metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl­tri­chlorido{2-[(diiso­propyl­ammonio)­meth­yl]phen­yl}tin(IV) di­chloro­methane monosolvate

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos St, RO-400028, Cluj Napoca, Romania
*Correspondence e-mail: adinar@chem.ubbcluj.ro

(Received 26 November 2010; accepted 3 December 2010; online 11 December 2010)

The title compound, [Sn(C4H9)(C13H21N)Cl3]·CH2Cl2, was obtained by recrystallization of [2-(diisopropyl­amino­meth­yl)phen­yl]tin(IV) butyl dichloride from a CH2Cl2/n-hexane mixture (1:4 v/v) in the presence of ambient moisture. Partial hydrolysis led to the title compound, the hydro­chloric acid adduct of the dichloride, having a penta­coordinated Sn atom with a trigonal–bipyramidal C2SnCl3 core. The N atom of the 2-[(diisopropyl­ammonio)­meth­yl]phenyl ligand forms a strong intra­molecular N—H⋯Cl hydrogen bond, resulting in a zwitterionic species, [2-(iPr2HN+CH2)C6H4]SnBuCl3·CH2Cl2. Disorder was found in the n-butyl group, which was refined as disordered over three positions, with site occupancies of 0.22 (1), 0.51 (1) and 0.27 (2).

Related literature

For related tin(IV) compounds, see: Varga et al. (2001[Varga, R. A., Schuermann, M. & Silvestru, C. (2001). J. Organomet. Chem. 623, 161-167.], 2005[Varga, R. A., Silvestru, C. & Deleanu, C. (2005). Appl. Organomet. Chem. 19, 153-160.], 2006[Varga, R. A., Rotar, A., Schuermann, M., Jurkschat, K. & Silvestru, C. (2006). Eur. J. Inorg. Chem. 7, 1475-1486.]); Varga & Silvestru (2007[Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m48-m50.]); Rotar et al. (2007[Rotar, A., Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m355-m356.], 2009[Rotar, A., Varga, R. A., Jurkschat, K. & Silvestru, C. (2009). J. Organomet. Chem. 694, 1385-1392.]); Rotar, Schuermann et al. (2008[Rotar, A., Schuermann, M., Varga, R. A., Silvestru, C. & Jurkschat, K. (2008). Z. Anorg. Allg. Chem. 634, 1533-1536.]); Rotar, Varga & Silvestru (2008[Rotar, A., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, m45.]); Švec et al. (2010[Švec, P., Černošková, E., Padělková, Z., Růžička, A. & Holeček, J. (2010). J. Organomet. Chem. 695, 2475-2485.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)(C13H21N)Cl3]·CH2Cl2

  • Mr = 558.39

  • Triclinic, [P \overline 1]

  • a = 10.654 (8) Å

  • b = 11.093 (9) Å

  • c = 12.406 (10) Å

  • α = 115.594 (13)°

  • β = 100.767 (15)°

  • γ = 97.176 (15)°

  • V = 1263.5 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 297 K

  • 0.45 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.544, Tmax = 0.769

  • 9126 measured reflections

  • 4416 independent reflections

  • 3122 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.213

  • S = 1.02

  • 4416 reflections

  • 257 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.86 (1) 2.37 (7) 3.208 (8) 165 (8)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During our work on hypercoordinated organotin(IV) compounds with [2-(R2NCH2)C6H4]Sn fragments (Varga et al., 2001, 2005, 2006, Rotar et al., 2007, 2008, 2009) the title compound was isolated.

In an attempt to obtain single-crystals of the dichloride [2-(iPr2NCH2)C6H4]SnBuCl2 (1), recrystallization from a CH2Cl2/n-hexane mixture (1:4) in the presence of air afforded the HCl adduct 1.HCl.CH2Cl2. The nitrogen atom of the LCN ligand [LCN = 2-(diisopropylaminomethyl)phenyl] is protonated and a new Sn—Cl bond is simultaneously formed, thus leading to the formation of a zwitterionic species, [2-(iPr2HN+CH2)C6H4]SnBuCl3.CH2Cl2. The presence of the HCl is probably due to partial hydrolysis of the diorganotin(IV) dihalide in the presence of ambient moisture from air.

The central tin atom is pentacoordinated with a distorted trigonal bipyramidal geometry (Fig. 1). The axial positions are occupied by two chlorine atoms [Cl1—Sn1—Cl2 = 178.50 (7)°], while the two carbon atoms from the two organic groups and a chlorine atom are placed in equatorial positions. The angles in the equatorial C2SnCl system are situated in the range between 97.4 (13) and 145.8 (14) °, showing a strong deviation from the ideal value of 120°. The Cl2 atom forms a strong intramolecular hydrogen bond with H1 from the nitrogen atom [Cl2···H1 = 2.37 (7) Å].

Disorder was found in the n-butyl group. This was resolved over three positions with the components of the disorder having site a occupancy ratio of 0.21 (1):0.51 (2):0.27 (2) (see Refinement section; Fig. 2).

Related literature top

For related tin(IV) compounds, see: Varga et al. (2001, 2005, 2006, 2007); Rotar et al. (2007, 2009); Rotar, Schuermann et al. (2008); Rotar, Varga & Silvestru (2008); Švec et al. (2010).

Experimental top

A solution of BuLi in hexane (10.5 ml, 1.6M, 20% excess) was added dropwise to a stirred solution of 2-(N,N-diisopropylaminomethyl)benzene bromide (3.7 g, 13.7 mmol) in 100 ml of anhydrous hexane at room temperature under argon using Schlenk techniques. The reaction mixture was refluxed under stirring for four hours and then allowed to reach room temperature. The obtained liquid product was added dropwise under stirring to a cooled (195 K, -78°C) solution of BuSnCl3 (1.8 ml, 11 mmol) in 50 ml of anhydrous hexane. After the organolithiun compound was added, the reaction mixture was stirred for 1 h at 195 K (-78°C), then overnight to reach room temperature. The solvent was removed in vacuo. The oily residue was recrystallized from CH2Cl2/n-hexane, in presence of air moisture, resulting in the isolation of [2-(iPr2HN+CH2)C6H4]SnBuCl3. CH2Cl2 (1.67 g, 32.9%).

1H NMR (300 MHz, CDCl3, 293.5K): 0.98 t (3H, SnCH2CH2CH2CH3, 3JHH = 7.3 Hz), 1.28 d (6HA, NCH(CH3)2, 3JHH = 6.7 Hz), 1.47 d (6HB, NCH(CH3)2, 3JHH = 6.8 Hz), 1.52 s (2H, SnCH2CH2CH2CH3, 3JHH = 7.4 Hz), 2.01 quin (2H, SnCH2CH2CH2CH3, 3JHH = 8.2 Hz), 2.23 t (2H, SnCH2CH2CH2CH3, 3JHH = 8.1, 2JSnH = 81.4 Hz), 3.50 H (2H, NCH(CH3)2, 3JHH = 6.5 Hz), 3.96 d (2H, –CH2–, 3JHH = 4.3 Hz), 7.49m (2H, H4,5, C6H4), 7.65m (1H, H3, C6H4), 7.71m (1H, H6, C6H4), 9.22 s,br (1H, NH).

13C NMR (75.4 MHz, CDCl3, 293.5K): 13.68 s (SnCH2CH2CH2CH3, 4JSnC = 7.8 Hz), 18.73 s (NCH(CH3)2 [B]), 19.11 s (NCH(CH3)2 [A]), 25.95 s (SnCH2CH2CH2CH3, 3JSnC = 130.6 Hz), 27.47 s (SnCH2CH2CH2CH3, 2JSnC = 51.1 Hz), 37.40 s,br (SnCH2CH2CH2CH3), 51.07 s (-CH2–), 52.90 s (NCH(CH3)2), 129.71 s (C5, C6H4, 3JSnC 51.1 = Hz), 129.86 s (C4, C6H4, 4JSnC = 16.3 Hz), 132.15 s (C1, C6H4), 134.77 s (C3, C6H4, 3JSnC = 61.8 Hz), 136.11 s (C6, C6H4, 2JSnC = 80.1 Hz), 154.98 s (C2, C6H4).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.98 Å and with Uiso= 1.2 or 1.5Ueq (C) for H. The methyl groups were allowed to rotate but not to tip. The H1 atom bonded to N1 was found in a difference map and refined with a restrained N—H distance of 0.86 (1) Å.

The n-butyl group was found to be severly disordered. Attempts to refine the chain as disordered over two moieties (with appropriate distance restraints for the C—C bonds) did not give satisfactory results with ADPs of neighboring atoms being icompatible even after application of severe restraints for the thermal ellipsoids. Disorder over three moieties allowed to avoid these problems. In the final refinement the butyl chain was refined as disordered over three sites with equivalent bonds from the disordered components restrained to have similar lengths length. The same Uij parameters were used for atom C14/C14B/C14C, C15/C15B/C15C, C16/C16B/C16C and C17/C17B/C17C, leading to refined site occupancies of 0.21 (1):0.51 (2):0.27 (2).

Structure description top

During our work on hypercoordinated organotin(IV) compounds with [2-(R2NCH2)C6H4]Sn fragments (Varga et al., 2001, 2005, 2006, Rotar et al., 2007, 2008, 2009) the title compound was isolated.

In an attempt to obtain single-crystals of the dichloride [2-(iPr2NCH2)C6H4]SnBuCl2 (1), recrystallization from a CH2Cl2/n-hexane mixture (1:4) in the presence of air afforded the HCl adduct 1.HCl.CH2Cl2. The nitrogen atom of the LCN ligand [LCN = 2-(diisopropylaminomethyl)phenyl] is protonated and a new Sn—Cl bond is simultaneously formed, thus leading to the formation of a zwitterionic species, [2-(iPr2HN+CH2)C6H4]SnBuCl3.CH2Cl2. The presence of the HCl is probably due to partial hydrolysis of the diorganotin(IV) dihalide in the presence of ambient moisture from air.

The central tin atom is pentacoordinated with a distorted trigonal bipyramidal geometry (Fig. 1). The axial positions are occupied by two chlorine atoms [Cl1—Sn1—Cl2 = 178.50 (7)°], while the two carbon atoms from the two organic groups and a chlorine atom are placed in equatorial positions. The angles in the equatorial C2SnCl system are situated in the range between 97.4 (13) and 145.8 (14) °, showing a strong deviation from the ideal value of 120°. The Cl2 atom forms a strong intramolecular hydrogen bond with H1 from the nitrogen atom [Cl2···H1 = 2.37 (7) Å].

Disorder was found in the n-butyl group. This was resolved over three positions with the components of the disorder having site a occupancy ratio of 0.21 (1):0.51 (2):0.27 (2) (see Refinement section; Fig. 2).

For related tin(IV) compounds, see: Varga et al. (2001, 2005, 2006, 2007); Rotar et al. (2007, 2009); Rotar, Schuermann et al. (2008); Rotar, Varga & Silvestru (2008); Švec et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme and the intramolecular hydrogen bond (black dashed line) with only the major component for the disordered n-butyl group. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the disordered n-butyl group showing the atom-numbering scheme (major component with grey and the two minor components with white). Displacement ellipsoids are drawn at the 30% probability level (H atoms were omitted for clarity).
Butyltrichlorido{2-[(diisopropylammonio)methyl]phenyl}tin(IV) dichloromethane monosolvate top
Crystal data top
[Sn(C4H9)(C13H21N)Cl3]·CH2Cl2Z = 2
Mr = 558.39F(000) = 564
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 10.654 (8) ÅCell parameters from 1665 reflections
b = 11.093 (9) Åθ = 2.4–20.1°
c = 12.406 (10) ŵ = 1.54 mm1
α = 115.594 (13)°T = 297 K
β = 100.767 (15)°Block, colourless
γ = 97.176 (15)°0.45 × 0.20 × 0.18 mm
V = 1263.5 (17) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4416 independent reflections
Radiation source: fine-focus sealed tube3122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(Bruker, 2000)
h = 1212
Tmin = 0.544, Tmax = 0.769k = 1313
9126 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.0754P]
where P = (Fo2 + 2Fc2)/3
4416 reflections(Δ/σ)max = 0.008
257 parametersΔρmax = 1.43 e Å3
40 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Sn(C4H9)(C13H21N)Cl3]·CH2Cl2γ = 97.176 (15)°
Mr = 558.39V = 1263.5 (17) Å3
Triclinic, P1Z = 2
a = 10.654 (8) ÅMo Kα radiation
b = 11.093 (9) ŵ = 1.54 mm1
c = 12.406 (10) ÅT = 297 K
α = 115.594 (13)°0.45 × 0.20 × 0.18 mm
β = 100.767 (15)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4416 independent reflections
Absorption correction: multi-scan
(Bruker, 2000)
3122 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.769Rint = 0.074
9126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07640 restraints
wR(F2) = 0.213H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.43 e Å3
4416 reflectionsΔρmin = 0.73 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4960 (8)0.7632 (8)0.8171 (7)0.0490 (19)
C20.4078 (8)0.8089 (8)0.8876 (7)0.052 (2)
C30.4102 (10)0.7820 (10)0.9900 (7)0.068 (3)
H30.35450.81451.04010.082*
C40.4950 (11)0.7076 (11)1.0147 (9)0.079 (3)
H40.49420.68821.08040.095*
C50.5813 (11)0.6613 (11)0.9442 (10)0.080 (3)
H50.63920.61240.96260.096*
C60.5798 (10)0.6891 (10)0.8458 (9)0.070 (3)
H60.63690.65700.79730.084*
C70.3141 (8)0.8942 (8)0.8704 (7)0.054 (2)
H7A0.35450.95470.84240.065*
H7B0.29990.95140.95010.065*
C80.1153 (9)0.6964 (9)0.7985 (8)0.061 (2)
H80.18220.65000.81750.073*
C90.0569 (11)0.7551 (12)0.9098 (10)0.093 (3)
H9A0.12670.80240.98520.139*
H9B0.00120.68140.91180.139*
H9C0.00640.81810.90190.139*
C100.0112 (9)0.5909 (11)0.6802 (9)0.084 (3)
H10A0.05870.63250.66320.126*
H10B0.02320.51400.69100.126*
H10C0.05010.56020.61190.126*
C110.0904 (9)0.8991 (10)0.7562 (8)0.067 (2)
H110.00070.85370.74570.080*
C120.1211 (12)1.0427 (11)0.8664 (10)0.098 (4)
H12A0.11481.03510.93950.147*
H12B0.05931.09260.84980.147*
H12C0.20841.09050.87910.147*
C130.0929 (13)0.9059 (15)0.6384 (10)0.109 (4)
H13A0.02600.94990.61990.163*
H13B0.07690.81450.57160.163*
H13C0.17730.95750.64830.163*
C140.571 (6)0.712 (5)0.490 (3)0.065 (6)0.22
H14A0.55300.61360.45890.078*0.22
H14B0.50790.72960.43420.078*0.22
C150.702 (6)0.754 (8)0.477 (7)0.089 (8)0.22
H15A0.76200.77950.55650.107*0.22
H15B0.70100.84000.47350.107*0.22
C160.772 (6)0.681 (6)0.384 (5)0.124 (10)0.22
H16A0.85280.74320.39670.148*0.22
H16B0.79550.60440.39480.148*0.22
C170.686 (9)0.632 (10)0.258 (7)0.127 (10)0.22
H17A0.61030.67010.26350.191*0.22
H17B0.65870.53310.21810.191*0.22
H17C0.73330.65910.21050.191*0.22
C14B0.587 (10)0.664 (4)0.511 (7)0.065 (6)0.51
H14C0.65220.62400.54020.078*0.51
H14D0.51290.59000.45150.078*0.51
C15B0.644 (4)0.733 (3)0.446 (3)0.089 (8)0.51
H15C0.71980.80630.50380.107*0.51
H15D0.57970.77430.41610.107*0.51
C16B0.684 (4)0.634 (3)0.340 (4)0.124 (10)0.51
H16C0.74010.58520.36870.148*0.51
H16D0.60650.56620.27830.148*0.51
C17B0.755 (3)0.699 (4)0.280 (3)0.127 (10)0.51
H17D0.69270.71250.22160.191*0.51
H17E0.80770.64080.23680.191*0.51
H17F0.81040.78620.34180.191*0.51
C14C0.600 (19)0.687 (6)0.512 (13)0.065 (6)0.27
H14E0.66340.64010.53420.078*0.27
H14F0.53010.61900.44040.078*0.27
C15C0.663 (7)0.794 (6)0.486 (5)0.089 (8)0.27
H15E0.74640.84570.54740.107*0.27
H15F0.60720.85690.48770.107*0.27
C16C0.685 (6)0.724 (4)0.360 (5)0.124 (10)0.27
H16E0.60050.69570.30020.148*0.27
H16F0.73980.79240.34970.148*0.27
C17C0.744 (8)0.603 (6)0.324 (7)0.127 (10)0.27
H17G0.67550.52020.28120.191*0.27
H17H0.79750.60540.39650.191*0.27
H17I0.79740.60420.26960.191*0.27
C180.7688 (13)0.2311 (16)0.7029 (15)0.131 (6)
H18A0.72830.15060.70730.157*
H18B0.72660.22210.62260.157*
Cl10.75445 (19)0.9363 (2)0.79244 (19)0.0594 (6)
Cl20.2839 (2)0.6520 (2)0.5385 (2)0.0644 (6)
Cl30.4604 (2)0.9945 (2)0.65829 (19)0.0549 (5)
Cl40.7400 (7)0.3745 (6)0.8168 (7)0.234 (4)
Cl50.9241 (6)0.2338 (7)0.7127 (7)0.214 (3)
N10.1814 (7)0.8103 (7)0.7781 (6)0.0557 (18)
H10.197 (8)0.773 (8)0.707 (4)0.067*
Sn10.52253 (6)0.79582 (6)0.66440 (5)0.0525 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (5)0.055 (5)0.045 (4)0.004 (4)0.005 (4)0.020 (4)
C20.043 (5)0.055 (5)0.047 (4)0.010 (4)0.004 (4)0.017 (4)
C30.069 (6)0.091 (7)0.047 (5)0.012 (5)0.016 (4)0.035 (5)
C40.096 (8)0.100 (8)0.074 (6)0.043 (7)0.026 (6)0.064 (6)
C50.081 (8)0.090 (7)0.090 (7)0.035 (6)0.004 (6)0.063 (6)
C60.072 (7)0.070 (6)0.076 (6)0.035 (5)0.025 (5)0.034 (5)
C70.044 (5)0.058 (5)0.043 (4)0.011 (4)0.010 (4)0.009 (4)
C80.047 (5)0.066 (5)0.067 (5)0.005 (4)0.019 (4)0.029 (5)
C90.075 (8)0.103 (8)0.086 (7)0.008 (6)0.015 (6)0.042 (7)
C100.052 (6)0.086 (7)0.078 (7)0.007 (5)0.005 (5)0.017 (6)
C110.045 (5)0.077 (6)0.080 (6)0.020 (5)0.017 (5)0.037 (5)
C120.094 (9)0.075 (7)0.100 (8)0.049 (6)0.010 (7)0.017 (6)
C130.110 (10)0.158 (12)0.091 (8)0.076 (9)0.029 (7)0.075 (9)
C140.087 (17)0.046 (13)0.066 (7)0.035 (16)0.034 (9)0.019 (12)
C150.09 (2)0.09 (2)0.062 (19)0.00 (2)0.042 (19)0.004 (15)
C160.15 (3)0.081 (18)0.16 (2)0.004 (19)0.10 (2)0.06 (2)
C170.16 (3)0.14 (3)0.095 (16)0.04 (2)0.038 (18)0.060 (18)
C14B0.087 (17)0.046 (13)0.066 (7)0.035 (16)0.034 (9)0.019 (12)
C15B0.09 (2)0.09 (2)0.062 (19)0.00 (2)0.042 (19)0.004 (15)
C16B0.15 (3)0.081 (18)0.16 (2)0.004 (19)0.10 (2)0.06 (2)
C17B0.16 (3)0.14 (3)0.095 (16)0.04 (2)0.038 (18)0.060 (18)
C14C0.087 (17)0.046 (13)0.066 (7)0.035 (16)0.034 (9)0.019 (12)
C15C0.09 (2)0.09 (2)0.062 (19)0.00 (2)0.042 (19)0.004 (15)
C16C0.15 (3)0.081 (18)0.16 (2)0.004 (19)0.10 (2)0.06 (2)
C17C0.16 (3)0.14 (3)0.095 (16)0.04 (2)0.038 (18)0.060 (18)
C180.094 (10)0.156 (13)0.208 (16)0.038 (9)0.044 (10)0.139 (13)
Cl10.0326 (11)0.0740 (13)0.0603 (12)0.0032 (10)0.0069 (9)0.0261 (11)
Cl20.0525 (14)0.0652 (13)0.0581 (12)0.0074 (11)0.0045 (10)0.0194 (11)
Cl30.0529 (13)0.0512 (11)0.0716 (13)0.0172 (10)0.0157 (10)0.0374 (10)
Cl40.316 (10)0.177 (5)0.300 (8)0.125 (6)0.220 (8)0.120 (5)
Cl50.163 (5)0.303 (7)0.364 (8)0.147 (5)0.150 (5)0.264 (7)
N10.045 (4)0.066 (4)0.052 (4)0.016 (4)0.016 (3)0.022 (4)
Sn10.0492 (4)0.0576 (4)0.0541 (4)0.0190 (3)0.0164 (3)0.0262 (3)
Geometric parameters (Å, º) top
C1—C61.385 (12)C15—H15B0.9700
C1—C21.396 (11)C16—C171.48 (2)
C1—Sn12.137 (8)C16—H16A0.9700
C2—C31.421 (11)C16—H16B0.9700
C2—C71.506 (12)C17—H17A0.9600
C3—C41.376 (13)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—C51.380 (14)C14B—C15B1.483 (18)
C4—H40.9300C14B—Sn12.137 (12)
C5—C61.380 (13)C14B—H14C0.9700
C5—H50.9300C14B—H14D0.9700
C6—H60.9300C15B—C16B1.490 (18)
C7—N11.524 (11)C15B—H15C0.9700
C7—H7A0.9700C15B—H15D0.9700
C7—H7B0.9700C16B—C17B1.479 (18)
C8—N11.509 (11)C16B—H16C0.9700
C8—C101.529 (12)C16B—H16D0.9700
C8—C91.537 (14)C17B—H17D0.9600
C8—H80.9800C17B—H17E0.9600
C9—H9A0.9600C17B—H17F0.9600
C9—H9B0.9600C14C—C15C1.48 (2)
C9—H9C0.9600C14C—Sn12.139 (16)
C10—H10A0.9600C14C—H14E0.9700
C10—H10B0.9600C14C—H14F0.9700
C10—H10C0.9600C15C—C16C1.49 (2)
C11—C131.500 (13)C15C—H15E0.9700
C11—C121.527 (13)C15C—H15F0.9700
C11—N11.535 (11)C16C—C17C1.48 (2)
C11—H110.9800C16C—H16E0.9700
C12—H12A0.9600C16C—H16F0.9700
C12—H12B0.9600C17C—H17G0.9600
C12—H12C0.9600C17C—H17H0.9600
C13—H13A0.9600C17C—H17I0.9600
C13—H13B0.9600C18—Cl51.632 (14)
C13—H13C0.9600C18—Cl41.721 (16)
C14—C151.481 (19)C18—H18A0.9700
C14—Sn12.141 (18)C18—H18B0.9700
C14—H14A0.9700Cl1—Sn12.547 (3)
C14—H14B0.9700Cl2—Sn12.608 (3)
C15—C161.485 (19)Cl3—Sn12.406 (3)
C15—H15A0.9700N1—H10.857 (10)
C6—C1—C2119.4 (8)H17B—C17—H17C109.5
C6—C1—Sn1113.1 (6)C15B—C14B—Sn1114.6 (19)
C2—C1—Sn1127.5 (6)C15B—C14B—H14C108.6
C1—C2—C3118.7 (8)Sn1—C14B—H14C108.6
C1—C2—C7125.5 (8)C15B—C14B—H14D108.6
C3—C2—C7115.7 (8)Sn1—C14B—H14D108.6
C4—C3—C2119.8 (9)H14C—C14B—H14D107.6
C4—C3—H3120.1C14B—C15B—C16B111 (2)
C2—C3—H3120.1C14B—C15B—H15C109.5
C3—C4—C5121.5 (9)C16B—C15B—H15C109.5
C3—C4—H4119.3C14B—C15B—H15D109.5
C5—C4—H4119.3C16B—C15B—H15D109.5
C6—C5—C4118.5 (9)H15C—C15B—H15D108.1
C6—C5—H5120.7C17B—C16B—C15B113 (3)
C4—C5—H5120.7C17B—C16B—H16C108.9
C5—C6—C1122.1 (9)C15B—C16B—H16C108.9
C5—C6—H6119.0C17B—C16B—H16D108.9
C1—C6—H6119.0C15B—C16B—H16D108.9
C2—C7—N1114.1 (7)H16C—C16B—H16D107.7
C2—C7—H7A108.7C16B—C17B—H17D109.5
N1—C7—H7A108.7C16B—C17B—H17E109.5
C2—C7—H7B108.7H17D—C17B—H17E109.5
N1—C7—H7B108.7C16B—C17B—H17F109.5
H7A—C7—H7B107.6H17D—C17B—H17F109.5
N1—C8—C10110.1 (7)H17E—C17B—H17F109.5
N1—C8—C9110.6 (8)C15C—C14C—Sn1105 (3)
C10—C8—C9111.8 (8)C15C—C14C—H14E110.8
N1—C8—H8108.1Sn1—C14C—H14E110.8
C10—C8—H8108.1C15C—C14C—H14F110.9
C9—C8—H8108.1Sn1—C14C—H14F110.9
C8—C9—H9A109.5H14E—C14C—H14F108.9
C8—C9—H9B109.5C14C—C15C—C16C108 (4)
H9A—C9—H9B109.5C14C—C15C—H15E110.2
C8—C9—H9C109.5C16C—C15C—H15E110.2
H9A—C9—H9C109.5C14C—C15C—H15F110.1
H9B—C9—H9C109.5C16C—C15C—H15F110.1
C8—C10—H10A109.5H15E—C15C—H15F108.5
C8—C10—H10B109.5C17C—C16C—C15C121 (5)
H10A—C10—H10B109.5C17C—C16C—H16E107.0
C8—C10—H10C109.5C15C—C16C—H16E107.0
H10A—C10—H10C109.5C17C—C16C—H16F107.0
H10B—C10—H10C109.5C15C—C16C—H16F107.0
C13—C11—C12111.4 (10)H16E—C16C—H16F106.8
C13—C11—N1110.8 (8)C16C—C17C—H17G109.5
C12—C11—N1112.6 (7)C16C—C17C—H17H109.5
C13—C11—H11107.2H17G—C17C—H17H109.5
C12—C11—H11107.2C16C—C17C—H17I109.5
N1—C11—H11107.2H17G—C17C—H17I109.5
C11—C12—H12A109.5H17H—C17C—H17I109.5
C11—C12—H12B109.5Cl5—C18—Cl4114.1 (10)
H12A—C12—H12B109.5Cl5—C18—H18A108.7
C11—C12—H12C109.5Cl4—C18—H18A108.7
H12A—C12—H12C109.5Cl5—C18—H18B108.7
H12B—C12—H12C109.5Cl4—C18—H18B108.7
C11—C13—H13A109.5H18A—C18—H18B107.6
C11—C13—H13B109.5C8—N1—C7114.9 (7)
H13A—C13—H13B109.5C8—N1—C11114.1 (7)
C11—C13—H13C109.5C7—N1—C11113.3 (7)
H13A—C13—H13C109.5C8—N1—H1108 (6)
H13B—C13—H13C109.5C7—N1—H1105 (6)
C15—C14—Sn1123 (4)C11—N1—H1100 (6)
C15—C14—H14A106.6C14B—Sn1—C1126.9 (17)
Sn1—C14—H14A106.6C14B—Sn1—C14C7 (3)
C15—C14—H14B106.6C1—Sn1—C14C132 (3)
Sn1—C14—H14B106.6C14B—Sn1—C1419 (2)
H14A—C14—H14B106.5C1—Sn1—C14145.8 (14)
C14—C15—C16132 (5)C14C—Sn1—C1415 (5)
C14—C15—H15A104.4C14B—Sn1—Cl3116.5 (18)
C16—C15—H15A104.4C1—Sn1—Cl3116.5 (2)
C14—C15—H15B104.4C14C—Sn1—Cl3111 (3)
C16—C15—H15B104.4C14—Sn1—Cl397.4 (13)
H15A—C15—H15B105.6C14B—Sn1—Cl193 (3)
C17—C16—C15109 (7)C1—Sn1—Cl189.0 (2)
C17—C16—H16A109.9C14C—Sn1—Cl189 (5)
C15—C16—H16A109.9C14—Sn1—Cl195.1 (16)
C15—C16—H16B109.9Cl3—Sn1—Cl190.96 (9)
H16A—C16—H16B108.3C14B—Sn1—Cl288 (3)
C16—C17—H17A109.5C1—Sn1—Cl289.5 (2)
C16—C17—H17B109.5C14C—Sn1—Cl292 (5)
H17A—C17—H17B109.5C14—Sn1—Cl286.3 (16)
C16—C17—H17C109.5Cl3—Sn1—Cl289.46 (9)
H17A—C17—H17C109.5Cl1—Sn1—Cl2178.50 (7)
C6—C1—C2—C32.3 (12)C15B—C14B—Sn1—C1158 (5)
Sn1—C1—C2—C3176.8 (6)C15B—C14B—Sn1—C1429 (6)
C6—C1—C2—C7177.9 (8)C15B—C14B—Sn1—Cl326 (8)
Sn1—C1—C2—C71.2 (12)C15B—C14B—Sn1—Cl167 (7)
C1—C2—C3—C42.4 (13)C15B—C14B—Sn1—Cl2114 (7)
C7—C2—C3—C4178.4 (9)C6—C1—Sn1—C14B30 (4)
C2—C3—C4—C51.8 (16)C2—C1—Sn1—C14B151 (4)
C3—C4—C5—C61.0 (17)C6—C1—Sn1—C14C24 (7)
C4—C5—C6—C10.9 (16)C2—C1—Sn1—C14C157 (7)
C2—C1—C6—C51.5 (14)C6—C1—Sn1—C1434 (3)
Sn1—C1—C6—C5177.7 (8)C2—C1—Sn1—C14147 (3)
C1—C2—C7—N188.7 (10)C6—C1—Sn1—Cl3154.2 (6)
C3—C2—C7—N195.6 (8)C2—C1—Sn1—Cl325.0 (8)
Sn1—C14—C15—C16154 (8)C6—C1—Sn1—Cl163.6 (6)
C14—C15—C16—C1752 (13)C2—C1—Sn1—Cl1115.5 (7)
Sn1—C14B—C15B—C16B179 (5)C6—C1—Sn1—Cl2116.6 (6)
C14B—C15B—C16B—C17B174 (6)C2—C1—Sn1—Cl264.2 (7)
Sn1—C14C—C15C—C16C164 (7)C15C—C14C—Sn1—C1147 (7)
C14C—C15C—C16C—C17C47 (12)C15C—C14C—Sn1—C1454 (9)
C10—C8—N1—C7160.6 (7)C15C—C14C—Sn1—Cl331 (13)
C9—C8—N1—C775.3 (9)C15C—C14C—Sn1—Cl160 (11)
C10—C8—N1—C1166.2 (9)C15C—C14C—Sn1—Cl2121 (11)
C9—C8—N1—C1157.9 (10)C15—C14—Sn1—C14B91 (12)
C2—C7—N1—C849.8 (9)C15—C14—Sn1—C1101 (6)
C2—C7—N1—C11176.6 (7)C15—C14—Sn1—C14C72 (18)
C13—C11—N1—C8126.3 (9)C15—C14—Sn1—Cl386 (6)
C12—C11—N1—C8108.2 (9)C15—C14—Sn1—Cl15 (6)
C13—C11—N1—C799.7 (9)C15—C14—Sn1—Cl2175 (6)
C12—C11—N1—C725.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.86 (1)2.37 (7)3.208 (8)165 (8)

Experimental details

Crystal data
Chemical formula[Sn(C4H9)(C13H21N)Cl3]·CH2Cl2
Mr558.39
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)10.654 (8), 11.093 (9), 12.406 (10)
α, β, γ (°)115.594 (13), 100.767 (15), 97.176 (15)
V3)1263.5 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.45 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(Bruker, 2000)
Tmin, Tmax0.544, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
9126, 4416, 3122
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.213, 1.02
No. of reflections4416
No. of parameters257
No. of restraints40
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.43, 0.73

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.86 (1)2.37 (7)3.208 (8)165 (8)
 

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research (PD 443/2010/AR). AR gratefully acknowledges the assistance of PhD student Ioana Barbul and Dr Ciprian Raţ in the two-dimensional NMR experiments. We thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca) collecting the diffraction data.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRotar, A., Schuermann, M., Varga, R. A., Silvestru, C. & Jurkschat, K. (2008). Z. Anorg. Allg. Chem. 634, 1533–1536.  Web of Science CSD CrossRef CAS Google Scholar
First citationRotar, A., Varga, R. A., Jurkschat, K. & Silvestru, C. (2009). J. Organomet. Chem. 694, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationRotar, A., Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m355–m356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRotar, A., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, m45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠvec, P., Černošková, E., Padělková, Z., Růžička, A. & Holeček, J. (2010). J. Organomet. Chem. 695, 2475–2485.  Google Scholar
First citationVarga, R. A., Rotar, A., Schuermann, M., Jurkschat, K. & Silvestru, C. (2006). Eur. J. Inorg. Chem. 7, 1475–1486.  Web of Science CSD CrossRef Google Scholar
First citationVarga, R. A., Schuermann, M. & Silvestru, C. (2001). J. Organomet. Chem. 623, 161–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationVarga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVarga, R. A., Silvestru, C. & Deleanu, C. (2005). Appl. Organomet. Chem. 19, 153–160.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds