Download citation
Download citation
link to html
The crystal structure of the title compound, C12H15BrN2OS, is composed of discrete mol­ecules with bond lengths and angles quite typical for thio­urea compounds of this class. The mol­ecule exists in the solid state in its thione form with typical thio­urea C—S and C—O bonds lengths, as well as shortened C—N bonds. Stabilized by an intra­molecular N—H...O hydrogen bond, the thio­carbonyl and carbonyl groups are almost coplanar. The three methyl groups are disordered over two positions with occupancy factors in an approximate 4:1 ratio.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019071/zl2018sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019071/zl2018Isup2.hkl
Contains datablock I

CCDC reference: 647613

Key indicators

  • Single-crystal X-ray study
  • T = 113 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in main residue
  • R factor = 0.041
  • wR factor = 0.082
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.55 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.05 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 15.00 Perc. PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2 ... ? PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. O1 .. 3.25 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 3073 Count of symmetry unique reflns 1803 Completeness (_total/calc) 170.44% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1270 Fraction of Friedel pairs measured 0.704 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The background to this study has been set out in our previous work for the structural chemistry of N,N'-disubstituted thioureas (Shoukat et al., 2007). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles, see the selected geometric parameters table, can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf et al., 2006). The molecule exists in its thione form with typical thiourea C—S and C—O bond distances, as well as shortened C—N bonds (See selected geometric parameters table). The molecule also features an intramolecular N—H···O hydrogen bond (See hydrogen-bond geometry table) which stears the thiocarbonyl and carbonyl groups to be almost coplanar, as reflected by the torsion angles of 0.5 (7)° for O(1)—C(2)—N(2)—C(1) and -5.8 (6)° for N(1)—C(1)—N(2)—C(2). The plane containing the S1, O1, N1, N2, C1 & C2 atoms is almost perpendicular to the phenyl ring with a dihedral angle of 86.13 (11)°.

Related literature top

For related literature, see: Shoukat et al. (2007); Khawar Rauf et al. (2006); Allen (2002).

Experimental top

Freshly prepared pivaloylisothiocyanate (1.43 g, 10 mmol) in acetone (30 ml) was stirred for 15 minutes. Neat 3-bromoaniline (1.72 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:1 v/v) to give fine crystals of (I), with an overall yield of 85%.

Refinement top

The C atoms of the t-butyl group were found to be disordered over two sites and were refined using similarity restraints (DELU and SIMU). Refinement of the occupancies converged to 0.819 (12) for C10 to C12 and 0.191 (12) for C13 to C15. H atoms were included using the riding model approximation with N—H 0.88 and C—H 0.95 - 0.98 Å, and with Uiso(H) = 1.2 Ueq(C and N) or Uiso(H) = 1.5 Ueq(Cmethyl).

Structure description top

The background to this study has been set out in our previous work for the structural chemistry of N,N'-disubstituted thioureas (Shoukat et al., 2007). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles, see the selected geometric parameters table, can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf et al., 2006). The molecule exists in its thione form with typical thiourea C—S and C—O bond distances, as well as shortened C—N bonds (See selected geometric parameters table). The molecule also features an intramolecular N—H···O hydrogen bond (See hydrogen-bond geometry table) which stears the thiocarbonyl and carbonyl groups to be almost coplanar, as reflected by the torsion angles of 0.5 (7)° for O(1)—C(2)—N(2)—C(1) and -5.8 (6)° for N(1)—C(1)—N(2)—C(2). The plane containing the S1, O1, N1, N2, C1 & C2 atoms is almost perpendicular to the phenyl ring with a dihedral angle of 86.13 (11)°.

For related literature, see: Shoukat et al. (2007); Khawar Rauf et al. (2006); Allen (2002).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom labelling scheme. Thermal displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is shown as a dashed line and the white/unfilled bonds depict the minor disordered moiety of the t-butyl group.
1-(3-Bromophenyl)-3-pivaloylthiourea top
Crystal data top
C12H15BrN2OSF(000) = 640
Mr = 315.23Dx = 1.552 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 4509 reflections
a = 6.188 (4) Åθ = 3.3–27.5°
b = 10.250 (7) ŵ = 3.19 mm1
c = 21.268 (14) ÅT = 113 K
V = 1348.9 (15) Å3Block, colorless
Z = 40.51 × 0.42 × 0.21 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3073 independent reflections
Graphite monochromator2965 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.051
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 85
Tmin = 0.537, Tmax = 0.715k = 1312
10869 measured reflectionsl = 2627
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + 2.2104P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.003
S = 1.21Δρmax = 0.66 e Å3
3073 reflectionsΔρmin = 0.45 e Å3
189 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
66 restraintsExtinction coefficient: 0.0030 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1275 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.012 (12)
Crystal data top
C12H15BrN2OSV = 1348.9 (15) Å3
Mr = 315.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.188 (4) ŵ = 3.19 mm1
b = 10.250 (7) ÅT = 113 K
c = 21.268 (14) Å0.51 × 0.42 × 0.21 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3073 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
2965 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.715Rint = 0.051
10869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.66 e Å3
S = 1.21Δρmin = 0.45 e Å3
3073 reflectionsAbsolute structure: Flack (1983), 1275 Friedel pairs
189 parametersAbsolute structure parameter: 0.012 (12)
66 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6304 (6)0.3939 (4)0.97247 (17)0.0152 (7)
S10.70985 (18)0.32987 (9)1.04111 (5)0.0182 (2)
N10.4986 (5)0.4961 (3)0.96633 (15)0.0172 (7)
H10.46770.52320.92810.021*
C20.6416 (7)0.3735 (4)0.85578 (18)0.0191 (8)
O10.5088 (6)0.4596 (3)0.84607 (13)0.0300 (8)
N20.7040 (6)0.3399 (3)0.91598 (15)0.0156 (7)
H20.80100.27740.91920.019*
C30.4040 (7)0.5643 (4)1.01863 (18)0.0176 (8)
C40.5135 (6)0.6714 (3)1.04368 (18)0.0166 (8)
H40.65310.69541.02910.020*
C50.4098 (7)0.7419 (3)1.09107 (18)0.0174 (8)
C60.2083 (7)0.7088 (4)1.11360 (18)0.0201 (8)
H60.14260.75811.14630.024*
C70.1024 (7)0.6014 (4)1.08742 (19)0.0223 (9)
H70.03710.57761.10210.027*
C80.2004 (8)0.5286 (4)1.03973 (19)0.0203 (8)
H80.12830.45551.02200.024*
Br10.55861 (7)0.88797 (4)1.125472 (19)0.02269 (12)
C90.7379 (8)0.2956 (4)0.80096 (19)0.0210 (8)
C100.9613 (13)0.2404 (8)0.8134 (3)0.0386 (17)0.819 (12)
H10A1.05880.31100.82610.058*0.819 (12)
H10B1.01660.19920.77510.058*0.819 (12)
H10C0.95300.17530.84710.058*0.819 (12)
C110.7487 (14)0.3872 (6)0.7432 (3)0.0330 (15)0.819 (12)
H11A0.83570.46420.75350.049*0.819 (12)
H11B0.60230.41460.73160.049*0.819 (12)
H11C0.81510.34080.70780.049*0.819 (12)
C120.5761 (14)0.1849 (6)0.7871 (3)0.0336 (15)0.819 (12)
H12A0.62880.13270.75170.050*0.819 (12)
H12B0.43510.22250.77640.050*0.819 (12)
H12C0.56150.12930.82430.050*0.819 (12)
C130.995 (5)0.303 (3)0.8023 (15)0.030 (3)0.181 (12)
H13A1.04470.30640.84600.045*0.181 (12)
H13B1.04320.38090.77990.045*0.181 (12)
H13C1.05470.22490.78190.045*0.181 (12)
C140.645 (6)0.350 (3)0.7436 (13)0.028 (3)0.181 (12)
H14A0.69110.44040.73860.042*0.181 (12)
H14B0.48660.34610.74620.042*0.181 (12)
H14C0.69350.29840.70730.042*0.181 (12)
C150.650 (6)0.160 (3)0.8086 (16)0.033 (3)0.181 (12)
H15A0.62540.12120.76710.049*0.181 (12)
H15B0.51320.16330.83180.049*0.181 (12)
H15C0.75410.10650.83200.049*0.181 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0096 (17)0.0164 (15)0.0195 (18)0.0053 (15)0.0030 (13)0.0002 (16)
S10.0173 (5)0.0204 (4)0.0171 (5)0.0018 (4)0.0001 (4)0.0012 (4)
N10.0178 (19)0.0157 (14)0.0182 (16)0.0035 (12)0.0013 (13)0.0010 (12)
C20.019 (2)0.0200 (18)0.0186 (19)0.0002 (16)0.0028 (15)0.0007 (15)
O10.037 (2)0.0329 (16)0.0199 (15)0.0177 (14)0.0019 (13)0.0036 (12)
N20.0150 (17)0.0140 (13)0.0177 (16)0.0019 (13)0.0001 (14)0.0034 (12)
C30.022 (2)0.0170 (15)0.0137 (18)0.0051 (15)0.0039 (16)0.0008 (14)
C40.014 (2)0.0164 (16)0.0193 (18)0.0037 (14)0.0029 (15)0.0028 (15)
C50.021 (2)0.0158 (16)0.0152 (18)0.0016 (16)0.0041 (17)0.0010 (14)
C60.020 (2)0.0239 (18)0.017 (2)0.0050 (16)0.0047 (17)0.0005 (15)
C70.020 (2)0.0239 (19)0.023 (2)0.0046 (18)0.0061 (16)0.0000 (17)
C80.024 (2)0.0168 (18)0.020 (2)0.0010 (16)0.0006 (18)0.0021 (15)
Br10.0280 (2)0.01807 (17)0.02199 (19)0.00228 (18)0.00135 (19)0.00341 (17)
C90.027 (2)0.0192 (16)0.0172 (18)0.0047 (15)0.0005 (16)0.0038 (14)
C100.034 (3)0.057 (4)0.025 (3)0.019 (3)0.003 (3)0.016 (3)
C110.052 (4)0.023 (2)0.024 (2)0.009 (3)0.014 (3)0.001 (2)
C120.039 (3)0.032 (3)0.030 (3)0.009 (3)0.004 (3)0.009 (2)
C130.028 (4)0.039 (7)0.024 (7)0.006 (5)0.001 (5)0.009 (7)
C140.036 (7)0.031 (6)0.018 (5)0.018 (6)0.002 (6)0.008 (5)
C150.044 (7)0.025 (5)0.029 (7)0.003 (5)0.004 (7)0.009 (5)
Geometric parameters (Å, º) top
C1—N11.334 (5)C9—C101.517 (8)
C1—N21.399 (5)C9—C121.542 (8)
C1—S11.674 (4)C9—C111.548 (7)
N1—C31.439 (5)C9—C131.59 (3)
N1—H10.8800C10—H10A0.9800
C2—O11.224 (5)C10—H10B0.9800
C2—N21.381 (5)C10—H10C0.9800
C2—C91.533 (5)C11—H11A0.9800
N2—H20.8800C11—H11B0.9800
C3—C81.387 (6)C11—H11C0.9800
C3—C41.396 (5)C12—H12A0.9800
C4—C51.396 (5)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
C5—C61.378 (6)C13—H13A0.9800
C5—Br11.904 (4)C13—H13B0.9800
C6—C71.397 (6)C13—H13C0.9800
C6—H60.9500C14—H14A0.9800
C7—C81.397 (6)C14—H14B0.9800
C7—H70.9500C14—H14C0.9800
C8—H80.9500C15—H15A0.9800
C9—C141.46 (3)C15—H15B0.9800
C9—C151.50 (3)C15—H15C0.9800
N1—C1—N2115.2 (3)C2—C9—C12106.0 (4)
N1—C1—S1124.9 (3)C10—C9—C11109.0 (5)
N2—C1—S1119.9 (3)C2—C9—C11107.8 (4)
C1—N1—C3123.7 (3)C12—C9—C11108.8 (4)
C1—N1—H1118.1C14—C9—C13113.1 (17)
C3—N1—H1118.1C15—C9—C13113.7 (18)
O1—C2—N2121.6 (4)C2—C9—C13110.6 (11)
O1—C2—C9120.5 (4)C9—C10—H10A109.5
N2—C2—C9117.8 (3)C9—C10—H10B109.5
C2—N2—C1127.3 (3)C9—C10—H10C109.5
C2—N2—H2116.3C9—C11—H11A109.5
C1—N2—H2116.3C9—C11—H11B109.5
C8—C3—C4121.7 (4)C9—C11—H11C109.5
C8—C3—N1119.4 (4)C9—C12—H12A109.5
C4—C3—N1118.7 (4)C9—C12—H12B109.5
C3—C4—C5117.3 (4)C9—C12—H12C109.5
C3—C4—H4121.3C9—C13—H13A109.5
C5—C4—H4121.3C9—C13—H13B109.5
C6—C5—C4122.6 (4)H13A—C13—H13B109.5
C6—C5—Br1119.8 (3)C9—C13—H13C109.5
C4—C5—Br1117.5 (3)H13A—C13—H13C109.5
C5—C6—C7118.7 (4)H13B—C13—H13C109.5
C5—C6—H6120.7C9—C14—H14A109.5
C7—C6—H6120.7C9—C14—H14B109.5
C6—C7—C8120.5 (4)H14A—C14—H14B109.5
C6—C7—H7119.8C9—C14—H14C109.5
C8—C7—H7119.8H14A—C14—H14C109.5
C3—C8—C7119.2 (4)H14B—C14—H14C109.5
C3—C8—H8120.4C9—C15—H15A109.5
C7—C8—H8120.4C9—C15—H15B109.5
C14—C9—C15107.3 (18)H15A—C15—H15B109.5
C14—C9—C2106.6 (11)C9—C15—H15C109.5
C15—C9—C2105.0 (12)H15A—C15—H15C109.5
C10—C9—C2114.6 (4)H15B—C15—H15C109.5
C10—C9—C12110.5 (5)
N2—C1—N1—C3179.3 (3)C4—C3—C8—C70.2 (6)
S1—C1—N1—C30.9 (5)N1—C3—C8—C7175.3 (4)
O1—C2—N2—C10.5 (7)C6—C7—C8—C30.0 (6)
C9—C2—N2—C1177.3 (4)O1—C2—C9—C141.7 (17)
N1—C1—N2—C25.8 (6)N2—C2—C9—C14179.5 (17)
S1—C1—N2—C2174.4 (3)O1—C2—C9—C15112.0 (17)
C1—N1—C3—C893.5 (5)N2—C2—C9—C1565.8 (17)
C1—N1—C3—C491.3 (4)O1—C2—C9—C10153.2 (5)
C8—C3—C4—C50.1 (6)N2—C2—C9—C1029.0 (6)
N1—C3—C4—C5175.0 (3)O1—C2—C9—C1284.6 (6)
C3—C4—C5—C60.6 (6)N2—C2—C9—C1293.2 (5)
C3—C4—C5—Br1179.9 (3)O1—C2—C9—C1131.7 (6)
C4—C5—C6—C70.8 (6)N2—C2—C9—C11150.5 (5)
Br1—C5—C6—C7179.9 (3)O1—C2—C9—C13125.0 (14)
C5—C6—C7—C80.5 (6)N2—C2—C9—C1357.2 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.882.586 (5)136

Experimental details

Crystal data
Chemical formulaC12H15BrN2OS
Mr315.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)6.188 (4), 10.250 (7), 21.268 (14)
V3)1348.9 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.51 × 0.42 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.537, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
10869, 3073, 2965
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.082, 1.21
No. of reflections3073
No. of parameters189
No. of restraints66
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.45
Absolute structureFlack (1983), 1275 Friedel pairs
Absolute structure parameter0.012 (12)

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku, 2004), SIR97 (Altomare, 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and TEXSAN.

Selected geometric parameters (Å, º) top
C1—N11.334 (5)N1—C31.439 (5)
C1—N21.399 (5)C2—O11.224 (5)
C1—S11.674 (4)C2—N21.381 (5)
O1—C2—N2—C10.5 (7)N1—C1—N2—C25.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.882.586 (5)135.9
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds