metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­(1-naphthyl­acetato)cadmium(II)]-μ3-pyridin-3-olato]

aSchool of Environmental Science and Engineering, Dong Hua University, Shanghai 200051, People's Republic of China
*Correspondence e-mail: xidanli601@yahoo.com.cn

(Received 8 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title complex, [Cd(C5H4NO)(C12H9O2)(H2O)]n, each CdII atom is coordinated by two carboxylate O atoms from one 1-naphthyl­acetate ligand, two hydroxyl O atoms from two pyridin-3-olate ligands, one N atom from another pyridin-3-olate ligand and one water mol­ecule, and displays a distorted octa­hedral coordination geometry. The compound forms infinite chains of pyridin-3-olate ligands bridging 1-naphthyl­acetate–CdII units parallel to the b axis, with a Cd⋯Cd separation of 3.578 (2) Å. The chains are further self-assembled into a supra­molecular network through inter­molecular O—H⋯O hydrogen-bonding inter­actions.

Related literature

Other structures of naphthyl­acetic acid have been reported by Chen et al. (2004[Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032-m1034.]); Duan et al. (2007[Duan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692-m694.]); Liu et al. (2006[Liu, J.-W., Wang, W.-Y. & Gu, C.-S. (2006). Acta Cryst. E62, m3445-m3447.]); and Tang et al. (2006[Tang, D. X., Feng, L. X. & Zhang, X. Q. (2006). Chin. J. Inorg. Chem. 22, 1891-1894.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C5H4NO)(C12H9O2)(H2O)]

  • Mr = 409.70

  • Monoclinic, P 21 /c

  • a = 14.978 (2) Å

  • b = 6.7324 (1) Å

  • c = 15.729 (2) Å

  • β = 95.928 (1)°

  • V = 1577.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 296 (2) K

  • 0.26 × 0.23 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.702, Tmax = 0.757

  • 16642 measured reflections

  • 3617 independent reflections

  • 3172 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.05

  • 3617 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1i 0.75 (3) 1.97 (3) 2.720 (3) 174 (4)
O1W—H2W⋯O2ii 0.77 (3) 2.02 (3) 2.783 (3) 173 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 7.23A), SAINT (Version 7.23A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 7.23A), SAINT (Version 7.23A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2004[Bruker (2004). APEX2 (Version 7.23A), SAINT (Version 7.23A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In structural investigations of complexes containing the 1-naphthylacetic acid ligand, it has been found that this molecule can act as a multidentate ligand with a range of versatile binding and coordination modes (Chen et al., 2004; Duan et al., 2007; Liu et al., 2006; Tang et al., 2006). In this paper, we report the crystal structure of the a new Cd complex obtained by the reaction of 1-naphthylacetic acid, 3-hydroxypyridine and cadmium chloride in alkaline aqueous solution.

As illustrated in Figure 1, each CdII atom, has a distorted octahedral geometry with the six coordinating atoms being two carboxyl O atoms from one 1-naphthylacetate ligands, two hydroxyl O atoms from two pyridin-3-olate ligands, one N atom from another pyridin-3-olate ligand and one water molecule. The pyridin-3-olate ligands connect 1-naphthylacetate-CdII units to form an infinite chain parallel to the b axis with a Cd···Cd separation of 3.578 (2) Å. These chains are further assembled by intermolecular O—H···O hydrogen bonding, with the coordinating water molecules as donors and the carboxyl O atoms as acceptors, thus forming a supramolecular network (Fig. 2).

Related literature top

Other structures of naphthylacetic acid have been reported by Chen et al. (2004); Duan et al. (2007); Liu et al. (2006); and Tang et al. (2006).

Experimental top

A mixture of cadmium chloride (1 mmol), 3-hydroxypyridine (1 mmol), 1-naphthylacetic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å with Uiso(H) = 1.5 Ueq(O).

Structure description top

In structural investigations of complexes containing the 1-naphthylacetic acid ligand, it has been found that this molecule can act as a multidentate ligand with a range of versatile binding and coordination modes (Chen et al., 2004; Duan et al., 2007; Liu et al., 2006; Tang et al., 2006). In this paper, we report the crystal structure of the a new Cd complex obtained by the reaction of 1-naphthylacetic acid, 3-hydroxypyridine and cadmium chloride in alkaline aqueous solution.

As illustrated in Figure 1, each CdII atom, has a distorted octahedral geometry with the six coordinating atoms being two carboxyl O atoms from one 1-naphthylacetate ligands, two hydroxyl O atoms from two pyridin-3-olate ligands, one N atom from another pyridin-3-olate ligand and one water molecule. The pyridin-3-olate ligands connect 1-naphthylacetate-CdII units to form an infinite chain parallel to the b axis with a Cd···Cd separation of 3.578 (2) Å. These chains are further assembled by intermolecular O—H···O hydrogen bonding, with the coordinating water molecules as donors and the carboxyl O atoms as acceptors, thus forming a supramolecular network (Fig. 2).

Other structures of naphthylacetic acid have been reported by Chen et al. (2004); Duan et al. (2007); Liu et al. (2006); and Tang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. Unlabeled atoms are related to the labelled atoms by the symmetry operator (1 - x, 2 - y, 1 - z).
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.
Poly[[aqua(1-naphthylacetato)cadmium(II)]-µ3-pyridin-3-olato] top
Crystal data top
[Cd(C5H4NO)(C12H9O2)(H2O)]F(000) = 816
Mr = 409.70Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 14.978 (2) Åθ = 1.4–28.0°
b = 6.7324 (1) ŵ = 1.40 mm1
c = 15.729 (2) ÅT = 296 K
β = 95.928 (1)°Block, colorless
V = 1577.6 (3) Å30.26 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3617 independent reflections
Radiation source: fine-focus sealed tube3172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scanθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.702, Tmax = 0.757k = 88
16642 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.9831P]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cd(C5H4NO)(C12H9O2)(H2O)]V = 1577.6 (3) Å3
Mr = 409.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.978 (2) ŵ = 1.40 mm1
b = 6.7324 (1) ÅT = 296 K
c = 15.729 (2) Å0.26 × 0.23 × 0.20 mm
β = 95.928 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3172 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.757Rint = 0.023
16642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.25 e Å3
3617 reflectionsΔρmin = 0.38 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34909 (17)0.9822 (4)0.28171 (15)0.0352 (5)
C20.26353 (19)0.9927 (5)0.22167 (19)0.0473 (7)
H2A0.23391.11800.23050.057*
H2B0.27890.99090.16320.057*
C30.19905 (18)0.8260 (4)0.23315 (17)0.0443 (6)
C40.1889 (2)0.6728 (6)0.1757 (2)0.0636 (9)
H40.21940.67620.12720.076*
C50.1329 (3)0.5102 (7)0.1888 (3)0.0839 (13)
H50.12630.40910.14840.101*
C60.0885 (3)0.4986 (7)0.2594 (3)0.0826 (13)
H60.05260.38900.26770.099*
C70.0967 (2)0.6536 (6)0.3206 (2)0.0606 (9)
C80.0526 (2)0.6468 (8)0.3968 (3)0.0859 (15)
H80.01600.53940.40690.103*
C90.0640 (3)0.7988 (9)0.4553 (3)0.0905 (15)
H90.03700.79100.50580.109*
C100.1148 (3)0.9617 (8)0.4398 (3)0.0819 (13)
H100.11971.06530.47910.098*
C110.1578 (2)0.9751 (6)0.3689 (2)0.0574 (8)
H110.19231.08680.36020.069*
C120.15083 (17)0.8184 (5)0.30670 (18)0.0453 (7)
C130.39701 (15)0.6800 (3)0.52212 (14)0.0283 (5)
C140.31557 (17)0.6297 (4)0.47649 (16)0.0375 (6)
H140.28260.72520.44410.045*
C150.28404 (19)0.4379 (4)0.47949 (19)0.0443 (7)
H150.22940.40390.44960.053*
C160.33343 (17)0.2974 (4)0.52667 (17)0.0390 (6)
H160.31230.16750.52720.047*
C170.44164 (16)0.5292 (3)0.57099 (15)0.0294 (5)
H170.49480.56050.60420.035*
Cd10.501556 (11)0.93285 (2)0.390115 (10)0.03064 (7)
H1W0.608 (2)1.071 (5)0.266 (2)0.046*
H2W0.606 (2)0.888 (5)0.259 (2)0.046*
N10.41152 (13)0.3429 (3)0.57215 (13)0.0322 (4)
O10.38196 (12)0.8145 (3)0.30183 (11)0.0405 (4)
O20.38678 (13)1.1377 (3)0.31050 (12)0.0461 (5)
O30.43274 (12)0.8600 (2)0.51500 (10)0.0336 (4)
O1W0.59985 (17)0.9759 (3)0.28914 (15)0.0538 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (13)0.0376 (14)0.0295 (12)0.0037 (11)0.0055 (10)0.0013 (10)
C20.0433 (16)0.0557 (17)0.0421 (15)0.0011 (14)0.0006 (12)0.0119 (13)
C30.0384 (14)0.0509 (17)0.0413 (14)0.0002 (12)0.0062 (11)0.0040 (13)
C40.059 (2)0.074 (2)0.0542 (19)0.0033 (18)0.0098 (15)0.0115 (18)
C50.084 (3)0.067 (3)0.091 (3)0.006 (2)0.034 (2)0.020 (2)
C60.058 (2)0.069 (3)0.113 (4)0.020 (2)0.028 (2)0.024 (3)
C70.0343 (15)0.066 (2)0.078 (2)0.0005 (15)0.0060 (14)0.0297 (19)
C80.046 (2)0.098 (3)0.114 (4)0.005 (2)0.010 (2)0.061 (3)
C90.070 (3)0.120 (4)0.086 (3)0.035 (3)0.029 (2)0.033 (3)
C100.076 (3)0.107 (4)0.066 (2)0.041 (3)0.023 (2)0.007 (2)
C110.0521 (18)0.066 (2)0.0543 (18)0.0172 (16)0.0045 (14)0.0037 (16)
C120.0305 (13)0.0558 (18)0.0483 (15)0.0071 (12)0.0029 (11)0.0138 (14)
C130.0357 (12)0.0211 (11)0.0292 (11)0.0019 (9)0.0077 (9)0.0005 (9)
C140.0401 (14)0.0289 (12)0.0424 (14)0.0044 (11)0.0017 (11)0.0044 (11)
C150.0377 (14)0.0361 (15)0.0565 (17)0.0050 (11)0.0071 (12)0.0001 (12)
C160.0413 (14)0.0245 (12)0.0507 (15)0.0028 (11)0.0024 (11)0.0003 (11)
C170.0320 (12)0.0282 (12)0.0279 (11)0.0010 (9)0.0024 (9)0.0002 (9)
Cd10.03952 (11)0.02275 (10)0.02918 (10)0.00089 (7)0.00128 (7)0.00151 (7)
N10.0343 (10)0.0251 (10)0.0377 (11)0.0015 (8)0.0070 (8)0.0028 (8)
O10.0458 (10)0.0308 (10)0.0429 (10)0.0008 (8)0.0043 (8)0.0026 (8)
O20.0555 (12)0.0311 (10)0.0503 (11)0.0001 (9)0.0017 (9)0.0001 (9)
O30.0463 (10)0.0218 (8)0.0331 (8)0.0039 (7)0.0058 (7)0.0011 (7)
O1W0.0822 (16)0.0294 (11)0.0547 (14)0.0012 (11)0.0306 (12)0.0036 (9)
Geometric parameters (Å, º) top
C1—O21.252 (3)C11—H110.9300
C1—O11.259 (3)C13—O31.334 (3)
C1—C21.513 (4)C13—C141.392 (3)
C2—C31.504 (4)C13—C171.401 (3)
C2—H2A0.9700C14—C151.377 (4)
C2—H2B0.9700C14—H140.9300
C3—C41.369 (4)C15—C161.371 (4)
C3—C121.427 (4)C15—H150.9300
C4—C51.406 (6)C16—N11.342 (3)
C4—H40.9300C16—H160.9300
C5—C61.355 (6)C17—N11.334 (3)
C5—H50.9300C17—H170.9300
C6—C71.416 (6)Cd1—O3i2.1992 (17)
C6—H60.9300Cd1—O12.2931 (17)
C7—C121.405 (4)Cd1—O1W2.293 (2)
C7—C81.428 (6)Cd1—N1ii2.310 (2)
C8—C91.375 (7)Cd1—O32.3620 (16)
C8—H80.9300Cd1—O22.4455 (19)
C9—C101.371 (7)N1—Cd1ii2.310 (2)
C9—H90.9300O3—Cd1i2.1992 (17)
C10—C111.347 (5)O1W—H1W0.75 (3)
C10—H100.9300O1W—H2W0.77 (3)
C11—C121.435 (5)
O2—C1—O1120.6 (2)O3—C13—C17122.1 (2)
O2—C1—C2120.5 (3)C14—C13—C17116.7 (2)
O1—C1—C2118.9 (2)C15—C14—C13119.7 (2)
C3—C2—C1113.8 (2)C15—C14—H14120.1
C3—C2—H2A108.8C13—C14—H14120.1
C1—C2—H2A108.8C16—C15—C14119.9 (2)
C3—C2—H2B108.8C16—C15—H15120.1
C1—C2—H2B108.8C14—C15—H15120.1
H2A—C2—H2B107.7N1—C16—C15121.5 (2)
C4—C3—C12118.5 (3)N1—C16—H16119.2
C4—C3—C2120.8 (3)C15—C16—H16119.2
C12—C3—C2120.6 (3)N1—C17—C13123.1 (2)
C3—C4—C5121.2 (4)N1—C17—H17118.4
C3—C4—H4119.4C13—C17—H17118.4
C5—C4—H4119.4O3i—Cd1—O1153.91 (7)
C6—C5—C4121.0 (4)O3i—Cd1—O1W96.64 (8)
C6—C5—H5119.5O1—Cd1—O1W98.15 (8)
C4—C5—H5119.5O3i—Cd1—N1ii97.72 (7)
C5—C6—C7119.9 (4)O1—Cd1—N1ii105.11 (7)
C5—C6—H6120.0O1W—Cd1—N1ii83.93 (8)
C7—C6—H6120.0O3i—Cd1—O376.72 (7)
C12—C7—C6119.1 (3)O1—Cd1—O392.91 (6)
C12—C7—C8118.8 (4)O1W—Cd1—O3165.66 (8)
C6—C7—C8122.1 (4)N1ii—Cd1—O384.39 (6)
C9—C8—C7120.1 (4)O3i—Cd1—O2103.39 (7)
C9—C8—H8120.0O1—Cd1—O254.69 (6)
C7—C8—H8120.0O1W—Cd1—O292.40 (8)
C10—C9—C8120.7 (4)N1ii—Cd1—O2158.86 (7)
C10—C9—H9119.7O3—Cd1—O2101.47 (6)
C8—C9—H9119.7C17—N1—C16119.0 (2)
C11—C10—C9121.5 (5)C17—N1—Cd1ii125.24 (16)
C11—C10—H10119.3C16—N1—Cd1ii112.99 (16)
C9—C10—H10119.3C1—O1—Cd195.81 (15)
C10—C11—C12120.5 (4)C1—O2—Cd188.89 (16)
C10—C11—H11119.8C13—O3—Cd1i132.39 (14)
C12—C11—H11119.8C13—O3—Cd1118.14 (14)
C7—C12—C3120.2 (3)Cd1i—O3—Cd1103.28 (7)
C7—C12—C11118.5 (3)Cd1—O1W—H1W126 (3)
C3—C12—C11121.3 (3)Cd1—O1W—H2W117 (2)
O3—C13—C14121.0 (2)H1W—O1W—H2W109 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iii0.75 (3)1.97 (3)2.720 (3)174 (4)
O1W—H2W···O2iv0.77 (3)2.02 (3)2.783 (3)173 (3)
Symmetry codes: (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C5H4NO)(C12H9O2)(H2O)]
Mr409.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.978 (2), 6.7324 (1), 15.729 (2)
β (°) 95.928 (1)
V3)1577.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.26 × 0.23 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.702, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
16642, 3617, 3172
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.05
No. of reflections3617
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.75 (3)1.97 (3)2.720 (3)174 (4)
O1W—H2W···O2ii0.77 (3)2.02 (3)2.783 (3)173 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Dong Hua University for supporting this work.

References

First citationBruker (2004). APEX2 (Version 7.23A), SAINT (Version 7.23A) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692–m694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, J.-W., Wang, W.-Y. & Gu, C.-S. (2006). Acta Cryst. E62, m3445–m3447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationTang, D. X., Feng, L. X. & Zhang, X. Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds