metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N′-[1-(2-Pyrid­yl)ethyl­­idene-κN]benzo­hydrazidato-κ2N′,O}{N′-[1-(2-pyrid­yl)ethyl­­idene-κN]benzohydrazide-κ2N′,O}copper(II) tri­chloro­acetate

aDepartment of Chemistry, National Changhua University of Education, Changhua, 50058, Taiwan, bInstitute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, and cDepartment of Occupational Health and Safety, Chang Jung Christian University, Tainan City, 71101, Taiwan
*Correspondence e-mail: scschem@mail.cjcu.edu.tw

(Received 22 August 2011; accepted 8 September 2011; online 14 September 2011)

In the title complex, [Cu(C14H13N3O)(C14H12N3O)](CCl3COO), the central Cu(II) ion exhibits a distorted octa­hedral geometry with the two ligands coordinating in an meridional format. The N4O2 ligand environment is defined by two benzoyl O atoms, two pyridyl N atoms and imino N atoms. As evidenced by the bond lengths, the two benzohydrazone ligands exist in distinctively different forms, one of them as a regular neutral ligand and the other as an anionic enolate arising from deprotonation. The much longer Cu—O bond and longer Cu—N bond lengths in the neutral benzohydrazone ligand imply weak ligation in comparison with the anionic enolate form. The acute angles of the five-membered rings cause a significant deviation from a regular octa­hedral geometry.

Related literature

For related complexes of the same precursor ligand, see: Patole et al. (2003[Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.]); Sen et al. (2005[Sen, S., Talukder, P., Rosair, G. M. & Mitra, S. (2005). Struct. Chem. 16, 605-610.], 2007a[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085-4092.],b[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007b). Polyhedron, 26, 1740-1744.]); Ray et al. (2008[Ray, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008). Struct. Chem. 19, 209-217.]); Datta et al. (2010[Datta, A., Chuang, N.-T., Sie, M.-H., Huang, J.-H. & Lee, H. M. (2010). Acta Cryst. E66, m359.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H13N3O)(C14H12N3O)](C2Cl3O2)

  • Mr = 703.45

  • Triclinic, [P \overline 1]

  • a = 8.3341 (6) Å

  • b = 13.0470 (9) Å

  • c = 16.0729 (12) Å

  • α = 107.737 (1)°

  • β = 102.541 (1)°

  • γ = 95.259 (1)°

  • V = 1601.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 295 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.799, Tmax = 0.875

  • 9034 measured reflections

  • 6180 independent reflections

  • 4962 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.189

  • S = 1.03

  • 6180 reflections

  • 399 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N1 2.046 (3)
Cu—N2 1.938 (3)
Cu—N4 2.196 (3)
Cu—N5 2.088 (3)
Cu—O1 1.996 (3)
Cu—O2 2.420 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title complex is consisted of two tridentate benzohydrazone ligands oriented in a meridional fashion. One ligand coordinates in the deprotonated enolate form and acts as a monoanion. The other ligand coordinates in the regular neutral form. The nonequivalent coordination of these two ligands is proved by the bond distances surrounding the cuprous ion. The Cu—O distance for neutral ligand (2.420 (2) Å) is much longer than that of deprotonated ligand, 1.996 (3) Å. Contrarily, the C—O bond distance of the neutral ligand (1.228 (4) Å) is shorter than that of the deprotonated enolate form (1.280 (4) Å). The Cu—N bond distances of the enolate ligand (2.046 (3) and 1.938 (3) Å) are also shorter than those of the neutral ligand (2.196 (3) and 2.088 (3) Å). Nevertheless, the Cu—O and Cu—N bond distances (Table 1) are comparable with the literature reported complexes under the same ligand mode(Patole et al., 2003, Sen et al., 2005, 2007a,b, Ray et al., 2008. Datta et al., 2010). The distortion from regular octahedral symmetry is relatively large considering that the bond angles surrounding cuprous ion lie between 71.3 (1) and 163.0 (1)°. The equatorial plane can be defined by O1, N1, N2 and N5 atoms and, accordingly, the axial sites are occupied by O2 and N4 atoms. The Cu(II) ion deviates from the equatorial plane towards the axial N4 atom by 0.1421 (4) Å. The dihedral angles between two pyridine rings and two benzene rings are 86.1 (2)° and 81.7 (2)°, respectively.

Related literature top

For related complexes of the same precursor ligand, see: Patole et al. (2003); Sen et al. (2005, 2007a,b); Ray et al. (2008); Datta et al. (2010).

Experimental top

The ligand precursor, [C6H5C(O)NHN=C(CH3)C5H4N] was prepared according to a literature procedure (Sen et al., 2005). To the ligand (2 mmol), methanolic solution (20 ml) of anhydrous copper trichloroacetate (0.388 g, 1 mmol) was added with constant stirring and was kept at room temperature yielding light green square-shaped crystals suitable for X-ray diffraction after few days. Crystals were filtered and were air-dried.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.93, Cmethyl—H = 0.96 Å, while Uiso(H) = 1.5 Ueq(C) for the methyl H atoms and 1.2 Ueq (C) for all the other H atoms are used in the final refinement. A disagreeable reflection with delta(F2)/ e.s.d. >10 was omitted.

Structure description top

The title complex is consisted of two tridentate benzohydrazone ligands oriented in a meridional fashion. One ligand coordinates in the deprotonated enolate form and acts as a monoanion. The other ligand coordinates in the regular neutral form. The nonequivalent coordination of these two ligands is proved by the bond distances surrounding the cuprous ion. The Cu—O distance for neutral ligand (2.420 (2) Å) is much longer than that of deprotonated ligand, 1.996 (3) Å. Contrarily, the C—O bond distance of the neutral ligand (1.228 (4) Å) is shorter than that of the deprotonated enolate form (1.280 (4) Å). The Cu—N bond distances of the enolate ligand (2.046 (3) and 1.938 (3) Å) are also shorter than those of the neutral ligand (2.196 (3) and 2.088 (3) Å). Nevertheless, the Cu—O and Cu—N bond distances (Table 1) are comparable with the literature reported complexes under the same ligand mode(Patole et al., 2003, Sen et al., 2005, 2007a,b, Ray et al., 2008. Datta et al., 2010). The distortion from regular octahedral symmetry is relatively large considering that the bond angles surrounding cuprous ion lie between 71.3 (1) and 163.0 (1)°. The equatorial plane can be defined by O1, N1, N2 and N5 atoms and, accordingly, the axial sites are occupied by O2 and N4 atoms. The Cu(II) ion deviates from the equatorial plane towards the axial N4 atom by 0.1421 (4) Å. The dihedral angles between two pyridine rings and two benzene rings are 86.1 (2)° and 81.7 (2)°, respectively.

For related complexes of the same precursor ligand, see: Patole et al. (2003); Sen et al. (2005, 2007a,b); Ray et al. (2008); Datta et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% displacement ellipsoids.
{N'-[1-(2-Pyridyl)ethylidene-κN]benzohydrazidato-κ2N',O}{N'-[1-(2-pyridyl)ethylidene-κN]benzohydrazide-κ2N',O}copper(II) trichloroacetate top
Crystal data top
[Cu(C14H13N3O)(C14H12N3O)](C2Cl3O2)V = 1601.3 (2) Å3
Mr = 703.45Z = 2
Triclinic, P1F(000) = 718
Hall symbol: -P 1Dx = 1.459 Mg m3
a = 8.3341 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0470 (9) ŵ = 0.98 mm1
c = 16.0729 (12) ÅT = 295 K
α = 107.737 (1)°Square, green
β = 102.541 (1)°0.30 × 0.27 × 0.25 mm
γ = 95.259 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6180 independent reflections
Radiation source: fine-focus sealed tube4962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
phi and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.799, Tmax = 0.875k = 1516
9034 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1266P)2 + 0.7166P]
where P = (Fo2 + 2Fc2)/3
6180 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 1.16 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
[Cu(C14H13N3O)(C14H12N3O)](C2Cl3O2)γ = 95.259 (1)°
Mr = 703.45V = 1601.3 (2) Å3
Triclinic, P1Z = 2
a = 8.3341 (6) ÅMo Kα radiation
b = 13.0470 (9) ŵ = 0.98 mm1
c = 16.0729 (12) ÅT = 295 K
α = 107.737 (1)°0.30 × 0.27 × 0.25 mm
β = 102.541 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4962 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.875Rint = 0.016
9034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.189H-atom parameters constrained
S = 1.03Δρmax = 1.16 e Å3
6180 reflectionsΔρmin = 0.52 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8662 (5)0.7231 (4)0.8172 (3)0.0642 (10)
H10.92070.79520.84280.077*
C20.8171 (6)0.6703 (5)0.8729 (3)0.0779 (12)
H20.83650.70690.93460.094*
C30.7401 (6)0.5639 (5)0.8359 (4)0.0810 (14)
H30.70670.52710.87220.097*
C40.7121 (5)0.5114 (4)0.7440 (3)0.0707 (12)
H40.66040.43870.71800.085*
C50.7614 (4)0.5676 (3)0.6908 (3)0.0524 (8)
C60.7387 (4)0.5210 (3)0.5918 (3)0.0521 (8)
C70.6495 (6)0.4074 (3)0.5377 (3)0.0740 (12)
H7A0.60980.40190.47550.111*
H7B0.55680.39070.56060.111*
H7C0.72470.35670.54220.111*
C80.8707 (4)0.6479 (3)0.4554 (2)0.0478 (7)
C90.8752 (4)0.6359 (3)0.3610 (2)0.0501 (8)
C101.0003 (5)0.7006 (3)0.3449 (3)0.0596 (9)
H101.07870.75230.39330.072*
C111.0075 (6)0.6879 (4)0.2581 (3)0.0723 (11)
H111.09340.72920.24790.087*
C120.8891 (7)0.6145 (4)0.1860 (3)0.0810 (13)
H120.89250.60800.12720.097*
C130.7658 (7)0.5509 (4)0.2012 (3)0.0834 (14)
H130.68710.50020.15240.100*
C140.7575 (5)0.5614 (3)0.2868 (3)0.0642 (10)
H140.67230.51830.29600.077*
C151.2778 (5)0.7146 (3)0.7063 (3)0.0568 (9)
H151.24500.64210.66910.068*
C161.4413 (5)0.7497 (4)0.7564 (3)0.0677 (11)
H161.51730.70160.75270.081*
C171.4910 (5)0.8573 (4)0.8123 (3)0.0693 (11)
H171.60000.88260.84780.083*
C181.3744 (5)0.9265 (3)0.8142 (3)0.0622 (10)
H181.40440.99960.85050.075*
C191.2123 (4)0.8857 (3)0.7613 (2)0.0490 (8)
C201.0801 (4)0.9549 (3)0.7556 (3)0.0533 (8)
C211.1254 (6)1.0762 (3)0.8015 (4)0.0950 (19)
H21A1.23751.10020.80110.142*
H21B1.11731.09440.86280.142*
H21C1.05031.11180.77000.142*
C220.6592 (4)0.9005 (3)0.6336 (2)0.0445 (7)
C230.5230 (4)0.9641 (3)0.6162 (2)0.0428 (7)
C240.3589 (4)0.9092 (3)0.5859 (2)0.0496 (8)
H240.33670.83530.57850.060*
C250.2288 (5)0.9639 (3)0.5669 (3)0.0595 (9)
H250.11930.92750.54840.071*
C260.2622 (5)1.0744 (3)0.5757 (3)0.0634 (10)
H260.17511.11130.56220.076*
C270.4247 (5)1.1279 (3)0.6045 (3)0.0624 (10)
H270.44721.20130.61050.075*
C280.5548 (5)1.0737 (3)0.6245 (3)0.0520 (8)
H280.66411.11070.64370.062*
C290.3176 (6)0.7394 (4)0.0606 (3)0.0661 (10)
C300.2374 (6)0.8395 (4)0.1034 (4)0.0753 (12)
N10.8380 (4)0.6743 (3)0.7289 (2)0.0526 (7)
N20.8012 (3)0.5880 (2)0.5580 (2)0.0468 (6)
N30.7924 (4)0.5618 (2)0.4679 (2)0.0521 (7)
N41.1651 (3)0.7807 (2)0.7093 (2)0.0478 (6)
N50.9358 (3)0.9034 (2)0.70525 (19)0.0456 (6)
N60.8058 (3)0.9593 (2)0.6930 (2)0.0500 (7)
H60.81621.02810.72140.060*
O10.9407 (3)0.73837 (19)0.51784 (18)0.0564 (6)
O20.6418 (3)0.80149 (19)0.59581 (19)0.0558 (6)
O30.2322 (5)0.8536 (3)0.1794 (3)0.1018 (12)
O40.1930 (14)0.8931 (8)0.0589 (6)0.261 (5)
Cu0.90049 (5)0.73603 (3)0.63528 (3)0.05047 (18)
Cl10.16329 (19)0.61979 (11)0.01824 (10)0.0956 (4)
Cl20.4774 (2)0.71845 (14)0.14101 (15)0.1265 (7)
Cl30.3983 (5)0.7551 (2)0.02666 (19)0.1990 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (2)0.068 (2)0.061 (2)0.0066 (18)0.0097 (18)0.017 (2)
C20.078 (3)0.097 (4)0.063 (3)0.021 (3)0.013 (2)0.034 (3)
C30.081 (3)0.096 (4)0.087 (3)0.021 (3)0.023 (3)0.059 (3)
C40.071 (3)0.067 (3)0.091 (3)0.017 (2)0.024 (2)0.047 (2)
C50.0419 (17)0.0469 (18)0.074 (2)0.0123 (14)0.0144 (16)0.0269 (17)
C60.0478 (18)0.0364 (17)0.070 (2)0.0089 (14)0.0104 (16)0.0179 (16)
C70.085 (3)0.0380 (19)0.088 (3)0.0057 (19)0.010 (2)0.018 (2)
C80.0435 (17)0.0360 (16)0.059 (2)0.0079 (13)0.0117 (15)0.0091 (14)
C90.0549 (19)0.0355 (16)0.057 (2)0.0135 (14)0.0140 (16)0.0098 (14)
C100.064 (2)0.0476 (19)0.066 (2)0.0114 (17)0.0211 (19)0.0144 (17)
C110.087 (3)0.065 (3)0.074 (3)0.018 (2)0.036 (2)0.024 (2)
C120.110 (4)0.077 (3)0.064 (3)0.024 (3)0.034 (3)0.025 (2)
C130.103 (4)0.069 (3)0.057 (3)0.011 (3)0.005 (2)0.003 (2)
C140.066 (2)0.052 (2)0.064 (2)0.0067 (18)0.0079 (19)0.0127 (18)
C150.056 (2)0.0482 (19)0.071 (2)0.0183 (16)0.0217 (18)0.0201 (18)
C160.054 (2)0.068 (3)0.088 (3)0.0254 (19)0.021 (2)0.031 (2)
C170.044 (2)0.077 (3)0.082 (3)0.0107 (19)0.0065 (19)0.026 (2)
C180.0436 (19)0.060 (2)0.072 (2)0.0040 (16)0.0085 (17)0.0109 (19)
C190.0405 (17)0.0453 (18)0.058 (2)0.0058 (13)0.0128 (14)0.0125 (15)
C200.0430 (18)0.0400 (17)0.065 (2)0.0068 (14)0.0089 (16)0.0049 (16)
C210.056 (2)0.045 (2)0.143 (5)0.0061 (18)0.001 (3)0.008 (3)
C220.0430 (16)0.0393 (16)0.0497 (18)0.0053 (13)0.0122 (14)0.0132 (14)
C230.0410 (16)0.0403 (16)0.0454 (17)0.0072 (12)0.0109 (13)0.0121 (13)
C240.0452 (17)0.0432 (17)0.058 (2)0.0037 (14)0.0114 (15)0.0161 (15)
C250.0426 (18)0.060 (2)0.072 (2)0.0059 (16)0.0120 (17)0.0183 (19)
C260.058 (2)0.062 (2)0.069 (2)0.0254 (18)0.0090 (19)0.020 (2)
C270.069 (2)0.0408 (18)0.074 (3)0.0121 (17)0.008 (2)0.0217 (18)
C280.0500 (19)0.0409 (17)0.058 (2)0.0009 (14)0.0075 (15)0.0135 (15)
C290.077 (3)0.059 (2)0.062 (2)0.008 (2)0.025 (2)0.0147 (19)
C300.086 (3)0.066 (3)0.082 (3)0.024 (2)0.022 (3)0.030 (2)
N10.0419 (15)0.0540 (17)0.0612 (18)0.0060 (12)0.0107 (13)0.0206 (14)
N20.0452 (15)0.0338 (13)0.0583 (17)0.0058 (11)0.0126 (12)0.0118 (12)
N30.0571 (17)0.0368 (14)0.0568 (17)0.0048 (12)0.0127 (14)0.0099 (12)
N40.0423 (14)0.0393 (14)0.0611 (17)0.0074 (11)0.0156 (13)0.0143 (13)
N50.0413 (14)0.0385 (14)0.0512 (15)0.0087 (11)0.0106 (12)0.0073 (12)
N60.0418 (14)0.0362 (14)0.0612 (17)0.0111 (11)0.0069 (12)0.0043 (12)
O10.0632 (15)0.0387 (12)0.0574 (15)0.0042 (11)0.0175 (12)0.0046 (11)
O20.0510 (13)0.0346 (12)0.0705 (16)0.0058 (10)0.0059 (12)0.0087 (11)
O30.109 (3)0.096 (3)0.079 (2)0.042 (2)0.023 (2)0.008 (2)
O40.395 (13)0.307 (10)0.265 (9)0.269 (10)0.187 (9)0.224 (9)
Cu0.0526 (3)0.0376 (3)0.0532 (3)0.00343 (18)0.0129 (2)0.00748 (19)
Cl10.0939 (9)0.0706 (8)0.0948 (9)0.0064 (6)0.0015 (7)0.0103 (7)
Cl20.0788 (9)0.0975 (11)0.1661 (17)0.0305 (8)0.0130 (10)0.0181 (11)
Cl30.336 (4)0.1402 (18)0.171 (2)0.017 (2)0.189 (3)0.0433 (16)
Geometric parameters (Å, º) top
Cu—N12.046 (3)C14—H140.9300
N2—N31.367 (4)C15—N41.330 (4)
Cu—N21.938 (3)C15—C161.378 (6)
Cu—N42.196 (3)C15—H150.9300
N5—N61.373 (4)C16—C171.383 (6)
Cu—N52.088 (3)C16—H160.9300
N6—H60.8600C17—C181.385 (6)
Cu—O11.996 (3)C17—H170.9300
Cu—O22.420 (2)C18—C191.388 (5)
C1—N11.324 (5)C18—H180.9300
C1—C21.389 (6)C19—N41.338 (4)
C1—H10.9300C19—C201.493 (5)
C2—C31.364 (7)C20—N51.285 (4)
C2—H20.9300C20—C211.500 (5)
C3—C41.383 (7)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C51.385 (6)C21—H21C0.9600
C4—H40.9300C22—O21.228 (4)
C5—N11.367 (5)C22—N61.367 (4)
C5—C61.481 (6)C22—C231.494 (4)
C6—N21.289 (5)C23—C281.390 (5)
C6—C71.496 (5)C23—C241.393 (5)
C7—H7A0.9600C24—C251.382 (5)
C7—H7B0.9600C24—H240.9300
C7—H7C0.9600C25—C261.400 (6)
O1—C81.280 (4)C25—H250.9300
C8—N31.338 (4)C26—C271.376 (6)
C8—C91.485 (5)C26—H260.9300
C9—C141.393 (5)C27—C281.381 (5)
C9—C101.398 (5)C27—H270.9300
C10—C111.370 (6)C28—H280.9300
C10—H100.9300C29—C301.561 (6)
C11—C121.374 (7)C29—Cl31.738 (4)
C11—H110.9300C29—Cl21.747 (5)
C12—C131.370 (7)C29—Cl11.777 (5)
C12—H120.9300C30—O41.173 (7)
C13—C141.360 (7)C30—O31.189 (6)
C13—H130.9300
N1—C1—C2122.2 (4)C20—C21—H21C109.5
N1—C1—H1118.9H21A—C21—H21C109.5
C2—C1—H1118.9H21B—C21—H21C109.5
C3—C2—C1119.1 (5)O2—C22—N6121.8 (3)
C3—C2—H2120.5O2—C22—C23122.1 (3)
C1—C2—H2120.5N6—C22—C23116.1 (3)
C2—C3—C4119.4 (4)C28—C23—C24119.3 (3)
C2—C3—H3120.3C28—C23—C22122.4 (3)
C4—C3—H3120.3C24—C23—C22118.2 (3)
C3—C4—C5119.6 (4)C25—C24—C23120.3 (3)
C3—C4—H4120.2C25—C24—H24119.9
C5—C4—H4120.2C23—C24—H24119.9
N1—C5—C4120.3 (4)C24—C25—C26120.0 (3)
N1—C5—C6114.8 (3)C24—C25—H25120.0
C4—C5—C6125.0 (4)C26—C25—H25120.0
N2—C6—C5113.4 (3)C27—C26—C25119.5 (3)
N2—C6—C7124.2 (4)C27—C26—H26120.3
C5—C6—C7122.4 (3)C25—C26—H26120.3
C6—C7—H7A109.5C26—C27—C28120.7 (3)
C6—C7—H7B109.5C26—C27—H27119.7
H7A—C7—H7B109.5C28—C27—H27119.7
C6—C7—H7C109.5C27—C28—C23120.3 (3)
H7A—C7—H7C109.5C27—C28—H28119.9
H7B—C7—H7C109.5C23—C28—H28119.9
O1—C8—N3125.2 (3)C30—C29—Cl3111.7 (3)
O1—C8—C9118.4 (3)C30—C29—Cl2111.6 (3)
N3—C8—C9116.4 (3)Cl3—C29—Cl2108.5 (3)
C14—C9—C10118.2 (4)C30—C29—Cl1108.9 (3)
C14—C9—C8121.9 (3)Cl3—C29—Cl1109.4 (3)
C10—C9—C8119.9 (3)Cl2—C29—Cl1106.7 (2)
C11—C10—C9120.1 (4)O4—C30—O3127.5 (6)
C11—C10—H10119.9O4—C30—C29117.5 (6)
C9—C10—H10119.9O3—C30—C29115.0 (4)
C10—C11—C12120.6 (4)C1—N1—C5119.5 (3)
C10—C11—H11119.7C1—N1—Cu128.5 (3)
C12—C11—H11119.7C5—N1—Cu112.0 (2)
C13—C12—C11119.7 (5)C6—N2—N3122.9 (3)
C13—C12—H12120.2C6—N2—Cu119.6 (3)
C11—C12—H12120.2N3—N2—Cu117.4 (2)
C14—C13—C12120.7 (5)C8—N3—N2107.9 (3)
C14—C13—H13119.7C15—N4—C19119.1 (3)
C12—C13—H13119.7C15—N4—Cu126.5 (2)
C13—C14—C9120.7 (4)C19—N4—Cu114.4 (2)
C13—C14—H14119.6C20—N5—N6120.0 (3)
C9—C14—H14119.6C20—N5—Cu120.5 (2)
N4—C15—C16122.4 (4)N6—N5—Cu119.4 (2)
N4—C15—H15118.8C22—N6—N5116.8 (3)
C16—C15—H15118.8C22—N6—H6121.6
C15—C16—C17119.2 (4)N5—N6—H6121.6
C15—C16—H16120.4C8—O1—Cu109.8 (2)
C17—C16—H16120.4C22—O2—Cu110.6 (2)
C16—C17—C18118.4 (4)N2—Cu—O179.25 (11)
C16—C17—H17120.8N2—Cu—N180.17 (12)
C18—C17—H17120.8O1—Cu—N1159.01 (12)
C17—C18—C19119.2 (4)N2—Cu—N5162.98 (12)
C17—C18—H18120.4O1—Cu—N5100.25 (11)
C19—C18—H18120.4N1—Cu—N5100.64 (12)
N4—C19—C18121.7 (3)N2—Cu—N4122.15 (11)
N4—C19—C20115.2 (3)O1—Cu—N494.88 (11)
C18—C19—C20123.1 (3)N1—Cu—N492.52 (11)
N5—C20—C19115.0 (3)N5—Cu—N474.87 (10)
N5—C20—C21125.4 (3)N2—Cu—O291.71 (10)
C19—C20—C21119.4 (3)O1—Cu—O288.33 (11)
C20—C21—H21A109.5N1—Cu—O296.41 (11)
C20—C21—H21B109.5N5—Cu—O271.28 (9)
H21A—C21—H21B109.5N4—Cu—O2146.02 (9)

Experimental details

Crystal data
Chemical formula[Cu(C14H13N3O)(C14H12N3O)](C2Cl3O2)
Mr703.45
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.3341 (6), 13.0470 (9), 16.0729 (12)
α, β, γ (°)107.737 (1), 102.541 (1), 95.259 (1)
V3)1601.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.799, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
9034, 6180, 4962
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.189, 1.03
No. of reflections6180
No. of parameters399
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu—N12.046 (3)Cu—N52.088 (3)
Cu—N21.938 (3)Cu—O11.996 (3)
Cu—N42.196 (3)Cu—O22.420 (2)
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, A., Chuang, N.-T., Sie, M.-H., Huang, J.-H. & Lee, H. M. (2010). Acta Cryst. E66, m359.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPatole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRay, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008). Struct. Chem. 19, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007b). Polyhedron, 26, 1740–1744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Talukder, P., Rosair, G. M. & Mitra, S. (2005). Struct. Chem. 16, 605–610.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds