metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline)copper(II)]-μ-oxalato]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China, and bSchool of Basic Science, East China Jiaotong University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 31 August 2010; accepted 2 September 2010; online 8 September 2010)

In the title coordination polymer, [Cu(C2O4)(C12H8N2)]n, the CuII atom is six-coordinated by four O atoms from two oxalate ligands and two N atoms from one 1,10-phenanthroline (phen) ligand in a distorted octa­hedral coordination geometry. The oxalate anions act as bis-bidentate ligands, bridging the Cu–phen units in zigzag chains extending parallel to [100]. Inter­chain C—H⋯O hydrogen bonding and ππ stacking inter­actions [centroid–centroid distance = 3.7439 (17) Å] assemble neighboring chains, forming a three-dimensional supra­molecular network.

Related literature

For the topologies and potential applications as functional materials of metal coordination polymers, see: Benneli & Gatteschi (2002[Benneli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.]); Qin et al. (2005[Qin, C., Wang, X. L., Wang, E. B. & Su, Z. M. (2005). Inorg. Chem. 44, 7122-7129.]); Qiu et al. (2007[Qiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819-1824.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2O4)(C12H8N2)]

  • Mr = 331.76

  • Orthorhombic, P n a 21

  • a = 9.1445 (8) Å

  • b = 10.1443 (9) Å

  • c = 13.3294 (11) Å

  • V = 1236.50 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 298 K

  • 0.42 × 0.35 × 0.29 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.544, Tmax = 0.612

  • 6811 measured reflections

  • 2618 independent reflections

  • 2373 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.04

  • 2618 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1217 Friedel pairs

  • Flack parameter: 0.019 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.93 2.51 3.416 (4) 166
C9—H9⋯O1ii 0.93 2.49 3.160 (3) 129
C2—H2⋯O2iii 0.93 2.52 3.136 (3) 124
C1—H1⋯O4iv 0.93 2.56 3.072 (3) 115
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great interest due to their intriguing topologies and potential applications as functional materials (Benneli & Gatteschi, 2002; Qiu et al., 2007). Copper, with its variable coordination numbers and flexible coordination geometry, provides unique opportunities for the discovery of unusual networks in this interesting and challenging field (Qin et al., 2005). We chose oxalate ligands as organic spacers since this rigid molecule has proven to be able to establish a bridge between metal centers. Herein, we present the structure of the title compound, [Cu(C2O4)(C12H8N2)]n.

The CuII atom exhibits a distorted octahedral configuration coordinated by four oxygen atoms from two oxalate ligands (Cu—O = 1.9753 (18)-2.3135 (18) Å) and two nitrogen atoms from one 1,10-phenanthroline ligand (Cu—N = 2.024 (2) and 2.049 (2) Å) (Fig. 1). The oxalate ligands bridge adjacent Cu-phen units to form a one-dimensional zigzag chain along the a-axis of the unit cell. The Cu—Cu separation is 5.529 (2) Å. Interchain π-π stacking interactions between phen ligands in neighboring chainslead to the formation of sheets of connected chains in the ab-plane. The centroid to centroid distances between neighboring 1,10-phenanthroline ligands is 3.7439 (17) Å [ring (C4-C9) to ring (N2, C1 to C5) (symmetry code: –1/2+x, 3/2–y, z)]. C–H···O hydrogen bonds interconnect these sheets to extend to a three-dimensional supramolecular network motif (Table 1; Fig. 2).

Related literature top

For the topologies and potential applications as functional materials of metal coordination polymers, see: Benneli & Gatteschi (2002); Qin et al. (2005); Qiu et al. (2007).

Experimental top

A sample of cupric acetate (0.0399 g, 0.20 mmol), oxalic acid (0.1015 g, 0.50 mmol), 1,10-phenanthroline (0.2523 g, 0.50 mmol), were added to water (10 ml). The resultant mixture was sealed in a 25 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 78 h, and then cooled to room temperature at a rate of 0.5 K/min. Colorless blocky crystals of the title compound suitable for single-crystal X-ray diffraction analyses formed in a yield of approximately 65%.

Refinement top

All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 (C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP represention of atom numbering diagram for the title complex, showing 30% probability displacement ellipsoids. Symmetry code: (i) –1/2 + x, 2.5–y, z.
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound.
catena-Poly[[(1,10-phenanthroline)copper(II)]-µ-oxalato] top
Crystal data top
[Cu(C2O4)(C12H8N2)]F(000) = 668
Mr = 331.76Dx = 1.782 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2618 reflections
a = 9.1445 (8) Åθ = 2.5–27.0°
b = 10.1443 (9) ŵ = 1.78 mm1
c = 13.3294 (11) ÅT = 298 K
V = 1236.50 (18) Å3Block, blue
Z = 40.42 × 0.35 × 0.29 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2618 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scanθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 811
Tmin = 0.544, Tmax = 0.612k = 1012
6811 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0289P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2618 reflectionsΔρmax = 0.29 e Å3
190 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1217 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (14)
Crystal data top
[Cu(C2O4)(C12H8N2)]V = 1236.50 (18) Å3
Mr = 331.76Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.1445 (8) ŵ = 1.78 mm1
b = 10.1443 (9) ÅT = 298 K
c = 13.3294 (11) Å0.42 × 0.35 × 0.29 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2618 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2373 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.612Rint = 0.021
6811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.30 e Å3
2618 reflectionsAbsolute structure: Flack (1983), 1217 Friedel pairs
190 parametersAbsolute structure parameter: 0.019 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6938 (3)0.9764 (3)0.04988 (19)0.0407 (6)
H10.66521.06170.06620.049*
Cu10.87241 (3)1.09675 (2)0.11815 (4)0.03062 (9)
N10.9474 (2)0.9310 (2)0.18929 (17)0.0352 (5)
O11.0814 (2)1.12990 (18)0.02682 (14)0.0377 (4)
C20.6422 (3)0.8724 (3)0.1095 (2)0.0486 (7)
H20.58180.88830.16430.058*
N20.7802 (2)0.9598 (2)0.02762 (16)0.0325 (4)
O20.98329 (19)1.21773 (18)0.20589 (13)0.0377 (4)
C30.6829 (3)0.7475 (3)0.0849 (2)0.0472 (7)
H30.65060.67700.12370.057*
O31.1635 (2)1.36277 (17)0.21108 (14)0.0358 (4)
C40.7727 (3)0.7242 (2)0.0022 (2)0.0386 (6)
O41.2795 (2)1.25638 (18)0.04136 (14)0.0376 (4)
C50.8190 (3)0.8351 (2)0.05270 (19)0.0321 (5)
C60.9086 (2)0.8194 (2)0.13957 (17)0.0307 (6)
C70.9518 (3)0.6918 (3)0.1703 (2)0.0404 (6)
C80.9027 (3)0.5816 (2)0.1130 (4)0.0500 (7)
H80.92930.49710.13300.060*
C90.8186 (4)0.5967 (2)0.0306 (3)0.0485 (7)
H90.78990.52260.00550.058*
C101.0386 (3)0.6850 (3)0.2567 (2)0.0498 (7)
H101.07230.60380.27940.060*
C111.0740 (4)0.7970 (3)0.3077 (3)0.0555 (8)
H111.12950.79220.36600.067*
C121.0266 (3)0.9184 (3)0.2720 (2)0.0471 (7)
H121.05150.99400.30760.056*
C131.1578 (3)1.2130 (2)0.07154 (19)0.0303 (5)
C141.0979 (3)1.2700 (2)0.17167 (19)0.0288 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (15)0.0420 (14)0.0362 (14)0.0018 (12)0.0088 (12)0.0036 (12)
Cu10.03102 (14)0.02964 (14)0.03119 (13)0.00071 (10)0.00153 (13)0.00414 (16)
N10.0315 (11)0.0393 (11)0.0347 (12)0.0005 (9)0.0041 (9)0.0007 (9)
O10.0370 (10)0.0409 (9)0.0350 (10)0.0020 (8)0.0025 (8)0.0107 (8)
C20.0555 (19)0.0558 (17)0.0346 (15)0.0010 (14)0.0120 (13)0.0089 (13)
N20.0336 (10)0.0323 (10)0.0317 (11)0.0008 (8)0.0013 (9)0.0039 (9)
O20.0365 (11)0.0433 (10)0.0335 (10)0.0101 (8)0.0092 (8)0.0118 (9)
C30.0500 (18)0.0539 (17)0.0376 (16)0.0090 (14)0.0026 (14)0.0157 (13)
O30.0382 (10)0.0329 (9)0.0361 (10)0.0043 (8)0.0007 (8)0.0064 (8)
C40.0393 (14)0.0370 (13)0.0395 (15)0.0068 (11)0.0064 (11)0.0096 (12)
O40.0363 (10)0.0388 (9)0.0377 (10)0.0026 (8)0.0102 (8)0.0030 (8)
C50.0320 (13)0.0337 (13)0.0307 (13)0.0018 (11)0.0058 (11)0.0035 (10)
C60.0288 (12)0.0328 (12)0.0305 (16)0.0004 (9)0.0055 (9)0.0016 (9)
C70.0375 (14)0.0414 (15)0.0424 (15)0.0040 (12)0.0059 (12)0.0067 (12)
C80.0599 (17)0.0306 (12)0.0593 (18)0.0031 (10)0.011 (2)0.0032 (18)
C90.0581 (18)0.0317 (15)0.056 (2)0.0092 (12)0.0074 (16)0.0072 (13)
C100.0491 (18)0.0495 (18)0.0509 (19)0.0092 (13)0.0012 (14)0.0111 (14)
C110.0519 (19)0.068 (2)0.0465 (19)0.0056 (17)0.0099 (15)0.0107 (17)
C120.0499 (17)0.0496 (16)0.0417 (16)0.0011 (13)0.0124 (13)0.0052 (13)
C130.0327 (13)0.0285 (12)0.0296 (12)0.0062 (10)0.0010 (11)0.0017 (10)
C140.0293 (12)0.0297 (12)0.0274 (12)0.0011 (10)0.0030 (10)0.0022 (11)
Geometric parameters (Å, º) top
C1—N21.311 (3)O3—Cu1ii2.3135 (18)
C1—C21.403 (4)C4—C51.407 (3)
C1—H10.9300C4—C91.428 (4)
Cu1—O21.9753 (18)O4—C131.263 (3)
Cu1—O4i1.9973 (19)O4—Cu1ii1.9973 (19)
Cu1—N22.024 (2)C5—C61.428 (3)
Cu1—N12.049 (2)C6—C71.414 (3)
Cu1—O12.2909 (19)C7—C101.401 (4)
Cu1—O3i2.3135 (18)C7—C81.426 (5)
N1—C121.325 (4)C8—C91.350 (6)
N1—C61.359 (3)C8—H80.9300
O1—C131.247 (3)C9—H90.9300
C2—C31.360 (5)C10—C111.363 (4)
C2—H20.9300C10—H100.9300
N2—C51.356 (3)C11—C121.390 (4)
O2—C141.260 (3)C11—H110.9300
C3—C41.395 (4)C12—H120.9300
C3—H30.9300C13—C141.554 (3)
O3—C141.234 (3)
N2—C1—C2123.5 (2)C3—C4—C9124.7 (3)
N2—C1—H1118.3C5—C4—C9118.4 (3)
C2—C1—H1118.3C13—O4—Cu1ii118.13 (17)
O2—Cu1—O4i93.34 (8)N2—C5—C4122.6 (2)
O2—Cu1—N2173.31 (8)N2—C5—C6117.0 (2)
O4i—Cu1—N291.68 (9)C4—C5—C6120.4 (2)
O2—Cu1—N193.68 (8)N1—C6—C7123.3 (2)
O4i—Cu1—N1172.68 (8)N1—C6—C5116.9 (2)
N2—Cu1—N181.49 (9)C7—C6—C5119.8 (2)
O2—Cu1—O178.18 (7)C10—C7—C6116.2 (2)
O4i—Cu1—O188.46 (7)C10—C7—C8125.5 (3)
N2—Cu1—O197.55 (7)C6—C7—C8118.3 (3)
N1—Cu1—O195.01 (8)C9—C8—C7121.7 (3)
O2—Cu1—O3i89.80 (7)C9—C8—H8119.1
O4i—Cu1—O3i77.92 (7)C7—C8—H8119.1
N2—Cu1—O3i95.57 (7)C8—C9—C4121.3 (3)
N1—Cu1—O3i100.03 (8)C8—C9—H9119.3
O1—Cu1—O3i161.33 (6)C4—C9—H9119.3
C12—N1—C6117.9 (2)C11—C10—C7120.2 (3)
C12—N1—Cu1130.30 (19)C11—C10—H10119.9
C6—N1—Cu1111.77 (16)C7—C10—H10119.9
C13—O1—Cu1108.21 (16)C10—C11—C12119.6 (3)
C3—C2—C1118.2 (3)C10—C11—H11120.2
C3—C2—H2120.9C12—C11—H11120.2
C1—C2—H2120.9N1—C12—C11122.7 (3)
C1—N2—C5118.1 (2)N1—C12—H12118.6
C1—N2—Cu1129.22 (18)C11—C12—H12118.6
C5—N2—Cu1112.62 (16)O1—C13—O4125.2 (2)
C14—O2—Cu1118.30 (16)O1—C13—C14117.7 (2)
C2—C3—C4120.6 (3)O4—C13—C14117.1 (2)
C2—C3—H3119.7O3—C14—O2124.9 (2)
C4—C3—H3119.7O3—C14—C13118.5 (2)
C14—O3—Cu1ii108.00 (16)O2—C14—C13116.6 (2)
C3—C4—C5116.9 (2)
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x+1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4iii0.932.513.416 (4)166
C9—H9···O1iv0.932.493.160 (3)129
C2—H2···O2v0.932.523.136 (3)124
C1—H1···O4i0.932.563.072 (3)115
Symmetry codes: (i) x1/2, y+5/2, z; (iii) x+5/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z; (v) x+3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)(C12H8N2)]
Mr331.76
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)9.1445 (8), 10.1443 (9), 13.3294 (11)
V3)1236.50 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.42 × 0.35 × 0.29
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.544, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
6811, 2618, 2373
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.04
No. of reflections2618
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30
Absolute structureFlack (1983), 1217 Friedel pairs
Absolute structure parameter0.019 (14)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.513.416 (4)165.5
C9—H9···O1ii0.932.493.160 (3)128.9
C2—H2···O2iii0.932.523.136 (3)124.1
C1—H1···O4iv0.932.563.072 (3)115.2
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z; (iii) x+3/2, y1/2, z1/2; (iv) x1/2, y+5/2, z.
 

Acknowledgements

This work was supported financially by Zhongshan Polytechnic.

References

First citationBenneli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369–2388.  Web of Science PubMed Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQin, C., Wang, X. L., Wang, E. B. & Su, Z. M. (2005). Inorg. Chem. 44, 7122–7129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819–1824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds