.9191 (8)0.0366 (3)1.1719 (7)0.0331 (17)
C10.7234 (8)0.1270 (4)1.0203 (8)0.034 (2)
C20.6608 (8)0.1720 (4)0.9717 (8)0.037 (2)
H20.6412060.1735100.8994090.044*
C30.6545 (8)0.2114 (4)1.1237 (8)0.042 (2)
H30.6275840.2397051.1625150.050*
C40.7270 (10)0.1651 (5)1.1748 (9)0.045 (2)
H40.7520160.1654641.2470460.055*
C50.7573 (6)0.0775 (3)0.9596 (6)0.0320 (17)
C60.8616 (9)0.0171 (4)0.9887 (7)0.031 (2)
C70.8578 (10)0.0331 (5)0.8907 (8)0.042 (2)
H70.8186550.0093050.8362350.050*
C80.9096 (10)0.0833 (5)0.8681 (9)0.046 (3)
H80.9061820.0929850.7994150.055*
C90.9658 (10)0.1189 (5)0.9464 (9)0.046 (3)
H91.0000050.1532890.9313120.055*
C100.9724 (10)0.1040 (5)1.0502 (9)0.037 (2)
C111.0315 (11)0.1379 (5)1.1327 (10)0.056 (3)
H111.0696680.1718331.1209050.067*
C121.0335 (10)0.1216 (5)1.2294 (9)0.046 (3)
H121.0737310.1438391.2858040.055*
C130.9749 (9)0.0713 (5)1.2449 (8)0.038 (2)
H130.9755610.0615571.3130680.046*
C140.9177 (9)0.0536 (4)1.0716 (8)0.029 (2)
O21.1664 (6)0.0867 (3)1.2537 (5)0.0469 (17)
N211.1428 (7)0.0431 (3)0.9977 (6)0.0334 (19)
N221.2741 (9)0.0505 (4)1.0996 (7)0.047 (2)
N231.0843 (6)0.1305 (3)1.1025 (5)0.0311 (16)
H23N1.0749440.1267071.0364160.037*
N240.9780 (7)0.2026 (4)0.9528 (6)0.0359 (19)
C211.1773 (11)0.0001 (5)0.9463 (8)0.041 (2)
H211.1588170.0016030.8740100.049*
C221.2378 (11)0.0452 (5)0.9946 (9)0.049 (3)
H221.2562840.0749720.9540830.058*
C231.2382 (11)0.0062 (5)1.1504 (9)0.046 (3)
H231.2569520.0068421.2226910.055*
C241.1760 (8)0.0391 (4)1.1000 (7)0.030 (2)
C251.1415 (7)0.0869 (4)1.1595 (6)0.035 (2)
C261.0377 (8)0.1811 (4)1.1325 (7)0.0267 (19)
C271.0415 (9)0.1959 (4)1.2346 (7)0.033 (2)
H271.0804130.1724611.2897640.040*
C280.9845 (10)0.2474 (5)1.2516 (9)0.045 (3)
H280.9870510.2582361.3195580.054*
C290.9267 (11)0.2815 (4)1.1738 (10)0.046 (3)
H290.8877220.3144761.1888330.056*
C300.9238 (10)0.2689 (5)1.0723 (10)0.043 (3)
C310.8637 (10)0.3020 (5)0.9884 (9)0.046 (3)
H310.8221500.3347691.0008000.056*
C320.8633 (10)0.2884 (5)0.8881 (9)0.051 (3)
H320.8245020.3112520.8321580.061*
C330.9265 (10)0.2366 (5)0.8750 (9)0.041 (3)
H330.9312730.2264770.8083380.050*
C340.9778 (8)0.2169 (4)1.0483 (8)0.030 (2)
O31.2338 (5)0.2464 (3)0.8676 (4)0.0499 (15)
N311.2533 (7)0.2882 (4)1.1263 (6)0.0357 (18)
N321.1316 (9)0.3839 (4)1.0267 (8)0.056 (2)
N331.3101 (5)0.2002 (3)1.0212 (5)0.0343 (14)
H33N1.3151500.2038511.0867110.041*
N341.4154 (7)0.1285 (4)1.1717 (6)0.0351 (19)
C411.2238 (8)0.2920 (4)1.0237 (7)0.032 (2)
C421.1626 (9)0.3411 (4)0.9757 (7)0.040 (2)
H421.1431180.3430640.9034570.048*
C431.1578 (10)0.3785 (5)1.1267 (9)0.055 (3)
H431.1323270.4069541.1659390.066*
C441.2214 (9)0.3326 (4)1.1769 (8)0.041 (2)
H441.2432540.3323801.2492640.050*
C451.2556 (6)0.2439 (3)0.9620 (6)0.0337 (17)
C461.3596 (9)0.1501 (4)0.9928 (8)0.035 (2)
C471.3526 (9)0.1366 (4)0.8925 (7)0.036 (2)
H471.3107310.1604840.8393480.043*
C481.4091 (10)0.0861 (5)0.8688 (9)0.043 (3)
H481.4069980.0778550.7997660.052*
C491.4661 (11)0.0493 (5)0.9437 (10)0.048 (3)
H491.4995980.0151080.9267390.057*
C501.4738 (9)0.0637 (4)1.0481 (9)0.034 (2)
C511.5356 (10)0.0298 (5)1.1340 (10)0.052 (3)
H511.5768310.0035151.1237460.062*
C521.5333 (10)0.0465 (4)1.2297 (10)0.048 (3)
H521.5737140.0247221.2866470.058*
C531.4737 (10)0.0941 (5)1.2445 (9)0.044 (3)
H531.4739840.1035321.3127240.053*
C541.4176 (9)0.1133 (5)1.0717 (8)0.034 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.062 (4)0.052 (4)0.024 (3)0.008 (3)0.009 (3)0.003 (2)
N10.038 (4)0.041 (5)0.033 (4)0.001 (3)0.004 (3)0.002 (3)
N20.047 (5)0.031 (4)0.052 (6)0.005 (3)0.011 (4)0.010 (4)
N30.044 (4)0.039 (4)0.026 (3)0.003 (3)0.009 (3)0.000 (3)
N40.037 (4)0.032 (4)0.028 (4)0.004 (3)0.004 (3)0.001 (3)
C10.025 (4)0.040 (5)0.039 (5)0.001 (3)0.010 (4)0.002 (4)
C20.032 (5)0.040 (5)0.033 (5)0.005 (4)0.002 (4)0.014 (4)
C30.031 (5)0.033 (5)0.059 (7)0.007 (4)0.008 (4)0.001 (4)
C40.043 (5)0.037 (5)0.048 (6)0.005 (4)0.004 (4)0.002 (4)
C50.030 (4)0.028 (4)0.040 (5)0.001 (3)0.013 (3)0.000 (3)
C60.033 (5)0.026 (4)0.032 (5)0.007 (3)0.004 (4)0.001 (3)
C70.041 (5)0.060 (6)0.024 (5)0.007 (4)0.008 (4)0.010 (4)
C80.050 (6)0.051 (6)0.037 (5)0.008 (5)0.015 (5)0.015 (5)
C90.057 (6)0.042 (5)0.043 (6)0.002 (5)0.020 (5)0.015 (5)
C100.036 (5)0.033 (5)0.041 (6)0.006 (4)0.011 (4)0.005 (4)
C110.058 (7)0.043 (6)0.075 (8)0.017 (5)0.031 (6)0.013 (5)
C120.042 (5)0.040 (6)0.053 (7)0.001 (5)0.007 (5)0.024 (5)
C130.035 (5)0.057 (6)0.021 (4)0.005 (4)0.004 (4)0.002 (4)
C140.031 (5)0.031 (4)0.027 (5)0.009 (4)0.011 (4)0.001 (4)
O20.055 (4)0.052 (4)0.034 (4)0.009 (3)0.011 (3)0.010 (3)
N210.039 (4)0.025 (4)0.035 (5)0.005 (3)0.007 (4)0.004 (3)
N220.059 (6)0.038 (5)0.043 (5)0.009 (4)0.011 (4)0.010 (4)
N230.038 (4)0.033 (4)0.021 (4)0.007 (3)0.005 (3)0.000 (3)
N240.032 (4)0.043 (5)0.031 (4)0.006 (4)0.005 (3)0.000 (4)
C210.059 (6)0.034 (5)0.032 (5)0.005 (5)0.015 (5)0.005 (4)
C220.074 (8)0.032 (6)0.042 (6)0.005 (5)0.019 (6)0.003 (5)
C230.054 (6)0.042 (6)0.045 (7)0.005 (5)0.020 (5)0.010 (5)
C240.033 (5)0.027 (5)0.029 (5)0.008 (4)0.006 (4)0.004 (4)
C250.025 (4)0.055 (6)0.022 (4)0.004 (4)0.001 (3)0.016 (4)
C260.020 (4)0.033 (5)0.027 (5)0.002 (4)0.004 (3)0.004 (4)
C270.039 (5)0.029 (5)0.031 (5)0.014 (4)0.010 (4)0.009 (4)
C280.053 (7)0.044 (6)0.046 (6)0.015 (5)0.025 (5)0.009 (5)
C290.054 (6)0.025 (5)0.068 (8)0.004 (4)0.031 (6)0.008 (5)
C300.038 (6)0.041 (6)0.054 (7)0.005 (5)0.019 (5)0.006 (5)
C310.050 (6)0.034 (5)0.055 (7)0.002 (5)0.015 (5)0.002 (5)
C320.043 (6)0.058 (8)0.049 (7)0.001 (6)0.006 (5)0.005 (5)
C330.043 (6)0.036 (6)0.042 (6)0.001 (4)0.006 (5)0.013 (5)
C340.022 (4)0.025 (4)0.038 (5)0.003 (3)0.001 (4)0.009 (4)
O30.062 (4)0.064 (4)0.024 (3)0.007 (3)0.011 (3)0.009 (3)
N310.036 (4)0.038 (4)0.032 (4)0.001 (3)0.005 (3)0.002 (3)
N320.061 (5)0.046 (5)0.061 (6)0.009 (4)0.015 (5)0.010 (5)
N330.035 (3)0.043 (4)0.026 (3)0.000 (3)0.008 (3)0.002 (3)
N340.038 (4)0.039 (4)0.028 (4)0.007 (3)0.008 (3)0.000 (3)
C410.026 (4)0.035 (5)0.036 (5)0.002 (3)0.008 (4)0.009 (4)
C420.041 (5)0.043 (6)0.033 (5)0.007 (4)0.006 (4)0.008 (4)
C430.054 (6)0.053 (7)0.056 (7)0.012 (5)0.009 (5)0.009 (5)
C440.047 (5)0.040 (5)0.038 (5)0.012 (4)0.013 (4)0.001 (4)
C450.038 (4)0.026 (4)0.036 (4)0.001 (3)0.007 (3)0.003 (3)
C460.039 (5)0.033 (5)0.038 (5)0.006 (4)0.018 (4)0.013 (4)
C470.039 (5)0.042 (5)0.030 (5)0.005 (4)0.014 (4)0.003 (4)
C480.045 (6)0.047 (6)0.045 (6)0.017 (5)0.024 (5)0.021 (5)
C490.050 (6)0.043 (6)0.056 (7)0.008 (5)0.024 (5)0.023 (5)
C500.036 (5)0.024 (5)0.045 (6)0.008 (4)0.015 (4)0.000 (4)
C510.044 (5)0.037 (5)0.082 (9)0.005 (4)0.032 (6)0.013 (5)
C520.039 (5)0.042 (6)0.063 (7)0.010 (4)0.012 (5)0.036 (5)
C530.037 (5)0.056 (6)0.035 (5)0.009 (4)0.002 (4)0.001 (4)
C540.035 (5)0.040 (5)0.027 (5)0.007 (4)0.013 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C51.224 (9)C26—C271.403 (13)
N1—C41.311 (14)C26—C341.439 (14)
N1—C11.364 (12)C27—C281.418 (15)
N2—C31.289 (13)C27—H270.9400
N2—C21.337 (13)C28—C291.351 (17)
N3—C51.366 (10)C28—H280.9400
N3—C61.419 (11)C29—C301.385 (17)
N3—H3N0.8700C29—H290.9400
N4—C131.312 (14)C30—C311.400 (16)
N4—C141.398 (13)C30—C341.438 (15)
C1—C21.349 (14)C31—C321.380 (16)
C1—C51.521 (11)C31—H310.9400
C2—H20.9400C32—C331.447 (16)
C3—C41.435 (15)C32—H320.9400
C3—H30.9400C33—H330.9400
C4—H40.9400O3—C451.230 (9)
C6—C71.358 (13)N31—C411.337 (12)
C6—C141.424 (14)N31—C441.340 (12)
C7—C81.385 (15)N32—C431.306 (14)
C7—H70.9400N32—C421.312 (13)
C8—C91.371 (17)N33—C451.350 (10)
C8—H80.9400N33—C461.399 (11)
C9—C101.419 (16)N33—H33N0.8700
C9—H90.9400N34—C531.314 (14)
C10—C111.395 (16)N34—C541.395 (13)
C10—C141.400 (11)C41—C421.417 (14)
C11—C121.347 (17)C41—C451.494 (12)
C11—H110.9400C42—H420.9400
C12—C131.398 (15)C43—C441.378 (16)
C12—H120.9400C43—H430.9400
C13—H130.9400C44—H440.9400
O2—C251.224 (11)C46—C471.366 (13)
N21—C241.333 (12)C46—C541.398 (15)
N21—C211.334 (13)C47—C481.422 (13)
N22—C231.360 (15)C47—H470.9400
N22—C221.372 (15)C48—C491.362 (17)
N23—C251.347 (11)C48—H480.9400
N23—C261.399 (11)C49—C501.421 (16)
N23—H23N0.8700C49—H490.9400
N24—C341.324 (13)C50—C541.403 (11)
N24—C331.329 (13)C50—C511.435 (16)
C21—C221.344 (17)C51—C521.348 (16)
C21—H210.9400C51—H510.9400
C22—H220.9400C52—C531.350 (15)
C23—C241.362 (16)C52—H520.9400
C23—H230.9400C53—H530.9400
C24—C251.484 (13)
C4—N1—C1114.3 (10)C26—C27—C28117.5 (10)
C3—N2—C2118.4 (9)C26—C27—H27121.2
C5—N3—C6128.0 (7)C28—C27—H27121.2
C5—N3—H3N116.0C29—C28—C27122.5 (11)
C6—N3—H3N116.0C29—C28—H28118.7
C13—N4—C14115.5 (8)C27—C28—H28118.7
C2—C1—N1123.4 (9)C28—C29—C30121.4 (10)
C2—C1—C5120.8 (9)C28—C29—H29119.3
N1—C1—C5115.8 (9)C30—C29—H29119.3
N2—C2—C1121.0 (9)C29—C30—C31124.0 (11)
N2—C2—H2119.5C29—C30—C34119.5 (12)
C1—C2—H2119.5C31—C30—C34116.3 (11)
N2—C3—C4120.1 (9)C32—C31—C30122.5 (11)
N2—C3—H3120.0C32—C31—H31118.8
C4—C3—H3120.0C30—C31—H31118.8
N1—C4—C3122.6 (10)C31—C32—C33115.5 (11)
N1—C4—H4118.7C31—C32—H32122.2
C3—C4—H4118.7C33—C32—H32122.2
O1—C5—N3125.8 (7)N24—C33—C32123.1 (11)
O1—C5—C1120.6 (8)N24—C33—H33118.4
N3—C5—C1113.5 (7)C32—C33—H33118.4
C7—C6—N3126.7 (9)N24—C34—C30122.3 (11)
C7—C6—C14119.3 (9)N24—C34—C26119.8 (8)
N3—C6—C14114.0 (8)C30—C34—C26117.9 (10)
C6—C7—C8122.3 (10)C41—N31—C44116.1 (9)
C6—C7—H7118.9C43—N32—C42116.0 (10)
C8—C7—H7118.9C45—N33—C46129.6 (7)
C9—C8—C7119.7 (10)C45—N33—H33N115.2
C9—C8—H8120.2C46—N33—H33N115.2
C7—C8—H8120.2C53—N34—C54115.5 (9)
C8—C9—C10120.2 (10)N31—C41—C42119.5 (9)
C8—C9—H9119.9N31—C41—C45119.1 (8)
C10—C9—H9119.9C42—C41—C45121.4 (8)
C11—C10—C14118.2 (9)N32—C42—C41123.5 (9)
C11—C10—C9122.4 (10)N32—C42—H42118.3
C14—C10—C9119.4 (9)C41—C42—H42118.3
C12—C11—C10119.5 (10)N32—C43—C44122.5 (11)
C12—C11—H11120.3N32—C43—H43118.7
C10—C11—H11120.3C44—C43—H43118.7
C11—C12—C13119.2 (10)N31—C44—C43122.3 (10)
C11—C12—H12120.4N31—C44—H44118.8
C13—C12—H12120.4C43—C44—H44118.8
N4—C13—C12125.1 (10)O3—C45—N33126.1 (7)
N4—C13—H13117.4O3—C45—C41121.2 (8)
C12—C13—H13117.4N33—C45—C41112.7 (7)
N4—C14—C10122.5 (8)C47—C46—C54120.3 (9)
N4—C14—C6118.4 (9)C47—C46—N33122.3 (9)
C10—C14—C6119.1 (8)C54—C46—N33117.5 (8)
C24—N21—C21115.7 (9)C46—C47—C48119.6 (10)
C23—N22—C22113.1 (10)C46—C47—H47120.2
C25—N23—C26130.3 (8)C48—C47—H47120.2
C25—N23—H23N114.9C49—C48—C47121.6 (10)
C26—N23—H23N114.9C49—C48—H48119.2
C34—N24—C33120.0 (9)C47—C48—H48119.2
N21—C21—C22122.0 (11)C48—C49—C50118.6 (10)
N21—C21—H21119.0C48—C49—H49120.7
C22—C21—H21119.0C50—C49—H49120.7
C21—C22—N22123.8 (11)C54—C50—C49119.9 (9)
C21—C22—H22118.1C54—C50—C51116.2 (8)
N22—C22—H22118.1C49—C50—C51123.9 (10)
N22—C23—C24122.1 (11)C52—C51—C50118.8 (10)
N22—C23—H23118.9C52—C51—H51120.6
C24—C23—H23118.9C50—C51—H51120.6
N21—C24—C23123.2 (9)C51—C52—C53120.7 (10)
N21—C24—C25117.0 (8)C51—C52—H52119.7
C23—C24—C25119.8 (9)C53—C52—H52119.7
O2—C25—N23123.1 (9)N34—C53—C52125.5 (11)
O2—C25—C24121.8 (9)N34—C53—H53117.2
N23—C25—C24115.1 (8)C52—C53—H53117.2
N23—C26—C27124.6 (9)N34—C54—C46116.9 (9)
N23—C26—C34114.2 (8)N34—C54—C50123.2 (8)
C27—C26—C34121.1 (9)C46—C54—C50120.0 (7)
C4—N1—C1—C21.0 (13)C27—C28—C29—C302.4 (17)
C4—N1—C1—C5178.7 (8)C28—C29—C30—C31178.9 (11)
C3—N2—C2—C10.3 (14)C28—C29—C30—C343.3 (17)
N1—C1—C2—N22.7 (14)C29—C30—C31—C32179.5 (11)
C5—C1—C2—N2177.0 (8)C34—C30—C31—C324.8 (16)
C2—N2—C3—C43.3 (14)C30—C31—C32—C331.6 (16)
C1—N1—C4—C32.7 (14)C34—N24—C33—C323.1 (16)
N2—C3—C4—N15.1 (16)C31—C32—C33—N242.6 (16)
C6—N3—C5—O12.7 (13)C33—N24—C34—C300.4 (15)
C6—N3—C5—C1177.2 (8)C33—N24—C34—C26177.6 (9)
C2—C1—C5—O13.8 (12)C29—C30—C34—N24179.8 (8)
N1—C1—C5—O1176.5 (8)C31—C30—C34—N244.3 (16)
C2—C1—C5—N3176.2 (8)C29—C30—C34—C262.6 (16)
N1—C1—C5—N33.4 (10)C31—C30—C34—C26178.5 (7)
C5—N3—C6—C71.3 (14)N23—C26—C34—N244.6 (12)
C5—N3—C6—C14178.9 (7)C27—C26—C34—N24178.4 (9)
N3—C6—C7—C8178.4 (9)N23—C26—C34—C30178.1 (9)
C14—C6—C7—C81.8 (15)C27—C26—C34—C301.1 (14)
C6—C7—C8—C90.8 (17)C44—N31—C41—C420.0 (12)
C7—C8—C9—C100.9 (17)C44—N31—C41—C45179.6 (8)
C8—C9—C10—C11178.2 (11)C43—N32—C42—C411.7 (15)
C8—C9—C10—C142.1 (15)N31—C41—C42—N320.5 (14)
C14—C10—C11—C120.5 (15)C45—C41—C42—N32179.1 (9)
C9—C10—C11—C12179.3 (11)C42—N32—C43—C444.3 (17)
C10—C11—C12—C130.7 (17)C41—N31—C44—C432.5 (14)
C14—N4—C13—C121.7 (15)N32—C43—C44—N315.0 (18)
C11—C12—C13—N41.9 (18)C46—N33—C45—O33.7 (13)
C13—N4—C14—C100.3 (12)C46—N33—C45—C41175.4 (8)
C13—N4—C14—C6178.2 (9)N31—C41—C45—O3177.5 (8)
C11—C10—C14—N40.7 (12)C42—C41—C45—O32.9 (12)
C9—C10—C14—N4179.0 (11)N31—C41—C45—N331.6 (10)
C11—C10—C14—C6177.2 (11)C42—C41—C45—N33178.0 (8)
C9—C10—C14—C63.1 (12)C45—N33—C46—C473.9 (14)
C7—C6—C14—N4179.1 (9)C45—N33—C46—C54176.2 (7)
N3—C6—C14—N40.8 (12)C54—C46—C47—C482.6 (14)
C7—C6—C14—C102.9 (12)N33—C46—C47—C48177.4 (9)
N3—C6—C14—C10177.2 (7)C46—C47—C48—C492.8 (15)
C24—N21—C21—C222.4 (16)C47—C48—C49—C503.2 (16)
N21—C21—C22—N223.1 (19)C48—C49—C50—C543.5 (14)
C23—N22—C22—C212.7 (17)C48—C49—C50—C51177.4 (10)
C22—N22—C23—C242.0 (16)C54—C50—C51—C521.6 (13)
C21—N21—C24—C231.8 (15)C49—C50—C51—C52177.6 (10)
C21—N21—C24—C25178.6 (9)C50—C51—C52—C530.3 (16)
N22—C23—C24—N211.8 (16)C54—N34—C53—C520.3 (15)
N22—C23—C24—C25178.6 (9)C51—C52—C53—N341.0 (18)
C26—N23—C25—O23.2 (15)C53—N34—C54—C46178.0 (9)
C26—N23—C25—C24178.6 (8)C53—N34—C54—C502.4 (12)
N21—C24—C25—O2178.9 (9)C47—C46—C54—N34176.6 (9)
C23—C24—C25—O20.7 (13)N33—C46—C54—N343.4 (13)
N21—C24—C25—N232.8 (11)C47—C46—C54—C503.0 (13)
C23—C24—C25—N23177.5 (9)N33—C46—C54—C50177.0 (7)
C25—N23—C26—C270.7 (15)C49—C50—C54—N34176.2 (11)
C25—N23—C26—C34177.6 (8)C51—C50—C54—N343.0 (11)
N23—C26—C27—C28176.8 (8)C49—C50—C54—C463.4 (11)
C34—C26—C27—C280.2 (14)C51—C50—C54—C46177.4 (11)
C26—C27—C28—C290.8 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.872.212.661 (10)112
N3—H3N···N40.872.232.667 (10)111
C7—H7···O10.942.362.967 (13)122
N23—H23N···N210.872.222.662 (10)112
N23—H23N···N240.872.242.675 (11)110
C21—H21···O2i0.942.643.264 (12)125
C22—H22···O2i0.942.643.278 (13)125
C27—H27···O20.942.342.912 (13)119
N33—H33N···N310.872.212.667 (10)113
N33—H33N···N340.872.262.674 (11)109
C44—H44···O1ii0.942.613.244 (11)125
C47—H47···O30.942.272.893 (12)123
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hexa-µ-acetato-1:2κ2O:O';2:3κ8O:O'; 3:4κ2O:O'-dimethanol-1κO,2κO-bis[N-(quinolin-8-yl)pyrazine-2-carboxamide]-1κ3N,N',N''; 4κ3N,N',N''-tetracopper(II) methanol disolvate (I) top
Crystal data top
[Cu4(C42H44N8O16)]·2CH4OZ = 1
Mr = 1235.09F(000) = 632
Triclinic, P1Dx = 1.645 Mg m3
a = 8.1485 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2132 (9) ÅCell parameters from 8000 reflections
c = 14.2662 (12) Åθ = 2.2–25.9°
α = 98.352 (9)°µ = 1.76 mm1
β = 93.668 (10)°T = 153 K
γ = 103.578 (9)°Block, green
V = 1247.11 (19) Å30.50 × 0.30 × 0.25 mm
Data collection top
STOE IPDS 1
diffractometer
4499 independent reflections
Radiation source: fine-focus sealed tube3906 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.050
φ rotation scansθmax = 25.9°, θmin = 2.2°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1010
Tmin = 0.564, Tmax = 1.000k = 1313
9825 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
4499 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.39598 (3)0.31687 (2)0.17585 (2)0.01373 (9)
O20.1648 (2)0.37443 (17)0.10360 (12)0.0196 (4)
H2O0.208 (3)0.440 (3)0.081 (2)0.020 (7)*
C150.0276 (3)0.3951 (3)0.15486 (19)0.0295 (6)
H15C0.0701860.3916170.1099330.044*
H15B0.0614240.4771000.1952270.044*
H15A0.0030950.3307500.1947980.044*
N10.5500 (2)0.49209 (19)0.19753 (13)0.0158 (4)
N20.7940 (2)0.7145 (2)0.20796 (15)0.0220 (4)
N30.5020 (2)0.30915 (19)0.05748 (13)0.0143 (4)
N40.2904 (2)0.13793 (19)0.12373 (13)0.0151 (4)
O10.6953 (2)0.42282 (17)0.02929 (12)0.0214 (4)
C10.6469 (3)0.5128 (2)0.12584 (15)0.0145 (4)
C20.7678 (3)0.6243 (2)0.13166 (17)0.0193 (5)
H20.8342950.6372330.0800200.023*
C30.6944 (3)0.6927 (2)0.27740 (17)0.0221 (5)
H30.7075110.7550740.3319610.027*
C40.5719 (3)0.5817 (2)0.27251 (16)0.0193 (5)
H40.5031630.5697180.3233370.023*
C50.6164 (3)0.4088 (2)0.04218 (15)0.0145 (5)
C60.4453 (3)0.1982 (2)0.00583 (15)0.0142 (4)
C70.4895 (3)0.1676 (2)0.09636 (15)0.0174 (5)
H70.5683420.2272020.1227000.021*
C80.4187 (3)0.0487 (2)0.14995 (16)0.0209 (5)
H80.4504870.0297350.2122450.025*
C90.3049 (3)0.0406 (2)0.11458 (16)0.0209 (5)
H90.2585550.1201320.1522120.025*
C100.2569 (3)0.0133 (2)0.02131 (16)0.0172 (5)
C110.1416 (3)0.0996 (2)0.02149 (18)0.0212 (5)
H110.0889730.1801130.0129110.025*
C120.1067 (3)0.0660 (2)0.11283 (17)0.0221 (5)
H120.0300980.1230700.1424150.027*
C130.1849 (3)0.0530 (2)0.16210 (16)0.0183 (5)
H130.1616560.0743120.2259450.022*
C140.3277 (3)0.1054 (2)0.03234 (15)0.0141 (4)
Cu20.44706 (3)0.08030 (3)0.45535 (2)0.01311 (9)
O30.3072 (2)0.34649 (16)0.29775 (11)0.0178 (3)
O40.3848 (2)0.19608 (16)0.36021 (11)0.0195 (4)
O50.5820 (2)0.21036 (16)0.55744 (12)0.0220 (4)
O60.6575 (2)0.08152 (17)0.39303 (11)0.0208 (4)
O70.3245 (2)0.07186 (17)0.36824 (12)0.0250 (4)
O80.25541 (19)0.05939 (17)0.53366 (12)0.0214 (4)
C160.3260 (3)0.2889 (2)0.36657 (15)0.0144 (4)
C170.2738 (4)0.3410 (3)0.46051 (17)0.0300 (6)
H17A0.2251990.4113800.4523040.045*
H17B0.3733880.3692650.5077580.045*
H17C0.1889660.2763040.4824130.045*
C180.6718 (3)0.1805 (2)0.62131 (16)0.0179 (5)
C190.7880 (3)0.2856 (3)0.69104 (19)0.0294 (6)
H19A0.7368620.2957860.7510970.044*
H19B0.8044640.3628120.6643960.044*
H19C0.8978840.2661400.7027850.044*
C200.7617 (3)0.0184 (2)0.40933 (15)0.0159 (5)
C210.9158 (3)0.0332 (3)0.35565 (17)0.0227 (5)
H21C1.0151910.0345820.3986860.034*
H21B0.9341620.1113480.3301690.034*
H21A0.8987580.0366430.3030630.034*
O90.7083 (3)0.2935 (2)0.28288 (15)0.0402 (5)
H9O0.6469420.2302740.2994050.060*
C220.7910 (4)0.3767 (3)0.3638 (2)0.0457 (8)
H22A0.8539860.4537300.3448120.069*
H22B0.8699980.3394290.3971420.069*
H22C0.7070480.3952990.4061570.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01849 (15)0.01031 (18)0.01175 (14)0.00192 (11)0.00404 (10)0.00134 (11)
O20.0199 (8)0.0199 (11)0.0213 (8)0.0052 (7)0.0047 (6)0.0088 (8)
C150.0202 (12)0.0357 (18)0.0291 (13)0.0058 (11)0.0026 (10)0.0044 (12)
N10.0172 (9)0.0165 (12)0.0143 (9)0.0048 (7)0.0002 (7)0.0042 (8)
N20.0228 (10)0.0146 (12)0.0249 (10)0.0001 (8)0.0024 (8)0.0016 (9)
N30.0158 (8)0.0126 (11)0.0137 (9)0.0013 (7)0.0013 (7)0.0028 (8)
N40.0155 (8)0.0142 (11)0.0158 (9)0.0044 (7)0.0020 (7)0.0021 (8)
O10.0257 (8)0.0193 (10)0.0188 (8)0.0015 (7)0.0093 (7)0.0052 (7)
C10.0143 (10)0.0146 (13)0.0165 (10)0.0061 (8)0.0003 (8)0.0055 (9)
C20.0171 (10)0.0168 (14)0.0228 (11)0.0019 (9)0.0007 (9)0.0040 (10)
C30.0273 (12)0.0150 (14)0.0212 (12)0.0032 (9)0.0031 (9)0.0008 (10)
C40.0238 (11)0.0187 (14)0.0151 (10)0.0059 (9)0.0003 (9)0.0016 (9)
C50.0141 (10)0.0141 (14)0.0163 (10)0.0049 (8)0.0006 (8)0.0044 (9)
C60.0149 (9)0.0134 (13)0.0151 (10)0.0055 (8)0.0014 (8)0.0029 (9)
C70.0208 (10)0.0206 (14)0.0123 (10)0.0068 (9)0.0020 (8)0.0045 (9)
C80.0265 (12)0.0248 (15)0.0126 (10)0.0108 (10)0.0014 (9)0.0002 (10)
C90.0277 (12)0.0164 (14)0.0162 (11)0.0061 (9)0.0031 (9)0.0036 (9)
C100.0174 (10)0.0158 (14)0.0172 (11)0.0047 (9)0.0030 (8)0.0002 (9)
C110.0209 (11)0.0125 (14)0.0264 (12)0.0009 (9)0.0027 (9)0.0015 (10)
C120.0198 (11)0.0177 (15)0.0258 (12)0.0026 (9)0.0035 (9)0.0049 (10)
C130.0201 (11)0.0165 (14)0.0176 (11)0.0021 (9)0.0050 (8)0.0034 (9)
C140.0149 (9)0.0147 (13)0.0135 (10)0.0057 (8)0.0001 (8)0.0019 (9)
Cu20.01474 (14)0.01284 (18)0.01143 (14)0.00311 (10)0.00007 (10)0.00198 (11)
O30.0262 (8)0.0157 (10)0.0141 (7)0.0083 (6)0.0048 (6)0.0043 (7)
O40.0279 (8)0.0187 (10)0.0140 (7)0.0094 (7)0.0004 (6)0.0046 (7)
O50.0240 (8)0.0170 (10)0.0218 (8)0.0028 (7)0.0047 (7)0.0003 (7)
O60.0231 (8)0.0236 (11)0.0198 (8)0.0098 (7)0.0079 (6)0.0081 (7)
O70.0314 (9)0.0198 (11)0.0204 (8)0.0039 (7)0.0073 (7)0.0006 (7)
O80.0191 (8)0.0252 (11)0.0234 (8)0.0077 (7)0.0059 (6)0.0103 (8)
C160.0140 (10)0.0149 (14)0.0133 (10)0.0022 (8)0.0002 (8)0.0026 (9)
C170.0464 (15)0.0338 (18)0.0164 (12)0.0196 (13)0.0102 (11)0.0066 (11)
C180.0141 (10)0.0203 (15)0.0165 (11)0.0023 (9)0.0021 (8)0.0028 (9)
C190.0265 (12)0.0227 (17)0.0313 (14)0.0005 (10)0.0082 (11)0.0064 (11)
C200.0174 (10)0.0140 (14)0.0131 (10)0.0011 (8)0.0002 (8)0.0030 (9)
C210.0198 (11)0.0244 (16)0.0234 (12)0.0041 (9)0.0048 (9)0.0037 (10)
O90.0560 (13)0.0284 (14)0.0405 (11)0.0107 (10)0.0252 (10)0.0108 (10)
C220.0507 (18)0.033 (2)0.053 (2)0.0066 (14)0.0113 (15)0.0083 (16)
Geometric parameters (Å, º) top
Cu1—N12.037 (2)C11—C121.370 (4)
Cu1—N31.9457 (18)C11—H110.9500
Cu1—N41.998 (2)C12—C131.397 (4)
Cu1—O22.3541 (16)C12—H120.9500
Cu1—O31.9401 (15)C13—H130.9500
O2—C151.420 (3)Cu2—Cu2i2.6202 (6)
O2—H2O0.85 (3)Cu2—O42.1255 (16)
C15—H15C0.9800Cu2—O51.9703 (17)
C15—H15B0.9800Cu2—O61.9793 (15)
C15—H15A0.9800Cu2—O71.9692 (18)
N1—C41.328 (3)Cu2—O81.9671 (16)
N1—C11.345 (3)O3—C161.271 (3)
N2—C31.334 (3)O4—C161.238 (3)
N2—C21.343 (3)O5—C181.264 (3)
N3—C51.331 (3)O6—C201.258 (3)
N3—C61.388 (3)O7—C18i1.256 (3)
N4—C131.332 (3)O8—C20i1.267 (3)
N4—C141.375 (3)C16—C171.510 (3)
O1—C51.249 (3)C17—H17A0.9800
C1—C21.386 (3)C17—H17B0.9800
C1—C51.506 (3)C17—H17C0.9800
C2—H20.9500C18—C191.513 (3)
C3—C41.391 (3)C19—H19A0.9800
C3—H30.9500C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C6—C71.380 (3)C20—C211.501 (3)
C6—C141.436 (3)C21—H21C0.9800
C7—C81.407 (4)C21—H21B0.9800
C7—H70.9500C21—H21A0.9800
C8—C91.375 (4)O9—C221.396 (4)
C8—H80.9500O9—H9O0.8400
C9—C101.422 (3)C22—H22A0.9800
C9—H90.9500C22—H22B0.9800
C10—C141.406 (3)C22—H22C0.9800
C10—C111.418 (3)
O3—Cu1—N3172.66 (8)C11—C12—H12120.3
O3—Cu1—N4105.05 (7)C13—C12—H12120.3
N3—Cu1—N482.29 (8)N4—C13—C12123.0 (2)
O3—Cu1—N191.72 (7)N4—C13—H13118.5
N3—Cu1—N180.94 (8)C12—C13—H13118.5
N4—Cu1—N1162.67 (8)N4—C14—C10122.1 (2)
O3—Cu1—O288.87 (6)N4—C14—C6116.8 (2)
N3—Cu1—O291.42 (7)C10—C14—C6121.1 (2)
N4—Cu1—O290.51 (7)O8—Cu2—O788.94 (8)
N1—Cu1—O294.20 (7)O8—Cu2—O589.35 (7)
C15—O2—Cu1121.65 (14)O7—Cu2—O5169.04 (7)
C15—O2—H2O109.0 (19)O8—Cu2—O6168.74 (7)
Cu1—O2—H2O105.5 (18)O7—Cu2—O691.16 (7)
O2—C15—H15C109.5O5—Cu2—O688.42 (7)
O2—C15—H15B109.5O8—Cu2—O4102.95 (6)
H15C—C15—H15B109.5O7—Cu2—O492.05 (7)
O2—C15—H15A109.5O5—Cu2—O498.88 (7)
H15C—C15—H15A109.5O6—Cu2—O488.31 (6)
H15B—C15—H15A109.5O8—Cu2—Cu2i86.81 (5)
C4—N1—C1118.3 (2)O7—Cu2—Cu2i82.29 (5)
C4—N1—Cu1129.20 (16)O5—Cu2—Cu2i86.81 (5)
C1—N1—Cu1112.44 (15)O6—Cu2—Cu2i82.04 (5)
C3—N2—C2116.5 (2)O4—Cu2—Cu2i168.68 (5)
C5—N3—C6125.59 (19)C16—O3—Cu1124.70 (15)
C5—N3—Cu1118.94 (16)C16—O4—Cu2135.91 (14)
C6—N3—Cu1115.44 (14)C18—O5—Cu2119.47 (16)
C13—N4—C14118.3 (2)C20—O6—Cu2125.71 (15)
C13—N4—Cu1129.49 (17)C18i—O7—Cu2125.03 (15)
C14—N4—Cu1112.08 (15)C20i—O8—Cu2120.48 (15)
N1—C1—C2120.3 (2)O4—C16—O3123.9 (2)
N1—C1—C5116.22 (19)O4—C16—C17120.1 (2)
C2—C1—C5123.5 (2)O3—C16—C17116.0 (2)
N2—C2—C1122.1 (2)C16—C17—H17A109.5
N2—C2—H2118.9C16—C17—H17B109.5
C1—C2—H2118.9H17A—C17—H17B109.5
N2—C3—C4122.2 (2)C16—C17—H17C109.5
N2—C3—H3118.9H17A—C17—H17C109.5
C4—C3—H3118.9H17B—C17—H17C109.5
N1—C4—C3120.7 (2)O7i—C18—O5126.2 (2)
N1—C4—H4119.6O7i—C18—C19116.8 (2)
C3—C4—H4119.6O5—C18—C19117.0 (2)
O1—C5—N3128.5 (2)C18—C19—H19A109.5
O1—C5—C1120.2 (2)C18—C19—H19B109.5
N3—C5—C1111.34 (18)H19A—C19—H19B109.5
C7—C6—N3128.8 (2)C18—C19—H19C109.5
C7—C6—C14118.3 (2)H19A—C19—H19C109.5
N3—C6—C14112.89 (19)H19B—C19—H19C109.5
C6—C7—C8120.5 (2)O6—C20—O8i124.8 (2)
C6—C7—H7119.8O6—C20—C21118.0 (2)
C8—C7—H7119.8O8i—C20—C21117.2 (2)
C9—C8—C7121.8 (2)C20—C21—H21C109.5
C9—C8—H8119.1C20—C21—H21B109.5
C7—C8—H8119.1H21C—C21—H21B109.5
C8—C9—C10119.6 (2)C20—C21—H21A109.5
C8—C9—H9120.2H21C—C21—H21A109.5
C10—C9—H9120.2H21B—C21—H21A109.5
C14—C10—C11117.6 (2)C22—O9—H9O109.5
C14—C10—C9118.7 (2)O9—C22—H22A109.5
C11—C10—C9123.6 (2)O9—C22—H22B109.5
C12—C11—C10119.5 (2)H22A—C22—H22B109.5
C12—C11—H11120.3O9—C22—H22C109.5
C10—C11—H11120.3H22A—C22—H22C109.5
C11—C12—C13119.4 (2)H22B—C22—H22C109.5
C4—N1—C1—C21.0 (3)C8—C9—C10—C11179.5 (2)
Cu1—N1—C1—C2175.58 (16)C14—C10—C11—C121.5 (3)
C4—N1—C1—C5179.55 (19)C9—C10—C11—C12178.1 (2)
Cu1—N1—C1—C53.9 (2)C10—C11—C12—C130.3 (4)
C3—N2—C2—C11.6 (3)C14—N4—C13—C122.0 (3)
N1—C1—C2—N20.5 (3)Cu1—N4—C13—C12173.02 (17)
C5—C1—C2—N2178.9 (2)C11—C12—C13—N41.5 (4)
C2—N2—C3—C41.3 (3)C13—N4—C14—C100.7 (3)
C1—N1—C4—C31.4 (3)Cu1—N4—C14—C10175.18 (16)
Cu1—N1—C4—C3174.59 (16)C13—N4—C14—C6178.42 (19)
N2—C3—C4—N10.2 (4)Cu1—N4—C14—C65.8 (2)
C6—N3—C5—O10.8 (4)C11—C10—C14—N41.0 (3)
Cu1—N3—C5—O1178.55 (18)C9—C10—C14—N4178.6 (2)
C6—N3—C5—C1179.67 (18)C11—C10—C14—C6179.94 (19)
Cu1—N3—C5—C11.9 (2)C9—C10—C14—C60.4 (3)
N1—C1—C5—O1176.57 (19)C7—C6—C14—N4178.15 (19)
C2—C1—C5—O14.0 (3)N3—C6—C14—N40.7 (3)
N1—C1—C5—N33.8 (3)C7—C6—C14—C100.9 (3)
C2—C1—C5—N3175.59 (19)N3—C6—C14—C10179.77 (18)
C5—N3—C6—C71.5 (4)Cu2—O4—C16—O3176.52 (15)
Cu1—N3—C6—C7176.32 (18)Cu2—O4—C16—C172.7 (3)
C5—N3—C6—C14177.16 (19)Cu1—O3—C16—O49.5 (3)
Cu1—N3—C6—C145.0 (2)Cu1—O3—C16—C17169.72 (17)
N3—C6—C7—C8179.5 (2)Cu2—O5—C18—O7i6.0 (3)
C14—C6—C7—C80.8 (3)Cu2—O5—C18—C19173.09 (16)
C6—C7—C8—C90.3 (4)Cu2—O6—C20—O8i2.5 (3)
C7—C8—C9—C100.2 (4)Cu2—O6—C20—C21179.18 (15)
C8—C9—C10—C140.1 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1ii0.86 (3)1.84 (3)2.689 (3)178 (3)
O9—H9O···O40.842.332.955 (3)132
O9—H9O···O60.842.303.000 (3)141
C3—H3···O8iii0.952.563.508 (3)174
C7—H7···O10.952.362.943 (3)119
C9—H9···O9iv0.952.573.415 (3)149
C13—H13···O40.952.543.175 (3)124
C21—H21C···O8v0.982.593.563 (3)170
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y, z.
ππ interactions (Å, °) in the crystal of ligand HL1 top
Cg1, Cg5 and Cg9 are the centroids of the pyrazine rings (N1/N2/C1–C4) in molecule A, (N22/N23/C21–C24) in molecule B and (N31/N32/C41–C44) in molecule C, respectively. Cg4, Cg8 and Cg12 are the centroids of the quinoline ring systems (N4/C6–C14)in molecule A, (N24/C26–C34) in molecule B and (N34/C46–C54) in molecule C, respectively.
Ringpzringquincentroid–centroidαβγinterplanar_1interplanar_2offset
Cg1Cg8i3.589 (5)2.9 (4)9.28.23.552 (4)3.543 (4)0.572
Cg1Cg12i3.493 (5)4.1 (4)12.28.63.453 (4)3.414 (3)0.737
Cg5Cg4ii3.367 (5)3.8 (4)4.72.33.364 (4)3.355 (4)0.275
Cg5Cg12iii3.492 (5)4.1 (4)2.76.73.468 (4)3.488 (3)0.163
Cg9Cg4iv3.455 (6)4.2 (4)11.08.03.420 (4)3.390 (4)0.662
Cg9Cg8v3.532 (6)2.9 (4)3.45.73.515 (4)3.526 (4)0.211
Symmetry codes: (i) x, y + 1, z - 1/2; (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) x - 1/2, y - 1/2, z; (iv) x, -y + 1, z + 1/2; (v) x + 1/2, y + 1/2, z.
Relative percentage contributions of close contacts to the Hirshfeld surface of ligand HL1, and for the individual molecules top
ContactHL1Molecule AMolecule BMolecule C
H···H43.044.541.743.0
N···H/H···N14.513.514.614.3
C···H/H···C11.810.511.711.1
O···H/H···O8.19.210.29.4
C···C10.810.610.610.5
C···N10.710.510.110.7
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationCati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). Inorg. Chem. 32, 4834–4838.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993.  Web of Science CSD CrossRef Google Scholar
First citationHuang, G. & Liu, X. (2016). Acta Cryst. E72, 597–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, J. I., Yoo, H. S., Koh, E. K. & Hong, C. S. (2007). Inorg. Chem. 46, 10461–10463.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645.  Google Scholar
First citationKoman, M., Valigura, D., Ďurčanská, E. & Ondrejovič, G. (1984). J. Chem. Soc. Chem. Commun. pp. 381–383.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeghdadi, S., Amirnasr, M., Azarkamanzad, Z., Schenk Joss, K., Fadaee, F., Amiri, A. & Abbasi, S. (2013). J. Coord. Chem. 66, 4330–4343.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeels, A., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1995). Inorg. Chem. 34, 1946–1949.  CSD CrossRef CAS Web of Science Google Scholar
First citationNi, Z.-H., Kou, H.-Z., Zhang, L.-F., Ni, W.-W., Jiang, Y.-B., Cui, A.-L., Ribas, J. & Sato, O. (2005). Inorg. Chem. 44, 9631–9633.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPosel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682.  Google Scholar
First citationSchilf, W. (2004). J. Mol. Struct. 691, 141–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationSenapati, T., Pichon, C., Ababei, R., Mathonière, C. & Clérac, R. (2012). Inorg. Chem. 51, 3796–3812.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationStoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationValigura, D., Koman, M., Ďurčanská, E., Ondrejovič, G. & Mroziński, J. (1986). J. Chem. Soc. Dalton Trans. pp. 2339–2344.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109–110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhou, H., Wang, Y., Mou, F., Shen, X. & Liu, Y. (2014). New J. Chem. 38, 5925–5934.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-Y., Ke, X.-K, Tu, C., Lin, J., Ding, J., Lin, L., Fun, H.-K., You X.-Z. & Guo. Z.-J. (2013). BioMetals, 16, 485–96.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds