Download citation
Download citation
link to html
In the title complex, {[Tb(C2O4)1.5(H2O)3]·CH3OH}n, each TbIII atom is coordinated by six O atoms from three oxalate ligands and three water mol­ecules, and displays a tricapped–trigonal prismatic geometry. The oxalate groups link the metal ions, forming layers perpendicular to the c axis that can be described via topological analysis as a three-connected (63) sheet. O—H...O hydrogen bonds from the water and methanol mol­ecules to the oxalate ions further inter­connect the layers, forming a supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055043/zl2080sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055043/zl2080Isup2.hkl
Contains datablock I

CCDC reference: 642146

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.022
  • wR factor = 0.046
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Tb1 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C1_b ... 1.53 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C3 - C3_a ... 1.53 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H1W .. H5W .. 2.10 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H4W .. H7 .. 2.13 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5W .. O3 .. 2.63 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3W .. O5 .. 2.64 Ang. PLAT731_ALERT_1_C Bond Calc 0.82(3), Rep 0.825(10) ...... 3.00 su-Ra O2W -H3W 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.825(10) ...... 3.00 su-Ra O2W -H3W 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.825(10) ...... 3.00 su-Ra O2W -H3W 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.88(3), Rep 1.876(11) ...... 2.73 su-Ra H2W -O2 1.555 4.565 PLAT736_ALERT_1_C H...A Calc 2.10(3), Rep 2.102(13) ...... 2.31 su-Ra H3W -O6 1.555 4.556 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.16 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Tb1 (3) 3.31 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 13 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Zeng et al., 2007; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

As illustrated in Fig. 1, in the structure of the title compound each TbIII centre is in a tri-capped-trigonal prismatic geometry, defined by six carboxyl O atoms from three oxalate ligands and three water molecules. The oxalate ligands link the TbIII ions to form a smooth layer perpendicular to the c axis in which the shortest Tb···Tb separation is 6.210 (3) Å. These layers are connected through O—H···O hydrogen bonding (Table 1) involving the coordinating water and the methanol molecules as donors and acceptors, forming a three-dimensional supramolecular network (Fig. 2). The individual layers formed by the oxalate and metal ions form a motif which, via topological analysis, can be described as a 3-connected (63) sheet (Fig. 3).

Related literature top

For related literature, see: Brandenburg & Putz, (2006); Moulton & Zaworotko (2001); Zeng et al., (2007).

Experimental top

A mixture of Tb4O7 (0.189 g; 0.25 mmol), oxalic acid (0.135 g; 1.5 mmol), water and methanol (3 ml: 7 mL mixture) and HClO4 (0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to and maintained at 433 K for 7 days, and then cooled to room temperature at 5 K h-1 to obtain the crystals.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å; with Uiso(H) = 1.5 Ueq(O,). H atoms on the methanol molecule were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.96 Å, and O—H = 0.82 Å, with Uiso(H) = 1.5 Ueq(O,C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); Diamond (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i)-x, -y, -z; (ii)-x, -y, 1 - z; (iii)1 - x, -y, 1 - z.
[Figure 2] Fig. 2. View of the supramolecular network of the title structure.
[Figure 3] Fig. 3. Illustration of the topological (63) motif of the layered structure.
Poly[[triaquasesqui-µ2-oxalato-terbium(III)] methanol solvate] top
Crystal data top
[Tb(C2O4)1.5(H2O)3]·CH4OF(000) = 716
Mr = 377.04Dx = 2.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 2200 reflections
a = 10.8284 (2) Åθ = 2.1–27.5°
b = 9.8002 (2) ŵ = 7.41 mm1
c = 9.8846 (1) ÅT = 296 K
β = 113.774 (1)°Blocky, colorless
V = 959.95 (3) Å30.21 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEX-II area-detector
diffractometer
2196 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scanθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.231, Tmax = 0.308k = 1210
9378 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0203P)2 + 0.2004P]
where P = (Fo2 + 2Fc2)/3
2196 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.60 e Å3
9 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Tb(C2O4)1.5(H2O)3]·CH4OV = 959.95 (3) Å3
Mr = 377.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8284 (2) ŵ = 7.41 mm1
b = 9.8002 (2) ÅT = 296 K
c = 9.8846 (1) Å0.21 × 0.18 × 0.16 mm
β = 113.774 (1)°
Data collection top
Bruker APEX-II area-detector
diffractometer
2196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1901 reflections with I > 2σ(I)
Tmin = 0.231, Tmax = 0.308Rint = 0.030
9378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0229 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.60 e Å3
2196 reflectionsΔρmin = 0.81 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0535 (4)0.0300 (4)0.5707 (4)0.0192 (8)
C20.4991 (4)0.0507 (3)0.5581 (4)0.0164 (8)
C30.0337 (4)0.0697 (4)0.0043 (4)0.0175 (8)
C40.4073 (6)0.5977 (6)0.3276 (6)0.0630 (16)
H4A0.46980.62340.42490.094*
H4B0.42400.50500.30850.094*
H4C0.31670.60580.32110.094*
O10.1573 (3)0.0771 (3)0.5630 (3)0.0253 (6)
O20.0265 (3)0.0275 (3)0.6839 (3)0.0234 (6)
O30.3887 (2)0.1093 (3)0.5326 (3)0.0235 (6)
O40.6077 (3)0.0669 (3)0.6689 (3)0.0219 (6)
O50.1274 (3)0.1003 (3)0.1245 (3)0.0247 (6)
O60.0103 (2)0.1420 (3)0.1111 (2)0.0227 (6)
H5W0.270 (3)0.2601 (15)0.180 (4)0.034*
H2W0.131 (4)0.345 (2)0.325 (3)0.034*
H1W0.200 (4)0.307 (3)0.4602 (15)0.034*
H3W0.150 (2)0.219 (4)0.438 (4)0.034*
H6W0.3747 (11)0.182 (3)0.223 (4)0.034*
H4W0.270 (2)0.184 (4)0.5270 (19)0.034*
O70.4246 (3)0.6869 (3)0.2191 (3)0.0414 (8)
H70.40620.76550.23260.062*
O1W0.1664 (3)0.2778 (3)0.3756 (3)0.0340 (7)
O2W0.2145 (3)0.1722 (3)0.4416 (3)0.0316 (7)
O3W0.2913 (3)0.1790 (3)0.1933 (3)0.0282 (7)
Tb10.189510 (16)0.046207 (17)0.329650 (15)0.01138 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (2)0.016 (2)0.0237 (18)0.0033 (17)0.0098 (17)0.0037 (15)
C20.014 (2)0.015 (2)0.0195 (17)0.0010 (17)0.0060 (15)0.0049 (14)
C30.014 (2)0.020 (2)0.0195 (17)0.0011 (17)0.0078 (15)0.0015 (15)
C40.083 (5)0.055 (4)0.056 (3)0.004 (3)0.033 (3)0.012 (3)
O10.0203 (16)0.0317 (17)0.0262 (13)0.0102 (13)0.0117 (12)0.0084 (12)
O20.0227 (16)0.0303 (18)0.0177 (12)0.0068 (13)0.0087 (12)0.0037 (11)
O30.0173 (15)0.0262 (16)0.0238 (12)0.0025 (13)0.0051 (11)0.0064 (12)
O40.0143 (14)0.0256 (17)0.0209 (12)0.0038 (12)0.0021 (11)0.0023 (11)
O50.0224 (16)0.0263 (16)0.0178 (12)0.0075 (13)0.0004 (11)0.0007 (11)
O60.0264 (16)0.0205 (15)0.0180 (12)0.0005 (13)0.0056 (11)0.0048 (11)
O70.044 (2)0.037 (2)0.0373 (16)0.0060 (17)0.0095 (15)0.0110 (15)
O1W0.049 (2)0.0232 (17)0.0186 (12)0.0133 (15)0.0021 (13)0.0009 (12)
O2W0.0266 (17)0.035 (2)0.0298 (14)0.0039 (15)0.0079 (13)0.0091 (13)
O3W0.0255 (16)0.0258 (17)0.0341 (15)0.0032 (13)0.0129 (14)0.0088 (13)
Tb10.00966 (10)0.01277 (11)0.01034 (8)0.00022 (8)0.00259 (7)0.00001 (6)
Geometric parameters (Å, º) top
C1—O11.246 (4)O4—Tb1ii2.455 (3)
C1—O21.266 (4)O5—Tb12.351 (2)
C1—C1i1.529 (7)O6—Tb1iii2.436 (2)
C2—O41.252 (4)O7—H70.8200
C2—O31.257 (4)O1W—Tb12.348 (3)
C2—C2ii1.526 (7)O1W—H2W0.821 (10)
C3—O51.249 (4)O1W—H1W0.818 (10)
C3—O61.262 (4)O2W—Tb12.374 (3)
C3—C3iii1.535 (7)O2W—H3W0.825 (10)
C4—O71.453 (6)O2W—H4W0.825 (10)
C4—H4A0.9600O3W—Tb12.434 (3)
C4—H4B0.9600O3W—H5W0.824 (10)
C4—H4C0.9600O3W—H6W0.830 (10)
O1—Tb12.486 (2)Tb1—O2i2.400 (3)
O2—Tb1i2.400 (3)Tb1—O6iii2.436 (2)
O3—Tb12.360 (2)Tb1—O4ii2.455 (3)
O1—C1—O2126.7 (3)O1W—Tb1—O2W141.49 (10)
O1—C1—C1i117.2 (4)O5—Tb1—O2W77.91 (9)
O2—C1—C1i116.1 (4)O3—Tb1—O2W86.94 (10)
O4—C2—O3126.8 (3)O1W—Tb1—O2i97.15 (10)
O4—C2—C2ii116.6 (4)O5—Tb1—O2i80.49 (9)
O3—C2—C2ii116.5 (4)O3—Tb1—O2i131.49 (8)
O5—C3—O6126.2 (3)O2W—Tb1—O2i71.34 (9)
O5—C3—C3iii116.9 (4)O1W—Tb1—O3W72.39 (10)
O6—C3—C3iii116.8 (4)O5—Tb1—O3W83.37 (9)
O7—C4—H4A109.5O3—Tb1—O3W82.42 (9)
O7—C4—H4B109.5O2W—Tb1—O3W138.43 (10)
H4A—C4—H4B109.5O2i—Tb1—O3W141.16 (9)
O7—C4—H4C109.5O1W—Tb1—O6iii71.95 (8)
H4A—C4—H4C109.5O5—Tb1—O6iii67.79 (8)
H4B—C4—H4C109.5O3—Tb1—O6iii141.38 (9)
C1—O1—Tb1118.6 (2)O2W—Tb1—O6iii131.37 (9)
C1—O2—Tb1i121.6 (2)O2i—Tb1—O6iii69.88 (8)
C2—O3—Tb1121.4 (2)O3W—Tb1—O6iii71.32 (9)
C2—O4—Tb1ii118.0 (2)O1W—Tb1—O4ii126.88 (10)
C3—O5—Tb1120.9 (2)O5—Tb1—O4ii70.92 (8)
C3—O6—Tb1iii117.4 (2)O3—Tb1—O4ii66.71 (8)
C4—O7—H7109.5O2W—Tb1—O4ii69.91 (9)
Tb1—O1W—H2W136 (2)O2i—Tb1—O4ii135.56 (9)
Tb1—O1W—H1W120 (2)O3W—Tb1—O4ii68.96 (9)
H2W—O1W—H1W104.0 (16)O6iii—Tb1—O4ii124.77 (8)
Tb1—O2W—H3W123 (3)O1W—Tb1—O168.74 (9)
Tb1—O2W—H4W120 (3)O5—Tb1—O1140.93 (9)
H3W—O2W—H4W103.0 (16)O3—Tb1—O166.50 (8)
Tb1—O3W—H5W116 (3)O2W—Tb1—O173.13 (9)
Tb1—O3W—H6W120 (3)O2i—Tb1—O165.82 (8)
H5W—O3W—H6W102.2 (16)O3W—Tb1—O1135.47 (9)
O1W—Tb1—O5137.87 (9)O6iii—Tb1—O1114.59 (8)
O1W—Tb1—O373.41 (10)O4ii—Tb1—O1120.61 (8)
O5—Tb1—O3137.62 (9)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H5W···O1iv0.82 (1)2.06 (2)2.823 (4)155 (4)
O3W—H5W···O3iv0.82 (1)2.63 (3)3.048 (4)113 (3)
O1W—H2W···O2iv0.82 (1)1.88 (1)2.685 (4)168 (4)
O2W—H3W···O6v0.83 (1)2.10 (1)2.913 (4)168 (4)
O2W—H3W···O5v0.83 (1)2.64 (3)3.240 (4)131 (3)
O3W—H6W···O7vi0.83 (1)2.01 (1)2.841 (4)176 (4)
O2W—H4W···O7vii0.83 (1)1.96 (1)2.774 (4)168 (3)
O1W—H1W···O3Wvii0.82 (1)2.11 (1)2.906 (4)163 (3)
O7—H7···O4viii0.821.952.735 (4)161
Symmetry codes: (iv) x, y+1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Tb(C2O4)1.5(H2O)3]·CH4O
Mr377.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.8284 (2), 9.8002 (2), 9.8846 (1)
β (°) 113.774 (1)
V3)959.95 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.41
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerBruker APEX-II area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.231, 0.308
No. of measured, independent and
observed [I > 2σ(I)] reflections
9378, 2196, 1901
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.06
No. of reflections2196
No. of parameters156
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.81

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004); Diamond (Brandenburg & Putz, 2006), SHELXTL (Bruker, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H5W···O1i0.824 (10)2.056 (18)2.823 (4)155 (4)
O3W—H5W···O3i0.824 (10)2.63 (3)3.048 (4)113 (3)
O1W—H2W···O2i0.821 (10)1.876 (11)2.685 (4)168 (4)
O2W—H3W···O6ii0.825 (10)2.102 (13)2.913 (4)168 (4)
O2W—H3W···O5ii0.825 (10)2.64 (3)3.240 (4)131 (3)
O3W—H6W···O7iii0.830 (10)2.011 (11)2.841 (4)176 (4)
O2W—H4W···O7iv0.825 (10)1.960 (11)2.774 (4)168 (3)
O1W—H1W···O3Wiv0.818 (10)2.114 (12)2.906 (4)163 (3)
O7—H7···O4v0.821.952.735 (4)161.3
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds