research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of sixteen phosphane chalcogenide complexes of gold(I) chloride, bromide and iodide1

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 16 November 2023; accepted 5 December 2023; online 1 January 2024)

The structures of 16 phosphane chalcogenide complexes of gold(I) halides, with the general formula R13-nR2nPEAuX (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl, Br or I), are presented. The eight possible chlorido derivatives are: 1a, n = 3, E = S; 2a, n = 2, E = S; 3a, n = 1, E = S; 4a, n = 0, E = S; 5a, n = 3, E = Se; 6a, n = 2, E = Se; 7a, n = 1, E = Se; and 8a, n = 0, E = Se, and the corresponding bromido derivatives are 1b8b in the same order. However, 2a and 2b were badly disordered and 8a was not obtained. The iodido derivatives are 2c, 6c and 7c (numbered as for the series a and b). All structures are solvent-free and all have Z′ = 1 except for 6b and 6c (Z′ = 2). All mol­ecules show the expected linear geometry at gold and approximately tetra­hedral angles P—E—Au. The presence of bulky ligands forces some short intra­molecular contacts, in particular H⋯Au and H⋯E. The Au—E bond lengths have a slight but consistent tendency to be longer when trans to a softer X ligand, and vice versa. The five compounds 1a, 5a, 6a, 1b and 5b form an isotypic set, despite the different alkyl groups in 6a. Compounds 3a/3b, 4b/8b and 6b/6c form isotypic pairs. The crystal packing can be analysed in terms of various types of secondary inter­actions, of which the most frequent are `weak' hydrogen bonds from methine hydrogen atoms to the halogenido ligands. For the structure type 1a, H⋯X and H⋯E contacts combine to form a layer structure. For 3a/3b, the packing is almost featureless, but can be described in terms of a double-layer structure involving borderline H⋯Cl/Br and H⋯S contacts. In 4a and 4b/8b, which lack methine groups, Cmeth­yl—H⋯X contacts combine to form layer structures. In 7a/7b, short C—H⋯X inter­actions form chains of mol­ecules that are further linked by association of short Au⋯Se contacts to form a layer structure. The packing of compound 6b/6c can conveniently be analysed for each independent mol­ecule separately, because they occupy different regions of the cell. Mol­ecule 1 forms chains in which the mol­ecules are linked by a Cmethine⋯Au contact. The mol­ecules 2 associate via a short Se⋯Se contact and a short H⋯X contact to form a layer structure. The packing of compound 2c can be described in terms of two short Cmethine—H⋯I contacts, which combine to form a corrugated ribbon structure. Compound 7c is the only compound in this paper to feature Au⋯Au contacts, which lead to twofold-symmetric dimers. Apart from this, the packing is almost featureless, consisting of layers with only translation symmetry except for two very borderline Au⋯H contacts.

1. Chemical context

Phosphane chalcogenides of the general formula R3P=E, where the R groups are alkyl or aryl (and may also be mixed) and E represents the chalcogenide, are well-known compounds that can act as ligands via the atom E. Diphos­phane mono- and dichalcogenides are also well-known, especially those of bis­(di­phenyl­phosphano)methane (`dppm') and bis­(di­phenyl­phosphano)ethane (`dppe'). We note at the outset that the formulae of phosphane chalcogenides are traditionally written with a double bond P=E (as in this publication), but the concept of double bonds between elements of the third and higher periods has been the subject of much debate (see e.g. Schmøkel et al., 2012[Schmøkel, M. S., Cenedese, S., Overgaard, J., Jørgensen, M. R. V., Chen, Y.-S., Gatti, C., Stalke, D. & Iversen, B. B. (2012). Inorg. Chem. 51, 8607-8616.]), suggesting that the formulation P=E, though convenient, might be too simplistic (using a `resonance' model, the alternative form R3P+E would also need to be considered).

Phosphane chalcogenides can form adducts with simple mol­ecules, in particular dihalogen mol­ecules X2, as seen in the pioneering work of du Mont and others, who showed that some adducts simply involved the atom sequence P—EXX, whereas others involved the formation of cations such as (iodo­seleno)­phospho­nium (R3PSeI)+ (e.g. Seppälä et al., 1999[Seppälä, E., Ruthe, F., Jeske, J., du Mont, W.-W. & Jones, P. G. (1999). Chem. Commun. pp. 1471-1472.]; Jeske et al., 1999[Jeske, J., du Mont, W.-W. & Jones, P. G. (1999). Chem. Eur. J. 5, 385-389.]; Hrib et al., 2006[Hrib, C. G., Ruthe, F., Seppälä, E., Bätcher, M., Druckenbrodt, C., Wismach, C., Jones, P. G., du Mont, W.-W., Lippolis, V., Devillanova, F. A. & Bühl, M. (2006). Eur. J. Inorg. Chem. pp. 88-100.]; du Mont et al., 2008[du Mont, W.-W., Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562-4577.]).

According to the `hard/soft' classification of Pearson (1963[Pearson, R. G. (1963). J. Am. Chem. Soc. 85, 3533-3539.]), phosphane oxides are hard ligands, whereas the sulfides, selenides and tellurides are soft. One would therefore expect that a soft metal such as gold [which corresponds to our major research inter­est, see e.g. Döring & Jones (2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.])] would preferentially form complexes with phosphane sulfides, selen­ides or tellurides. Indeed, phosphane oxides form very few gold complexes; the only `simple' compound of this type for which a structure has been determined is tris­(tri­fluoro­meth­yl)(tri­phenyl­phosphane oxide)gold(III), involving highly electron-withdrawing ligands (Pérez-Bítrian et al., 2017[Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. A Eur. J. 23, 14918-14930.]). Nevertheless, there are two established examples of P=O groups coordinating to AuI; in a chelating carbene complex (Martinez et al., 2021[Martinez, T., Vanitcha, V., Troufflard, C., Vanthuyne, N., Forté, J., Gontard, G., Lemière, G., Mouriès-Mansuy, V. & Fensterbank, L. (2021). Angew. Chem. Int. Ed. 60, 19879-19888.]) and in a complex of a (C,C′,O)-chelating ligand o-(C6F4)P(=O)Ph(C6H4) (Bennett et al., 2009[Bennett, M. A., Mirzadeh, N., Privér, S. H., Wagler, J. & Bhargava, S. K. (2009). Z. Naturforsch. B, 64, 1463-1468.]). Phosphane tellurides, on the other hand, are difficult to handle because of their limited stability, but some complexes have been structurally established, notably with silver (Daniliuc et al., 2007[Daniliuc, C., Druckenbrodt, C., Hrib, C. G., Ruthe, F., Blaschette, A., Jones, P. G. & du Mont, W.-W. (2007). Chem. Commun. pp. 2060-2062.]).

We have published an extensive series of structures involving phosphane sulfides and selenides, whether as compounds in their own right (e.g. diphosphane monochalcogenides; Taouss & Jones, 2013[Taouss, C. & Jones, P. G. (2013). Z. Naturforsch. B, 68, 860-870.]), as adducts with dihalogens (e.g. dppmSe2·2I2; Upmann & Jones, 2018[Upmann, D. & Jones, P. G. (2018). Dalton Trans. 47, 2748-2758.]), or as ligands (e.g. an unusual coord­ination polymer of dppmS2 with gold(I); Taouss et al., 2020[Taouss, C., Calvo, M. & Jones, P. G. (2020). Acta Cryst. E76, 1768-1770.]). Several of these have formed a series `phosphane chalcogenides and their metal complexes', of which this paper is Part 6; the metal has so far always been gold, but we plan to publish related structures involving platinum and palladium. Mention should also be made of the work by Laguna and Gimeno on diphosphane sulfide and selenide derivatives bonded to organometallic gold moieties, often involving C6F5 ligands (see e.g. Álvarez et al., 1998[Álvarez, B., Fernández, E. J., Gimeno, M. C., Jones, P. G., Laguna, A. & López-de-Luzuriaga, J. M. (1998). Polyhedron, 17, 2029-2035.] or Canales et al., 2007[Canales, S., Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (2007). Zeitschrift für Naturforschung B, 62, 407-412.]).

In a preliminary communication (Taouss & Jones, 2011[Taouss, C. & Jones, P. G. (2011). Dalton Trans. 40, 11687-11689.]), we reported that the oxidation of bromido­(tri­phenyl­phosphane sulfide)­gold(I) AuBr(SPPh3) with excess elemental bromine led to the unexpected ionic product (Ph3PSBr)(AuBr4), the (bromo­thio)­phospho­nium cation of which contains an unprecedented P—S—Br group. Similarly, in a second communication, concerning the oxidation of tri­alkyl­phosphane complexes (R3P=E)AuCl (R3 = various combinations of i-propyl and t-butyl; E = S, Se) with the Cl2-equivalent PhICl2, we established the main products, depending on the amount of oxidizing agent used, to be the expected (R3P=E)AuCl3 or the halogenido­phospho­nium salts (R3PECl)(AuCl4), with novel P—E—Cl groups in the cation (Upmann & Jones, 2013[Upmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526-7528.]). Similar results were obtained for the AuBr analogues, but were not reported at the time. We now intend to present the full structural details of the studies with tri­alkyl­phosphane chalcogenides, beginning in this paper with the halogenido-gold(I) starting materials (tBu3-niPrnP=E)AuX, of which there are sixteen possible permutations of n, E and X (for X = Cl or Br). The chlorido derivatives are: 1a, n = 3, E = S; 2a, n = 2, E = S; 3a, n = 1, E = S; 4a, n = 0, E = S; 5a, n = 3, E = Se; 6a, n = 2, E = Se; 7a, n = 1, E = Se; and 8a, n = 0, E = Se, and the corresponding bromido derivatives are 1b8b in the same order. However, we obtained only thirteen usable structures; compound 8a was obtained, but decomposed rapidly, whereas 2a and 2b proved to be severely disordered. The structures of 3a, 6a and 7a were briefly presented in our communication (Upmann & Jones, 2013[Upmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526-7528.]), but have been re-refined using a much more recent version of SHELXL (2019 rather than 1997; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and are discussed in more detail here.

[Scheme 1]

The synthesis of the chlorido- and bromido­gold(I) derivatives is straightforward and involves reacting the appropriate phosphane with the well-known starting materials AuCl(tht) and AuBr(tht), where `tht' is the easily replaceable ligand tetra­hydro­thio­phene (see Section 5). The synthesis of iodido­gold(I) derivatives is less simple, because the starting material AuI(tht) does not exist as such; a compound with the same stoichiometry can be synthesized, but has the ionic composition [Au(tht)2][AuI2] (Ahrland et al., 1985[Ahrland, S., Noren, B. & Oskarsson, A. (1985). Inorg. Chem. 24, 1330-1333.]) and is thus not suitable as a starting material for the synthesis of complexes LAuI (L = any neutral ligand). Nevertheless we succeeded in synthesizing three iodido derivatives 2c, 6c and 7c (numbered as for the series a and b) by stirring a solution of the chlorido derivative in di­chloro­methane with an aqueous solution of potassium iodide (Upmann, 2015[Upmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe. Dissertation, Technical University of Braunschweig, Germany (ISBN: 978-3-8439-1972-2).]), and in determining their structures. This gave a total of sixteen structures, which are reported here. It may be useful to summarize the various types of heavy-atom sequence: 1a, 3a and 4a have the sequence P—S—Au—Cl; 1b, 3b and 4b have P—S—Au—Br; 5a, 6a and 7a have P—Se—Au—Cl; 5b, 6b, 7b and 8b have P—Se—Au—Br; 2c has P—S—Au—I; and 6c and 7c have P—Se—Au—I.

The corresponding trihalogenido-gold(III) complexes will be discussed in the next paper in this series. There are however no tri­iodido derivatives, because the oxidizing power of elemental iodine is not sufficient to generate these from the gold(I) starting materials.

2. Structural commentary

General comments: The mol­ecular structures are shown in Figs. 1[link]–16[link][link][link][link][link][link][link][link][link][link][link][link][link][link][link]; selected mol­ecular dimensions are given in Tables 1[link]–16[link][link][link][link][link][link][link][link][link][link][link][link][link][link][link]. As expected, all compounds show linear coordination geometry (angles ca 173–178°) at the gold(I) centres, and angles of ca 101–109° at the chalcogenide atoms. All compounds crystallize solvent-free and with one mol­ecule in the asymmetric unit except for 6b and 6c, which have Z′ = 2; a least-squares fit of the two independent mol­ecules (excluding hydrogen atoms) gave an r.m.s. deviation of 0.11 Å for 6b and 0.13 Å for 6c. Structures such as the c series in this paper, of the type R3PEAuI, where R3 represents any combination of alkyl or aryl groups, were represented until now only by the iodido derivative Ph3PSeAuI; our attempts to obtain analogous sulfur compounds led mostly to disordered structures in which the R3P=S—Au—I mol­ecule was overlaid by a di­iodine adduct of the type R3P=S⋯I—I (Taouss et al., 2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.]).

Table 1
Selected geometric parameters (Å, °) for 1a[link]

Au1—S1 2.2711 (5) P1—S1 2.0332 (6)
Au1—Cl1 2.2820 (5)    
       
S1—Au1—Cl1 175.217 (16) C3—P1—S1 112.67 (6)
C3—P1—C1 106.34 (8) C1—P1—S1 104.69 (6)
C3—P1—C2 107.41 (9) C2—P1—S1 110.96 (6)
C1—P1—C2 114.79 (9) P1—S1—Au1 104.56 (2)
       
C3—P1—S1—Au1 −71.54 (7) C2—P1—S1—Au1 48.95 (7)
C1—P1—S1—Au1 173.32 (6)    

Table 2
Selected geometric parameters (Å, °) for 3a[link]

Au1—S1 2.2674 (8) P1—S1 2.0351 (11)
Au1—Cl1 2.2762 (9)    
       
S1—Au1—Cl1 174.71 (2) C3—P1—S1 108.67 (10)
C3—P1—C2 113.13 (12) C2—P1—S1 103.85 (9)
C3—P1—C1 107.61 (12) C1—P1—S1 109.91 (9)
C2—P1—C1 113.55 (13) P1—S1—Au1 107.40 (4)
       
C3—P1—S1—Au1 −51.44 (10) C1—P1—S1—Au1 66.07 (10)
C2—P1—S1—Au1 −172.13 (9)    

Table 3
Selected geometric parameters (Å, °) for 4a[link]

Au1—S1 2.2692 (10) P1—S1 2.0482 (12)
Au1—Cl1 2.2820 (8)    
       
S1—Au1—Cl1 177.70 (15) C3—P1—S1 111.3 (3)
C3—P1—C1 111.1 (4) C1—P1—S1 102.45 (12)
C3—P1—C2 111.7 (2) C2—P1—S1 109.1 (3)
C1—P1—C2 110.8 (4) P1—S1—Au1 105.86 (5)
       
C3—P1—S1—Au1 53.2 (3) C2—P1—S1—Au1 −70.5 (3)
C1—P1—S1—Au1 172.0 (4)    

Table 4
Selected geometric parameters (Å, °) for 5a[link]

Au1—Cl1 2.2862 (8) P1—Se1 2.1868 (8)
Au1—Se1 2.3745 (3)    
       
Cl1—Au1—Se1 174.03 (2) C1—P1—Se1 104.38 (10)
C1—P1—C3 106.51 (14) C3—P1—Se1 112.30 (10)
C1—P1—C2 115.25 (14) C2—P1—Se1 110.93 (10)
C3—P1—C2 107.49 (14) P1—Se1—Au1 102.89 (2)
       
C1—P1—Se1—Au1 172.39 (10) C2—P1—Se1—Au1 47.67 (11)
C3—P1—Se1—Au1 −72.63 (11)    

Table 5
Selected geometric parameters (Å, °) for 6a[link]

Au1—Cl1 2.2877 (7) P1—Se1 2.1947 (7)
Au1—Se1 2.3696 (3)    
       
Cl1—Au1—Se1 176.13 (2) C3—P1—Se1 110.99 (10)
C3—P1—C2 105.85 (13) C2—P1—Se1 102.23 (10)
C3—P1—C1 110.98 (13) C1—P1—Se1 114.09 (9)
C2—P1—C1 112.11 (13) P1—Se1—Au1 103.21 (2)
       
C3—P1—Se1—Au1 −74.90 (10) C1—P1—Se1—Au1 51.36 (10)
C2—P1—Se1—Au1 172.61 (10)    

Table 6
Selected geometric parameters (Å, °) for 7a[link]

Au1—Cl1 2.2898 (6) P1—Se1 2.2027 (6)
Au1—Se1 2.3740 (3)    
       
Cl1—Au1—Se1 174.465 (18) C3—P1—Se1 103.38 (9)
C3—P1—C2 112.52 (11) C2—P1—Se1 109.00 (8)
C3—P1—C1 105.33 (11) C1—P1—Se1 111.54 (8)
C2—P1—C1 114.50 (12) P1—Se1—Au1 106.911 (18)
       
C3—P1—Se1—Au1 166.02 (8) C1—P1—Se1—Au1 53.31 (8)
C2—P1—Se1—Au1 −74.09 (9)    

Table 7
Selected geometric parameters (Å, °) for 1b[link]

Au1—S1 2.2763 (6) P1—S1 2.0325 (8)
Au1—Br1 2.3963 (3)    
       
S1—Au1—Br1 175.134 (15) C3—P1—S1 112.94 (8)
C3—P1—C2 107.21 (10) C2—P1—S1 111.22 (8)
C3—P1—C1 106.45 (10) C1—P1—S1 104.27 (8)
C2—P1—C1 114.79 (11) P1—S1—Au1 104.61 (3)
       
C3—P1—S1—Au1 −70.35 (8) C1—P1—S1—Au1 174.50 (8)
C2—P1—S1—Au1 50.25 (9)    

Table 8
Selected geometric parameters (Å, °) for 3b[link]

Au1—S1 2.2731 (5) S1—P1 2.0333 (7)
Au1—Br1 2.3896 (3)    
       
S1—Au1—Br1 174.382 (13) C2—P1—C1 113.42 (9)
P1—S1—Au1 106.84 (3) C3—P1—S1 108.72 (6)
C3—P1—C2 113.35 (9) C2—P1—S1 103.79 (6)
C3—P1—C1 107.53 (9) C1—P1—S1 109.91 (7)
       
Au1—S1—P1—C3 −50.79 (7) Au1—S1—P1—C1 66.65 (7)
Au1—S1—P1—C2 −171.73 (7)    

Table 9
Selected geometric parameters (Å, °) for 4b[link]

Au1—S1 2.2791 (19) P1—S1 2.043 (2)
Au1—Br1 2.3925 (8)    
       
S1—Au1—Br1 176.04 (5) C2—P1—S1 111.2 (2)
C2—P1—C1 111.3 (3) C1—P1—S1 102.7 (2)
C2—P1—C3 110.5 (3) C3—P1—S1 109.9 (2)
C1—P1—C3 111.0 (3) P1—S1—Au1 107.77 (9)
       
C2—P1—S1—Au1 48.4 (3) C3—P1—S1—Au1 −74.3 (3)
C1—P1—S1—Au1 167.6 (3)    

Table 10
Selected geometric parameters (Å, °) for 5b[link]

Au1—Se1 2.3779 (2) P1—Se1 2.1860 (5)
Au1—Br1 2.4004 (2)    
       
Se1—Au1—Br1 173.957 (8) C3—P1—Se1 112.54 (7)
C3—P1—C1 106.54 (9) C1—P1—Se1 103.85 (6)
C3—P1—C2 107.42 (9) C2—P1—Se1 111.11 (6)
C1—P1—C2 115.41 (9) P1—Se1—Au1 102.931 (14)
       
C3—P1—Se1—Au1 −71.46 (7) C2—P1—Se1—Au1 49.05 (7)
C1—P1—Se1—Au1 173.72 (7)    

Table 11
Selected geometric parameters (Å, °) for 6b[link]

Au1—Se1 2.3872 (3) Au2—Se2 2.3848 (3)
Au1—Br1 2.4036 (3) Au2—Br2 2.4040 (3)
Se1—P1 2.1911 (7) Se2—P2 2.1875 (7)
       
Se1—Au1—Br1 177.083 (11) C2—P1—Se1 105.63 (9)
P1—Se1—Au1 101.29 (2) C3—P1—Se1 109.60 (9)
C2—P1—C3 104.54 (12) C1—P1—Se1 113.64 (9)
C2—P1—C1 108.77 (12) Se2—Au2—Br2 174.050 (11)
C3—P1—C1 113.93 (13) P2—Se2—Au2 103.59 (2)
       
Au1—Se1—P1—C2 174.51 (9) Au1—Se1—P1—C1 55.36 (9)
Au1—Se1—P1—C3 −73.38 (10)    

Table 12
Selected geometric parameters (Å, °) for 7b[link]

Au1—Se1 2.3761 (5) P1—Se1 2.2013 (11)
Au1—Br1 2.4009 (5)    
       
Se1—Au1—Br1 175.696 (17) C3—P1—Se1 103.58 (16)
C3—P1—C1 105.4 (2) C1—P1—Se1 111.39 (16)
C3—P1—C2 112.6 (2) C2—P1—Se1 108.73 (16)
C1—P1—C2 114.5 (2) P1—Se1—Au1 105.58 (3)
       
C3—P1—Se1—Au1 165.57 (15) C2—P1—Se1—Au1 −74.43 (17)
C1—P1—Se1—Au1 52.70 (15)    

Table 13
Selected geometric parameters (Å, °) for 8b[link]

Au1—Se1 2.3805 (3) P1—Se1 2.2008 (7)
Au1—Br1 2.3961 (3)    
       
Se1—Au1—Br1 175.936 (11) C3—P1—Se1 109.31 (9)
C3—P1—C2 111.30 (13) C2—P1—Se1 111.01 (10)
C3—P1—C1 111.06 (13) C1—P1—Se1 102.43 (9)
C2—P1—C1 111.39 (13) P1—Se1—Au1 104.44 (2)
       
C3—P1—Se1—Au1 −74.10 (10) C1—P1—Se1—Au1 168.05 (9)
C2—P1—Se1—Au1 49.06 (10)    

Table 14
Selected geometric parameters (Å, °) for (2c)[link]

Au1—S1 2.2959 (6) S1—P1 2.0322 (8)
Au1—I1 2.5437 (2)    
       
S1—Au1—I1 173.747 (16) C3—P1—C1 113.74 (11)
P1—S1—Au1 106.08 (3) C2—P1—S1 105.26 (8)
C2—P1—C3 104.91 (11) C3—P1—S1 110.25 (8)
C2—P1—C1 109.11 (10) C1—P1—S1 112.90 (8)
       
Au1—S1—P1—C2 178.84 (8) Au1—S1—P1—C1 59.91 (8)
Au1—S1—P1—C3 −68.53 (8)    

Table 15
Selected geometric parameters (Å, °) for 6c[link]

Au1—Se1 2.4040 (3) Au2—Se2 2.4002 (3)
Au1—I1 2.5508 (2) Au2—I2 2.5503 (2)
Se1—P1 2.1938 (8) Se2—P2 2.1890 (8)
       
Se1—Au1—I1 177.832 (10) Se2—Au2—I2 175.009 (10)
P1—Se1—Au1 100.57 (2) P2—Se2—Au2 103.30 (2)
C3—P1—C2 104.65 (13) C5—P2—C6 104.86 (13)
C3—P1—C1 113.83 (14) C5—P2—C4 109.11 (13)
C2—P1—C1 108.98 (13) C6—P2—C4 113.70 (13)
C3—P1—Se1 109.71 (10) C5—P2—Se2 105.35 (10)
C2—P1—Se1 105.13 (10) C6—P2—Se2 109.60 (10)
C1—P1—Se1 113.77 (10) C4—P2—Se2 113.51 (9)
       
Au1—Se1—P1—C3 −72.96 (10) Au2—Se2—P2—C5 169.01 (9)
Au1—Se1—P1—C2 175.01 (9) Au2—Se2—P2—C6 −78.65 (10)
Au1—Se1—P1—C1 55.84 (10) Au2—Se2—P2—C4 49.69 (10)

Table 16
Selected geometric parameters (Å, °) for 7c[link]

Au1—Se1 2.4014 (11) Au1—Au1i 3.0914 (8)
Au1—I1 2.5509 (8) P1—Se1 2.198 (3)
       
Se1—Au1—I1 176.56 (4) C2—P1—C1 113.0 (5)
Se1—Au1—Au1i 78.63 (3) C3—P1—Se1 100.9 (4)
I1—Au1—Au1i 103.36 (2) C2—P1—Se1 112.8 (4)
C3—P1—C2 112.3 (5) C1—P1—Se1 109.3 (4)
C3—P1—C1 107.7 (5) P1—Se1—Au1 103.94 (8)
       
C3—P1—Se1—Au1 −169.6 (4) I1—Au1—Au1i—I1i 117.89 (4)
C2—P1—Se1—Au1 −49.5 (4) Se1—Au1—Au1i—Se1i 123.62 (6)
C1—P1—Se1—Au1 77.1 (4) I1—Au1—Au1i—Se1i −59.25 (3)
Symmetry code: (i) [-y, -x, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of compound 1a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2]
Figure 2
The structure of compound 3a in the crystal. Ellipsoids represent 30% probability levels. Only the major disorder components of the t-butyl groups are shown.
[Figure 3]
Figure 3
The structure of compound 4a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 4]
Figure 4
The structure of compound 5a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 5]
Figure 5
The structure of compound 6a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 6]
Figure 6
The structure of compound 7a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 7]
Figure 7
The structure of compound 1b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 8]
Figure 8
The structure of compound 3b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 9]
Figure 9
The structure of compound 4b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 10]
Figure 10
The structure of compound 5b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 11]
Figure 11
The structure of compound 6b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 12]
Figure 12
The structure of compound 7b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 13]
Figure 13
The structure of compound 8b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 14]
Figure 14
The structure of compound 2c in the crystal. Ellipsoids represent 50% probability levels.
[Figure 15]
Figure 15
The structure of compound 6c in the crystal. Ellipsoids represent 50% probability levels.
[Figure 16]
Figure 16
The structure of compound 7c in the crystal. Ellipsoids represent 50% probability levels.

Isotypy: In an extensive series of closely analogous structures, several would be expected to be isotypic. Indeed, the five compounds 1a, 5a, 6a, 1b and 5b form an isotypic set, despite the different alkyl groups in 6a. Compounds 3a/3b, 4b/8b and 6b/6c also form isotypic pairs.

Bond lengths and angles (1). P—E—Au—X groups: The bond lengths among the heavy atoms are remarkably constant for the various classes. Thus the P—S and P—Se bond lengths lie in the ranges 2.0322–2.0482 (av. 2.0368) Å and 2.1860–2.2027 (av. 2.1938) Å, respectively, both markedly lengthened with respect to the `standard' bond lengths of ca 1.95 and 2.11 Å respectively in the free ligands (as would be expected; see Section 4). The bond lengths at the gold atoms might however be expected to show some trans influences, and there are indeed some weak trends. Thus Au—S bond lengths lie in the range 2.2673–2.2959 (av. 2.2760) Å, with separate averages of 2.2692 Å trans to Cl, 2.2761 Å trans to Br and 2.2959 Å (one value only) trans to I, which may indicate a weak correlation of the Au—S bond length with the softness of the halogen atom. A similar weak effect is observed for Au—Se; overall 2.3696–2.4040 (av. 2.3845) Å, with subset averages 2.3727 Å trans to Cl, 2.3813 Å trans to Br and 2.4017 Å trans to I. Similarly, the Au—Cl bond lengths (2.2761–2.2898, av. 2.2840 Å) are marginally shorter trans to S (av. 2.2800 Å) than trans to Se (av. 2.2879 Å), and the Au—Br bond lengths (2.3896–2.4040, av. 2.3979 Å) are similarly just shorter trans to S (av. 2.3928 Å) than trans to Se (av. 2.4010 Å). The four Au—I bond lengths are almost constant (2.5437–2.5509, av. 2.5489 Å), but are too few to provide reliable trends.

The angles P—E—Au lie in the range 104.56–107.77 (av. 106.17)° for E = S and 100.57–106.91 (av. 103.86)° for E = Se; this might be taken to indicate a slightly lower involvement of the s valence orbital for Se than for S, but the ranges overlap considerably. The angles at gold are all close to linearity (173.96–177.70°) and show no clear trends.

Bond lengths and angles (2). Phosphane ligands: The central atoms of the alkyl groups are numbered C1, C2, C3, such that the t-butyl groups are assigned the lowest numbers. In phosphanes involving both types of alkyl groups, the carbon atom anti­periplanar to Au across the Au—E—P—C sequence generally belongs to an i-propyl group (the exceptions are 3b and 3a). The phosphane groups involve bulky substituents, especially for tri-t-butyl­phosphane; accordingly, most C—P—C bond angles at phospho­rus are greater than the ideal tetra­hedral value. One compensation for this lies in a narrow E—P—C angle to the carbon atom anti­periplanar to E, with values as low as 101° (but this effect is less pronounced for 2c, 6b and 6c). The steric crowding is also reflected, especially for the tri-t-butyl­phosphane derivatives 4a, 4b and 8b, in several short intra­molecular C—H⋯E and C—H⋯Au contacts (the latter with H⋯Au as short as 2.63 Å), which are listed for convenience in the tables of hydrogen bonds, even if this description of the contacts may be inappropriate.

Mol­ecular volumes: The change in mol­ecular volume (cell volume/Z) on changing the elements E or X (for the same phosphane) is calculated for six pairs S/Se as 2.6–5.7, av. 4.7 Å3 (the pair 4b/8b is the outlier, at 2.6 Å3); for six pairs Cl/Br as 9.4–13.8, av. 11.4 Å3; and for two pairs Br/I as 15.3 and 16.9, av. 16.1 Å3. The expected changes, using the room-temperature values of Hofmann (2002[Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.]) (S 25.5, Se 30.3, Cl 25.8, Br 32.7, I 46.2 Å3), which were fitted to unit-cell volumes of 182239 structures, would be 5.1 for S/Se, 6.9 for Cl/Br and 13.5 for Br/I. Except for Cl/Br, the expected and observed volume changes fit reasonably well, although any particular atomic volume must vary considerably with the chemical environment. Any effects of thermal contraction should be minimal; Hofmann (2002[Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.]) calculated an overall thermal expansion coefficient of ca 10 −4 K−1.

3. Supra­molecular features

The mol­ecular packing might in principle involve any of the following types of secondary inter­action: (1) `Weak' hydrogen bonds C—H⋯E or C—H⋯halogen; see e.g. Brammer (2003[Brammer, L. (2003). Dalton Trans. pp. 3145-3157.]) for the concept of hydrogen bonding to metal-bonded halogen atoms. (2) Weak hydrogen bonds C—H⋯Au, although such contacts may simply be attributable to the steric accessibility of linearly coordinated AuI centres; see Schmidbaur et al. (2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345-380.]) and Schmidbaur (2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]). The most probable hydrogen-bond donors would be the methine hydrogens of the isopropyl groups; du Mont's group was able to show the importance of such inter­actions in determining the mol­ecular form of some selenium dibromide adducts (Hrib et al., 2006[Hrib, C. G., Ruthe, F., Seppälä, E., Bätcher, M., Druckenbrodt, C., Wismach, C., Jones, P. G., du Mont, W.-W., Lippolis, V., Devillanova, F. A. & Bühl, M. (2006). Eur. J. Inorg. Chem. pp. 88-100.]). Hydrogen bonds are given in Tables 17[link]–32[link][link][link][link][link][link][link][link][link][link][link][link][link][link][link]; these include intra­molecular contacts (see above) and, for completeness, several borderline contacts that are not all discussed below. Symmetry operators, not given explicitly in the following discussion, may also be found in these Tables. (3) Halogen–halogen contacts (see e.g. Metrangelo, 2008[Metrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]) or other `soft–soft' contacts involving the atoms E or X. (4) Au⋯Au contacts, known as aurophilic contacts; these are a frequent feature of simple AuI derivatives and have been reviewed by Schmidbaur & Schier (2008[Schmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931-1951.], 2012[Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.]). (5) Au⋯E or Au⋯X contacts. In all packing diagrams presented here, hydrogen atoms not involved in hydrogen bonding are omitted for clarity, and the atom labels indicate the asymmetric unit. Since X-ray methods reveal short inter­molecular contacts, but not the corresponding energies, the following descriptions of mol­ecular packing in terms of particular secondary contacts must to some extent be subjective.

Table 17
Hydrogen-bond geometry (Å, °) for 1a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.83 3.615 (2) 138
C3—H3⋯Cl1i 1.00 2.77 3.6734 (19) 151
C12—H12B⋯Au1ii 0.98 3.02 3.8290 (19) 141
C1—H1⋯S1iii 1.00 2.99 3.9487 (19) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y+1, -z+1].

Table 18
Hydrogen-bond geometry (Å, °) for 3a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Au1 0.98 2.71 3.611 (3) 154
C12—H12C⋯S1 0.98 2.78 3.291 (4) 113
C21—H21B⋯S1 0.98 2.72 3.211 (5) 111

Table 19
Hydrogen-bond geometry (Å, °) for 4a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯Cl1i 0.98 2.80 3.765 (4) 170
C21—H21A⋯Cl1ii 0.98 2.86 3.575 (7) 130
C23—H23C⋯Au1 0.98 2.76 3.352 (4) 120
C33—H33C⋯Au1 0.98 2.73 3.599 (4) 148
C13—H13C⋯S1 0.98 2.74 3.197 (5) 109
C32—H32C⋯S1 0.98 2.90 3.344 (6) 109
Symmetry codes: (i) [x+1, y, z+1]; (ii) [x+1, y, z].

Table 20
Hydrogen-bond geometry (Å, °) for 5a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.91 3.700 (3) 138
C3—H3⋯Cl1i 1.00 2.81 3.715 (3) 151
C12—H12B⋯Au1ii 0.98 3.07 3.864 (3) 139
C1—H1⋯Se1iii 1.00 2.99 3.955 (3) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y+1, -z+1].

Table 21
Hydrogen-bond geometry (Å, °) for 6a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.73 3.630 (3) 154
C3—H3⋯Au1i 1.00 3.01 3.861 (3) 144
C3—H3⋯Cl1i 1.00 2.71 3.669 (3) 160
C2—H2⋯Se1ii 1.00 3.09 3.982 (3) 150
C13—H13A⋯Cl1iii 0.98 2.87 3.839 (3) 169
C22—H22A⋯Cl1iv 0.98 2.87 3.802 (3) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 22
Hydrogen-bond geometry (Å, °) for 7a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.80 3.712 (3) 155
C23—H23B⋯Au1 0.98 2.89 3.615 (3) 131
C32—H32B⋯Se1 0.98 2.62 3.228 (3) 120
C3—H3⋯Cl1i 1.00 2.68 3.599 (3) 154
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 23
Hydrogen-bond geometry (Å, °) for 1b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1i 1.00 2.87 3.756 (2) 149
C21—H21C⋯Br1ii 0.98 3.04 3.878 (3) 144
C32—H32C⋯Au1 0.98 2.83 3.611 (2) 137
C1—H1⋯S1iii 1.00 2.96 3.911 (2) 159
C12—H12B⋯S1 0.98 2.95 3.495 (2) 116
C21—H21B⋯S1 0.98 2.95 3.512 (3) 117
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1].

Table 24
Hydrogen-bond geometry (Å, °) for 3b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.75 3.633 (2) 151
C23—H23A⋯S1 0.98 2.99 3.515 (2) 114
C21—H21C⋯S1 0.98 2.70 3.216 (2) 114
C11—H11C⋯Br1i 0.98 3.12 4.019 (2) 154
C12—H12B⋯S1ii 0.98 2.94 3.603 (2) 126
C12—H12C⋯Br1i 0.98 3.12 4.039 (2) 158
C31—H31C⋯Br1iii 0.98 3.12 4.073 (2) 165
C23—H23C⋯Br1iv 0.98 3.15 4.072 (2) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 25
Hydrogen-bond geometry (Å, °) for 4b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Br1i 0.98 2.98 3.882 (8) 153
C32—H32A⋯Br1ii 0.98 3.00 3.936 (8) 161
C33—H33B⋯Au1 0.98 2.82 3.523 (8) 129
C23—H23B⋯Au1 0.98 2.66 3.541 (7) 150
C12—H12C⋯S1 0.98 2.63 3.169 (9) 115
C33—H33B⋯S1 0.98 2.94 3.487 (8) 116
C22—H22C⋯S1 0.98 2.91 3.377 (9) 110
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].

Table 26
Hydrogen-bond geometry (Å, °) for 5b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1i 1.00 2.90 3.792 (2) 149
C1—H1⋯Se1ii 1.00 2.97 3.9210 (19) 159
C12—H12B⋯Se1 0.98 2.99 3.568 (2) 119
C21—H21B⋯Se1 0.98 3.05 3.633 (2) 120
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, -z+1].

Table 27
Hydrogen-bond geometry (Å, °) for 6b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Au1 0.98 2.84 3.719 (3) 149
C32—H32B⋯Au1 0.98 2.72 3.623 (3) 154
C43—H43A⋯Au2 0.98 2.87 3.744 (3) 148
C62—H62B⋯Au2 0.98 2.85 3.766 (3) 155
C5—H5⋯Br2i 1.00 2.79 3.702 (3) 152
C6—H6⋯Br1 1.00 2.96 3.906 (3) 157
C3—H3⋯Br2ii 1.00 3.08 3.850 (3) 134
C42—H42A⋯Br1iii 0.98 3.02 3.959 (3) 161
C2—H2⋯Au1iv 1.00 2.98 3.929 (3) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, y, z]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 28
Hydrogen-bond geometry (Å, °) for 7b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.74 3.650 (6) 155
C23—H23B⋯Au1 0.98 2.90 3.592 (5) 128
C32—H32B⋯Se1 0.98 2.64 3.233 (6) 120
C3—H3⋯Br1i 1.00 2.76 3.677 (4) 153
C13—H13A⋯Br1ii 0.98 2.97 3.928 (5) 167
C21—H21B⋯Br1iii 0.98 3.07 3.697 (6) 123
C22—H22C⋯Br1iv 0.98 3.10 3.921 (5) 142
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z].

Table 29
Hydrogen-bond geometry (Å, °) for 8b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Br1i 0.98 3.03 3.946 (3) 156
C32—H32A⋯Br1ii 0.98 2.98 3.905 (3) 159
C33—H33B⋯Au1 0.98 2.87 3.573 (3) 130
C23—H23B⋯Au1 0.98 2.68 3.582 (3) 153
C12—H12C⋯Se1 0.98 2.71 3.251 (3) 115
C33—H33B⋯Se1 0.98 3.00 3.574 (3) 119
C22—H22C⋯Se1 0.98 2.97 3.462 (3) 112
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].

Table 30
Hydrogen-bond geometry (Å, °) for 2c[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.85 3.724 (3) 149
C32—H32B⋯Au1 0.98 2.63 3.539 (3) 154
C32—H32C⋯Au1i 0.98 2.87 3.709 (3) 144
C3—H3⋯I1i 1.00 3.18 4.056 (2) 147
C2—H2⋯I1ii 1.00 3.22 3.973 (2) 133
C2—H2⋯Au1ii 1.00 3.24 4.237 (3) 179
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 31
Hydrogen-bond geometry (Å, °) for 6c[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Au1 0.98 2.84 3.718 (3) 149
C32—H32B⋯Au1 0.98 2.70 3.606 (3) 154
C43—H43A⋯Au2 0.98 2.86 3.727 (3) 148
C62—H62B⋯Au2 0.98 2.90 3.783 (3) 151
C5—H5⋯I2i 1.00 2.94 3.842 (3) 151
C6—H6⋯I1 1.00 3.03 3.948 (3) 153
C3—H3⋯I2ii 1.00 3.14 3.949 (3) 139
C42—H42A⋯I1iii 0.98 3.15 4.090 (3) 162
C2—H2⋯Au1iv 1.00 3.06 4.002 (3) 157
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, y, z]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 32
Hydrogen-bond geometry (Å, °) for 7c[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23C⋯Au1 0.98 2.83 3.664 (12) 144
C32—H32B⋯Se1 0.98 2.88 3.483 (13) 121
C11—H11C⋯I1ii 0.98 3.22 4.088 (13) 148
C21—H21C⋯I1iii 0.98 3.21 4.008 (12) 140
C22—H22C⋯I1iii 0.98 3.30 4.183 (12) 152
C31—H31A⋯I1iv 0.98 3.25 4.166 (11) 156
C31—H31A⋯Au1iv 0.98 3.19 3.642 (12) 110
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 4}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 4}}]; (iv) [-y+1, -x, -z+{\script{1\over 2}}].

The packing of compound 1a (and by extension the four structures that are isotypic to 1a) does indeed involve both methine hydrogen atoms, which form hydrogen bonds H3⋯Cl1 via the 21 screw axis and H1⋯S1 (rather long, but acceptably linear) via an inversion centre. These combine to form a layer structure parallel to (10[\overline{1}]) (Fig. 17[link]).

[Figure 17]
Figure 17
Packing diagram of compound 1a, viewed perpendicular to (10[\overline{1}]). Hydrogen bonds are indicated by thin (H⋯S) or thick (H⋯Cl) dashed lines.

The packing of compounds 3a and 3b is almost featureless; the shortest H⋯Cl/Br distances are 3.03/3.12 Å, respectively, and the shortest H⋯S contacts, over inversion centres, have very narrow C—H⋯S angles. The disorder of 3a would make any dimensions involving the disordered t-butyl hydrogens unreliable. For the sake of completeness, we present a view of the double-layer structure of 3b parallel to the bc plane (Fig. 18[link]); there are two such double layers per cell.

[Figure 18]
Figure 18
Packing diagram of compound 3b: a double layer in the region x ≃ 0.25, viewed parallel to the a axis. The H⋯S and the three shortest H⋯Br contacts are indicated by dashed lines.

Two short Cmeth­yl—H⋯Cl inter­actions based on translations combine in compound 4a to form a layer structure parallel to the ac plane (Fig. 19[link]). Similarly, the two shortest Cmeth­yl—H⋯Br contacts in compound 4b (and the isotypic 8b) combine via the c glide and an inversion centre to form a layer structure parallel to the bc plane (Fig. 20[link]). All these structures lack methine hydrogen atoms.

[Figure 19]
Figure 19
Packing diagram of compound 4a, viewed parallel to the b axis in the region y ≃ 0.4. Hydrogen bonds are indicated by thick dashed lines.
[Figure 20]
Figure 20
Packing diagram of compound 4b, viewed parallel to the a axis. Hydrogen bonds are indicated by thick dashed lines.

In the packing of compound 7a, the methine hydrogen atom is involved in a short C—H⋯Cl hydrogen bond, forming chains of mol­ecules via the 21 screw axis. The chains are linked to form a layer structure (Fig. 21[link]) parallel to the bc plane by association of Au—Se moieties across an inversion centre, forming a planar Au2Se2 quadrilateral with Au⋯Se = 3.4748 (3) Å, Au—Se⋯Au′ = 106.51 (1) and Se⋯Au′—Se′ = 73.49 (1)° (where the primes indicate the inversion operator −x, 1 − y, −z). For the isotypic 7b, the corresponding dimensions are 3.4305 (5) Å, 103.28 (1) and 76.72 (1)°.

[Figure 21]
Figure 21
Packing diagram of compound 7a, viewed parallel to the a axis in the region x ≃ 0. Dashed lines indicate Au⋯Se contacts (thick) and hydrogen bonds (thin).

The packing of compound 6b (and the isotypic 6c) can conveniently be analysed for each of the two independent mol­ecules separately, because they occupy different regions of the cell, with mol­ecule 1 (based on Au1) at x ≃ 0 and mol­ecule 2 (based on Au2) at x ≃ 0.5. Mol­ecule 1 forms chains parallel to the b axis (Fig. 22[link]) in which the mol­ecules are linked via the 21 screw axis by the Cmethine⋯gold contact C2—H2⋯Au1, with H⋯Au 2.98 Å. Such contacts are not infrequent for gold(I) derivatives; whether they represent genuine hydrogen bonds (to the most electronegative metal), or simply reflect the sterically exposed nature of the E—Au—X moiety, is a moot point. The mol­ecules 2 associate via a short Se2⋯Se2 contact [3.5565 (5) Å, operator 1 − x, 1 − y, 1 − z; the corresponding Au2⋯Se2 distance of 3.9480 (3) Å is much longer] and a short H2⋯Br5 contact to form a layer structure parallel to the bc plane (Fig. 23[link]). The layers are connected by the contacts H6⋯Br1, H42A⋯Br1 and H3⋯Br2. In 6c, the Se2⋯Se2 contact distance is 3.6157 (6) Å, but the associated Au2⋯Se2 contact of 3.7695 (3) Å is much shorter than in 6b.

[Figure 22]
Figure 22
Packing diagram of compound 6b, mol­ecule 1 only, viewed parallel to the a axis in the region x ≃ 0. Dashed lines indicate the H⋯Au contacts.
[Figure 23]
Figure 23
Packing diagram of compound 6b, mol­ecule 2 only, viewed parallel to the a axis in the region x ≃ 0.5. Dashed lines indicate Se⋯Se contacts (thick) or H⋯Br contacts (thin).

The packing of compound 2c can be described in terms of its two shortest C—H⋯I contacts, which as expected involve methine hydrogens. These combine via the 21 screw axis and an inversion centre to form a corrugated ribbon structure parallel to the b axis (Fig. 24[link]). The significance of C—H⋯I contacts may however not be great. The hydrogen atom H2 also forms a short (and more linear) contact to the gold atom of the same AuI moiety, so that the inter­action might be described as the three-centre type C—H⋯(Au, I).

[Figure 24]
Figure 24
Packing diagram of compound 2c, viewed parallel to the a axis. Dashed lines indicate H⋯I contacts. The H⋯Au contacts (see text) are not shown explicitly.

The major packing feature of 7c is the formation of twofold-symmetric dimers (Fig. 25[link]) via a short aurophilic contact Au1⋯Au1(−y, −x, [{1\over 2}] − z) = 3.0914 (6) Å; 7c is the only compound in this paper to feature such contacts. The linear groupings Se—Au—I of the two mol­ecules are mutually rotated, with torsion angles I1—Au1⋯Au1′—I1′ = 117.89 (4)°, Se1—Au1⋯Au1′—Se1′ = 123.62 (6)° and I1—Au1⋯Au1′—Se1′ = −59.25 (3)° (primes represent the symmetry-equivalent atoms). Apart from this, the packing is almost featureless, consisting of layers (at z ≃ 0, 0.25, 0.5 and 0.75) with only translation symmetry and few short contacts except for two very borderline Au⋯H (Fig. 26[link]). The shortest H⋯I contacts are 3.20 Å.

[Figure 25]
Figure 25
The dimer of compound 7c; the thick dashed line indicates the aurophilic contact.
[Figure 26]
Figure 26
Packing diagram of the 7c dimers, viewed parallel to the c axis in the region z ≃ 0.25. The dashed lines indicate borderline H⋯Au contacts.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for all phosphane sulfides of the type C3P=S, with coordination numbers of 4 and 1 respectively for the phospho­rus and sulfur atoms, gave 1259 hits, with 1318 P—S bond lengths, average 1.954 (23) Å. An analogous search for C3P=Se gave 398 hits, 603 P—Se bond lengths, av. 2.109 (14) Å. Separate searches for triaryl- and tri­alkyl­phosphane chalcogenides showed no significant differences in the average bond length.

Similar searches for phosphane chalogenide complexes with transition metals (with coordination number 2 at the atom E), gave for E = S 559 hits, 909 P—S bond lengths, average 2.009 (22) Å and for E = Se 114 hits, 184 P—Se bond lengths, average 2.158 (23) Å. The differences between average coordinated and uncoordinated P—E bond lengths are thus 0.055 Å for E = S and 0.049 Å for E = Se.

As mentioned above, there are few structures containing the moiety `C3PEAuBr'. A database search found the following three structures (excluding our own work, which was cited above): Cy3PSeAuBr (Cy = cyclo­hexyl; refcode QUTNUO; Hussain & Isab, 2000[Hussain, M. S. & Isab, A. A. (2000). J. Chem. Crystallogr. 30, 731-735.]); Ph3PSAuBr (ADOLUA; Hussain et al., 2001[Hussain, M. S., Isab, A. A., Saeed, A. & Al-Arfaj, A. R. (2001). Z. Kristallogr. New Cryst. Struct. 216, 629-630.]); and Ph3PSeAuBr (MIVXOE; Hussain & Isab, 2001[Hussain, M. S. & Isab, A. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 479-480.]).

5. Synthesis and crystallization

For most of the compounds, the syntheses can be found in the PhD thesis of D. Upmann (Upmann, 2015[Upmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe. Dissertation, Technical University of Braunschweig, Germany (ISBN: 978-3-8439-1972-2).]). The following do not appear there:

Compound 4a. Solutions of AuCl(tht) (200 mg, 0.624 mmol) and tBu3PS (146.2 mg; 0.624 mmol), each in 5 mL of di­chloro­methane, were combined and stirred for 30 min at room temperature. The solution quickly turned orange. The solvent was removed under vacuum and the solid residue washed with n-pentane and dried under vacuum. Recrystallization from di­chloro­methane/n-pentane gave a pale-yellow crystalline solid. Yield: 205.1 mg (0.439 mmol, 70%). 31P-NMR (81 MHz, CDCl3, 300 K) δ (ppm): 86.5 (s). Elemental analysis (%): calc.: C 30.88, H 5.83, S 6.87; found: C 29.36, H 5.49, S 7.34. Single crystals were obtained by liquid diffusion of n-pentane into a solution of 4a in di­chloro­methane.

Compound 1b. Solutions of AuBr(tht) (250 mg; 0.695 mmol) and iPr3PS (131.7 mg; 0.685 mmol), each in 5 mL of di­chloro­methane were combined and stirred for 10 min at RT; the solution was pale yellow. The solvent was removed under vacuum and the solid residue washed with n-pentane and dried under vacuum, giving 1b as a colourless solid without further purification. Yield: 269.6 mg (0.575 mmol, 84%). 31P-NMR (81 MHz, CDCl3, 300 K) δ (ppm): 76.1 (s). Elemental analysis (%): calc.: C 23.04, H 4.51, S 6.83; found: C 23.18, H 4.57, S 7.31. Single crystals were obtained by liquid diffusion of n-pentane into a solution of 1b in di­chloro­methane.

Compound 4b. Solutions of AuBr(tht) (400 mg; 1.096 mmol) and tBu3PS (256.8 mg; 1.096 mmol), each in 5 mL of di­chloro­methane, were combined and stirred for 10 min at RT. The solution quickly turned red, which was surprising in view of the expected colourless product. The product was precipitated by the addition of n-pentane. The remaining red solution was pipetted off and discarded, and the solid dried under vacuum. Yield: 368.1 mg (0.720 mmol; 66% assuming the correct product). Despite several attempts using slightly varied conditions, the product always consisted of a mixture of colourless and red crystals. The amount of the latter was small, but prevented the recording of satisfactory elemental analyses. 31P-NMR (81 MHz, CDCl3, 300 K) δ (ppm): 86.8 (s) for the major product and 134.6 (s) (with a relative integrated intensity of ca 1–2%) for the red product. The crystal structure of the latter (to be reported elsewhere) showed it to be the gold(III) di-t-butyl­dithio­phosphinate complex Au(tBu2PS2)Br2.

Compound 5b. Solutions of AuBr(tht) (250 mg; 0.695 mmol) and iPr3PSe (163.8 mg; 0.685 mmol), each in 5 mL of di­chloro­methane, were combined and stirred for 10 min at RT. The pale-yellow solution was then evaporated to dryness under vacuum to give the product as a beige-coloured solid without further purification. Yield 289.8 mg (0.562 mmol, 82%). 31P-NMR (81 MHz, CDCl3, 300 K) δ (ppm): 71.3 (s, 1JP–Se = 535 Hz). Elemental analysis (%): calc.: C 20.95, H 4.10; found: C 21.15, H 4.06. Single crystals were obtained by liquid diffusion of n-pentane into a solution of 5b in di­chloro­methane.

Compound 8b. Solutions of AuBr(tht) (400 mg; 1.096 mmol) and tBu3PSe (308.2 mg; 1.096 mmol), each in 5 mL of di­chloro­methane, were combined and stirred for 10 min at r.t. The product was precipitated by the addition of n-pentane. The solution was pipetted off and discarded and the remaining solid dried under vacuum to obtain the product as a beige-coloured solid. Yield 237.0 mg (0.425 mmol, 39%). 31P-NMR (81 MHz, CDCl3, 300 K) δ (ppm): 86.5 (s, 1JP–Se = 552 Hz). Elemental analysis (%): calc.: C 25.82, H 4.88; found: C 25.79, H 4.87. Single crystals were obtained by liquid diffusion of n-pentane into a solution of 8b in deuterated chloro­form. Alternative syntheses with lower concentrations but longer reaction times gave better yields, but with unsatisfactory elemental analyses.

6. Refinement

Details of the measurements and refinements are given in Table 33[link]. Structures were refined anisotropically on F2. Methine hydrogen atoms were included at calculated positions and refined using a riding model with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C). Methyl groups were refined, using the command "AFIX 137", as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å, H—C—H = 109.5° and Uiso(H) = 1.5Ueq(C). This command determines the initial hydrogen positions (before refinement) by analysis of maxima in the residual electron density at suitable C—H distances, and these peaks may not be entirely reliable in the presence of a very heavy atom (although in general the refinement seemed to proceed satisfactorily), so that any postulated hydrogen bonds involving methyl hydrogen atoms should be inter­preted with caution.

Table 33
Experimental details

  1a 3a 4a 5a
Crystal data
Chemical formula [AuCl(C9H21PS)] [AuCl(C11H25PS)] [AuCl(C12H27PS)] [AuCl(C9H21PSe)]
Mr 424.70 452.76 466.78 471.60
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c Monoclinic, P21 Monoclinic, P21/n
Temperature (K) 100 100 100 100
a, b, c (Å) 8.05892 (17), 11.1342 (2), 15.0596 (4) 26.953 (3), 8.1226 (4), 18.690 (2) 8.45319 (17), 10.9040 (3), 8.7166 (2) 8.0938 (2), 11.3088 (4), 14.9798 (6)
α, β, γ (°) 90, 97.004 (2), 90 90, 132.03 (2), 90 90, 93.583 (2), 90 90, 96.403 (2), 90
V3) 1341.21 (5) 3039.0 (9) 801.87 (3) 1362.56 (8)
Z 4 8 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 11.40 10.07 9.55 13.74
Crystal size (mm) 0.4 × 0.2 × 0.2 0.3 × 0.2 × 0.02 0.12 × 0.04 × 0.04 0.25 × 0.2 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.389, 1.000 0.204, 1.000 0.707, 1.000 0.672, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 39799, 4047, 3612 40680, 4529, 4056 22238, 4617, 4382 39551, 4086, 3254
Rint 0.029 0.040 0.036 0.052
(sin θ/λ)max−1) 0.722 0.722 0.720 0.723
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.032, 1.08 0.021, 0.043, 1.05 0.019, 0.033, 1.04 0.025, 0.038, 1.06
No. of reflections 4047 4529 4617 4086
No. of parameters 125 170 156 125
No. of restraints 0 78 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.33, −0.75 1.36, −1.24 0.62, −0.75 0.63, −0.80
Extinction method SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 None SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient 0.00169 (5) 0.00088 (16) 0.00043 (3)
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.493 (8)
  6a 7a 1b 3b
Crystal data
Chemical formula [AuCl(C10H23PSe)] [AuCl(C11H25PSe)] [AuBr(C9H21PS)] [AuBr(C11H25PS)]
Mr 485.63 499.66 469.16 497.22
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 100 100 100 101
a, b, c (Å) 8.2215 (2), 11.3519 (3), 15.2400 (4) 7.64505 (10), 14.6437 (2), 13.7211 (2) 8.1898 (2), 11.1421 (3), 15.3064 (4) 27.3157 (10), 8.16931 (13), 18.8362 (7)
α, β, γ (°) 90, 92.389 (4), 90 90, 90.4954 (12), 90 90, 97.394 (2), 90 90, 132.187 (7), 90
V3) 1421.11 (6) 1536.05 (4) 1385.11 (6) 3114.5 (3)
Z 4 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 13.18 12.20 13.73 12.22
Crystal size (mm) 0.35 × 0.2 × 0.2 0.3 × 0.2 × 0.08 0.13 × 0.08 × 0.06 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffration Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.368, 1.000 0.178, 1.000 0.568, 1.000 0.300, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36891, 4214, 3424 64129, 4654, 4270 51956, 4194, 3563 72942, 4712, 4383
Rint 0.038 0.047 0.040 0.034
(sin θ/λ)max−1) 0.719 0.722 0.722 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.044, 1.06 0.020, 0.042, 1.06 0.019, 0.032, 1.06 0.015, 0.032, 1.08
No. of reflections 4214 4654 4194 4712
No. of parameters 135 145 125 145
No. of restraints 0 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.74, −1.12 2.04, −1.36 0.88, −0.79 1.22, −0.87
Extinction method SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient 0.00065 (4) 0.00130 (6) 0.00097 (4) 0.000358 (12)
  4b 5b 6b 7b
Crystal data
Chemical formula [AuBr(C12H27PS)] [AuBr(C9H21PSe)] [AuBr(C10H23PSe)] [AuBr(C11H25PSe)]
Mr 511.24 516.06 530.09 544.11
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 8.3107 (6), 13.4820 (5), 14.7591 (9) 8.22500 (14), 11.31793 (17), 15.2065 (3) 11.5037 (2), 15.2440 (2), 16.8366 (2) 7.66804 (8), 14.77026 (16), 13.94963 (15)
α, β, γ (°) 90, 90.424 (6), 90 90, 96.6895 (16), 90 90, 90.053 (2), 90 90, 90.4697 (10), 90
V3) 1653.64 (17) 1405.93 (4) 2952.52 (7) 1579.87 (3)
Z 4 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 11.51 15.97 15.21 14.22
Crystal size (mm) 0.15 × 0.04 × 0.04 0.16 × 0.15 × 0.15 0.3 × 0.15 × 0.15 0.4 × 0.35 × 0.25
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.445, 1.000 0.529, 1.000 0.427, 1.000 0.070, 0.125
No. of measured, independent and observed [I > 2σ(I)] reflections 44298, 4445, 3863 63480, 4276, 3812 117465, 8952, 8049 86680, 4774, 4380
Rint 0.079 0.029 0.044 0.072
(sin θ/λ)max−1) 0.685 0.721 0.722 0.723
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.04 0.015, 0.029, 1.07 0.022, 0.040, 1.09 0.033, 0.083, 1.07
No. of reflections 4445 4276 8952 4774
No. of parameters 155 125 267 145
No. of restraints 0 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.68, −1.32 1.09, −0.94 1.84, −1.22 3.43, −2.67
Extinction method None SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 None SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient 0.00114 (3) 0.00170 (12)
  8b 2c 6c 7c
Crystal data
Chemical formula [AuBr(C12H27PSe)] [AuI(C10H23PS)] [AuI(C10H23PSe)] [AuI(C11H25PSe)]
Mr 558.14 530.18 577.08 591.10
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c Tetragonal, P43212
Temperature (K) 100 100 100 100
a, b, c (Å) 8.29705 (16), 13.6959 (3), 14.6444 (3) 8.6010 (2), 15.0435 (3), 11.7218 (2) 11.70073 (16), 15.4167 (2), 17.0480 (2) 10.7755 (2), 10.7755 (2), 28.3769 (5)
α, β, γ (°) 90, 90.0892 (18), 90 90, 91.202 (2), 90 90, 89.6296 (12), 90 90, 90, 90
V3) 1664.11 (5) 1516.34 (5) 3075.16 (7) 3294.86 (14)
Z 4 4 8 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 13.50 11.95 14.02 13.09
Crystal size (mm) 0.2 × 0.1 × 0.1 0.25 × 0.2 × 0.15 0.2 × 0.15 × 0.05 0.35 × 0.2 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.398, 1.000 0.435, 1.000 0.218, 1.000 0.092, 0.244
No. of measured, independent and observed [I > 2σ(I)] reflections 48617, 5005, 4493 54148, 4580, 4213 124405, 9346, 8443 140787, 4829, 4768
Rint 0.041 0.044 0.042 0.044
(sin θ/λ)max−1) 0.722 0.722 0.721 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.043, 1.11 0.018, 0.033, 1.12 0.022, 0.040, 1.06 0.032, 0.078, 1.42
No. of reflections 5005 4580 9346 4829
No. of parameters 154 135 267 145
No. of restraints 0 0 0 66
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −0.91 0.92, −0.69 2.96, −1.28 1.40, −1.51
Extinction method None SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 None None
Extinction coefficient 0.00148 (4)
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.086 (12)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Special features: The t-butyl groups of 3a are rotationally disordered, whereby the smaller components have occupation factors 0.147 (8) at C1 and 0.178 (9) at C2. Appropriate restraints (SAME, SADI, SIMU) were applied to improve refinement stability, but the dimensions of disordered groups (and especially of the smaller components) should be inter­preted with caution. Associated with the disorder, the U values for 3a are generally higher than for the other structures, so that the ellipsoids in Fig. 2[link] are drawn with 30% probability levels. Compounds 4a and 7c crystallize by chance in Sohncke space groups; the structures were refined as inversion twins, with the relative volumes of the smaller components refining to 0.493 (8) and 0.086 (9) respectively. Compound 4b was refined as a pseudo-merohedric twin (with twin matrix 1 0 0 / 0 −1 0 / 0 0 −1); the relative volume of the smaller component refined to 0.2150 (11). Compound 6c was refined in a non-standard monoclinic setting, with β slightly less than 90°, to facilitate comparison with the isotypic 6b, which has β slightly greater than 90°; coordinates for both structures are then closely similar. The data for compound 7c are only of moderate quality; eight badly-fitting reflections were omitted, and the displacement factors of the carbon atoms were restrained to be approximately isotropic (command `ISOR $C 0.01').

The structures of 2a and 2b appear to be isotypic to each other and to 3a and 3b, but were severely disordered, by rotation or exchange (or both) of the alkyl groups. They are not further discussed here.

Supporting information


Computing details top

Chlorido(tripropylphosphane sulfide-κS)gold (1a) top
Crystal data top
[AuCl(C9H21PS)]F(000) = 808
Mr = 424.70Dx = 2.103 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.05892 (17) ÅCell parameters from 14045 reflections
b = 11.1342 (2) Åθ = 2.3–30.8°
c = 15.0596 (4) ŵ = 11.40 mm1
β = 97.004 (2)°T = 100 K
V = 1341.21 (5) Å3Block, colourless
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4047 independent reflections
Radiation source: fine-focus sealed tube3612 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.029
ω scanθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1111
Tmin = 0.389, Tmax = 1.000k = 1515
39799 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.032 w = 1/[σ2(Fo2) + (0.0111P)2 + 0.883P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
4047 reflectionsΔρmax = 1.33 e Å3
125 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00169 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.50329 (2)0.50334 (2)0.30141 (2)0.01432 (3)
Cl10.30499 (6)0.47296 (4)0.18188 (3)0.02028 (9)
P10.78099 (5)0.68964 (4)0.42190 (3)0.01098 (9)
S10.69932 (6)0.51693 (4)0.42283 (4)0.01897 (10)
C10.9200 (2)0.70619 (16)0.52682 (12)0.0147 (3)
H11.0005940.6376990.5286700.018*
C20.6047 (2)0.79477 (16)0.40785 (13)0.0154 (4)
H20.5428160.7778820.3474850.018*
C30.9086 (2)0.71884 (17)0.33196 (12)0.0153 (3)
H30.9556300.8016120.3414150.018*
C111.0268 (2)0.82109 (18)0.53105 (13)0.0194 (4)
H11A0.9559510.8909460.5386440.029*
H11B1.0774900.8294990.4754300.029*
H11C1.1151230.8159690.5817750.029*
C120.8306 (3)0.69331 (19)0.61062 (13)0.0223 (4)
H12A0.9129870.6759160.6624270.033*
H12B0.7495640.6274770.6020080.033*
H12C0.7723110.7683110.6209490.033*
C210.4790 (3)0.7753 (2)0.47522 (16)0.0287 (5)
H21A0.5272020.8041150.5342740.043*
H21B0.4534460.6894930.4787040.043*
H21C0.3761020.8198150.4557340.043*
C220.6600 (3)0.92622 (17)0.40615 (16)0.0264 (5)
H22A0.5629070.9770300.3869650.040*
H22B0.7430400.9353820.3642150.040*
H22C0.7093770.9503860.4661810.040*
C311.0567 (3)0.6320 (2)0.33596 (15)0.0286 (5)
H31A1.0151700.5501010.3242600.043*
H31B1.1210470.6356060.3954630.043*
H31C1.1285510.6547760.2907110.043*
C320.8074 (3)0.71657 (18)0.23950 (13)0.0217 (4)
H32A0.8821170.7297660.1937390.033*
H32B0.7226770.7801190.2356330.033*
H32C0.7523690.6383740.2297440.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01461 (4)0.01095 (4)0.01748 (5)0.00199 (2)0.00225 (3)0.00205 (2)
Cl10.0205 (2)0.0221 (2)0.0179 (2)0.00076 (18)0.00087 (17)0.00512 (18)
P10.0115 (2)0.0092 (2)0.0119 (2)0.00053 (15)0.00008 (16)0.00056 (16)
S10.0207 (2)0.0102 (2)0.0243 (3)0.00212 (16)0.00425 (19)0.00323 (17)
C10.0154 (8)0.0151 (8)0.0130 (9)0.0007 (6)0.0006 (7)0.0023 (7)
C20.0125 (8)0.0132 (8)0.0202 (10)0.0022 (6)0.0012 (7)0.0030 (7)
C30.0164 (9)0.0172 (9)0.0125 (9)0.0015 (7)0.0030 (7)0.0014 (7)
C110.0193 (9)0.0250 (10)0.0129 (9)0.0077 (8)0.0016 (7)0.0005 (8)
C120.0275 (10)0.0261 (10)0.0128 (9)0.0061 (8)0.0007 (8)0.0034 (8)
C210.0218 (10)0.0305 (12)0.0362 (13)0.0098 (8)0.0134 (9)0.0098 (10)
C220.0209 (10)0.0130 (9)0.0453 (14)0.0032 (7)0.0036 (9)0.0021 (9)
C310.0246 (11)0.0361 (12)0.0269 (12)0.0100 (9)0.0098 (9)0.0014 (9)
C320.0291 (10)0.0229 (10)0.0130 (9)0.0063 (8)0.0017 (8)0.0014 (7)
Geometric parameters (Å, º) top
Au1—S12.2711 (5)C11—H11C0.9800
Au1—Cl12.2820 (5)C12—H12A0.9800
P1—C31.8269 (18)C12—H12B0.9800
P1—C11.8312 (19)C12—H12C0.9800
P1—C21.8330 (18)C21—H21A0.9800
P1—S12.0332 (6)C21—H21B0.9800
C1—C121.534 (3)C21—H21C0.9800
C1—C111.539 (3)C22—H22A0.9800
C1—H11.0000C22—H22B0.9800
C2—C221.531 (3)C22—H22C0.9800
C2—C211.534 (3)C31—H31A0.9800
C2—H21.0000C31—H31B0.9800
C3—C321.526 (3)C31—H31C0.9800
C3—C311.531 (3)C32—H32A0.9800
C3—H31.0000C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800
S1—Au1—Cl1175.217 (16)H11B—C11—H11C109.5
C3—P1—C1106.34 (8)C1—C12—H12A109.5
C3—P1—C2107.41 (9)C1—C12—H12B109.5
C1—P1—C2114.79 (9)H12A—C12—H12B109.5
C3—P1—S1112.67 (6)C1—C12—H12C109.5
C1—P1—S1104.69 (6)H12A—C12—H12C109.5
C2—P1—S1110.96 (6)H12B—C12—H12C109.5
P1—S1—Au1104.56 (2)C2—C21—H21A109.5
C12—C1—C11111.10 (16)C2—C21—H21B109.5
C12—C1—P1113.67 (13)H21A—C21—H21B109.5
C11—C1—P1113.55 (13)C2—C21—H21C109.5
C12—C1—H1105.9H21A—C21—H21C109.5
C11—C1—H1105.9H21B—C21—H21C109.5
P1—C1—H1105.9C2—C22—H22A109.5
C22—C2—C21111.30 (17)C2—C22—H22B109.5
C22—C2—P1112.91 (13)H22A—C22—H22B109.5
C21—C2—P1113.48 (13)C2—C22—H22C109.5
C22—C2—H2106.2H22A—C22—H22C109.5
C21—C2—H2106.2H22B—C22—H22C109.5
P1—C2—H2106.2C3—C31—H31A109.5
C32—C3—C31110.65 (16)C3—C31—H31B109.5
C32—C3—P1112.77 (13)H31A—C31—H31B109.5
C31—C3—P1111.41 (14)C3—C31—H31C109.5
C32—C3—H3107.2H31A—C31—H31C109.5
C31—C3—H3107.2H31B—C31—H31C109.5
P1—C3—H3107.2C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
C3—P1—S1—Au171.54 (7)S1—P1—C2—C22179.64 (13)
C1—P1—S1—Au1173.32 (6)C3—P1—C2—C21176.07 (15)
C2—P1—S1—Au148.95 (7)C1—P1—C2—C2165.92 (17)
C3—P1—C1—C12175.97 (14)S1—P1—C2—C2152.51 (16)
C2—P1—C1—C1257.35 (16)C1—P1—C3—C32176.22 (13)
S1—P1—C1—C1264.55 (14)C2—P1—C3—C3252.86 (15)
C3—P1—C1—C1147.67 (15)S1—P1—C3—C3269.64 (14)
C2—P1—C1—C1170.95 (15)C1—P1—C3—C3158.65 (16)
S1—P1—C1—C11167.15 (12)C2—P1—C3—C31177.99 (14)
C3—P1—C2—C2256.09 (17)S1—P1—C3—C3155.49 (15)
C1—P1—C2—C2261.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.833.615 (2)138
C3—H3···Cl1i1.002.773.6734 (19)151
C12—H12B···Au1ii0.983.023.8290 (19)141
C1—H1···S1iii1.002.993.9487 (19)162
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
[Bis(tert-butyl)(propan-2-yl)tripropylphosphane sulfide-κS]chloridogold (3a) top
Crystal data top
[AuCl(C11H25PS)]F(000) = 1744
Mr = 452.76Dx = 1.979 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.953 (3) ÅCell parameters from 12955 reflections
b = 8.1226 (4) Åθ = 2.2–30.8°
c = 18.690 (2) ŵ = 10.07 mm1
β = 132.03 (2)°T = 100 K
V = 3039.0 (9) Å3Plate, colourless
Z = 80.3 × 0.2 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4529 independent reflections
Radiation source: Enhance (Mo) X-ray Source4056 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.040
ω scanθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.11 (Rigaku OD, 2020)
h = 3737
Tmin = 0.204, Tmax = 1.000k = 1111
40680 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0157P)2 + 6.2005P]
where P = (Fo2 + 2Fc2)/3
4529 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 1.36 e Å3
78 restraintsΔρmin = 1.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.32887 (2)0.54466 (2)0.46742 (2)0.01987 (4)
Cl10.42308 (4)0.38796 (9)0.55516 (5)0.02908 (15)
P10.15826 (3)0.59393 (8)0.27777 (4)0.01738 (13)
S10.24118 (3)0.72088 (8)0.38824 (5)0.02335 (14)
C10.13908 (14)0.4284 (3)0.32684 (19)0.0225 (5)
C110.06755 (17)0.3691 (6)0.2540 (3)0.0290 (9)0.847 (9)
H11A0.0576850.3315800.1957780.043*0.847 (9)
H11B0.0373910.4595920.2375350.043*0.847 (9)
H11C0.0612350.2778120.2814940.043*0.847 (9)
C120.1559 (2)0.4909 (4)0.4184 (3)0.0310 (11)0.847 (9)
H12A0.1477930.4030180.4454480.047*0.847 (9)
H12B0.1275960.5858350.4024710.047*0.847 (9)
H12C0.2029390.5237410.4656800.047*0.847 (9)
C130.18629 (17)0.2802 (4)0.3579 (3)0.0249 (9)0.847 (9)
H13A0.2326220.3188360.4006940.037*0.847 (9)
H13B0.1744230.2291120.3006180.037*0.847 (9)
H13C0.1815680.1990690.3917950.037*0.847 (9)
C11'0.0776 (9)0.317 (3)0.2493 (13)0.024 (5)*0.153 (9)
H11D0.0394150.3867840.1997240.036*0.153 (9)
H11E0.0886810.2452700.2196420.036*0.153 (9)
H11F0.0661780.2498560.2800530.036*0.153 (9)
C12'0.1148 (12)0.507 (2)0.3779 (15)0.026 (5)*0.153 (9)
H12D0.0769910.5805710.3327910.040*0.153 (9)
H12E0.1009710.4181650.3970600.040*0.153 (9)
H12F0.1516130.5685540.4351140.040*0.153 (9)
C13'0.1969 (8)0.318 (2)0.4020 (14)0.027 (5)*0.153 (9)
H13D0.2360390.3848780.4514070.041*0.153 (9)
H13E0.1848030.2502500.4318800.041*0.153 (9)
H13F0.2073070.2456640.3714700.041*0.153 (9)
C20.09199 (13)0.7560 (3)0.20743 (18)0.0219 (5)
C210.1201 (2)0.9037 (5)0.1914 (4)0.0262 (9)0.811 (9)
H21A0.1362340.8649490.1603250.039*0.811 (9)
H21B0.1571750.9539190.2535780.039*0.811 (9)
H21C0.0847960.9855270.1500290.039*0.811 (9)
C220.03084 (18)0.6918 (4)0.1070 (2)0.0288 (11)0.811 (9)
H22A0.0051230.7734970.0745850.043*0.811 (9)
H22B0.0155550.5883830.1137600.043*0.811 (9)
H22C0.0431360.6726440.0688510.043*0.811 (9)
C230.0735 (2)0.8143 (6)0.2636 (3)0.0286 (9)0.811 (9)
H23A0.1138900.8505240.3277950.043*0.811 (9)
H23B0.0526450.7239360.2699930.043*0.811 (9)
H23C0.0421270.9064810.2296540.043*0.811 (9)
C21'0.1003 (11)0.877 (2)0.1553 (15)0.033 (5)*0.189 (9)
H21D0.1466450.9156150.1985960.049*0.189 (9)
H21E0.0890750.8238070.0989890.049*0.189 (9)
H21F0.0704330.9712350.1341660.049*0.189 (9)
C22'0.0170 (6)0.6928 (19)0.1380 (11)0.029 (4)*0.189 (9)
H22D0.0120430.6139320.1724620.044*0.189 (9)
H22E0.0129640.7864830.1168390.044*0.189 (9)
H22F0.0056780.6390560.0816620.044*0.189 (9)
C23'0.0917 (10)0.869 (2)0.2779 (12)0.028 (4)*0.189 (9)
H23D0.0864630.7995410.3152600.042*0.189 (9)
H23E0.1339650.9298410.3219320.042*0.189 (9)
H23F0.0545310.9476300.2394830.042*0.189 (9)
C30.17547 (14)0.4914 (3)0.20790 (19)0.0218 (5)
H30.2128160.4134080.2546240.026*
C310.20342 (17)0.6053 (4)0.1780 (2)0.0338 (7)
H31A0.2231390.5396690.1584510.051*
H31B0.2378020.6759570.2324170.051*
H31C0.1673930.6737460.1238900.051*
C320.12067 (18)0.3834 (5)0.1238 (2)0.0438 (9)
H32A0.0825180.4521540.0732950.066*
H32B0.1064550.3026600.1459400.066*
H32C0.1377210.3257900.0979680.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01700 (6)0.02399 (6)0.01309 (5)0.00739 (4)0.00780 (4)0.00284 (4)
Cl10.0202 (3)0.0347 (4)0.0228 (3)0.0020 (3)0.0104 (3)0.0018 (3)
P10.0175 (3)0.0158 (3)0.0137 (3)0.0042 (2)0.0084 (3)0.0043 (2)
S10.0222 (3)0.0192 (3)0.0166 (3)0.0073 (3)0.0080 (3)0.0064 (2)
C10.0246 (14)0.0203 (12)0.0219 (13)0.0064 (10)0.0153 (12)0.0048 (10)
C110.0204 (18)0.032 (2)0.033 (2)0.0073 (16)0.0172 (17)0.0025 (16)
C120.046 (3)0.0288 (18)0.0264 (19)0.0084 (17)0.027 (2)0.0056 (14)
C130.0250 (18)0.0203 (16)0.0268 (19)0.0054 (13)0.0163 (16)0.0015 (13)
C20.0194 (13)0.0182 (12)0.0188 (12)0.0004 (10)0.0090 (11)0.0028 (10)
C210.031 (2)0.0192 (17)0.028 (2)0.0062 (15)0.020 (2)0.0041 (16)
C220.0202 (18)0.0265 (18)0.0207 (17)0.0023 (14)0.0059 (15)0.0027 (13)
C230.025 (2)0.033 (2)0.033 (2)0.0042 (18)0.0214 (19)0.0011 (17)
C30.0253 (14)0.0204 (12)0.0170 (12)0.0008 (11)0.0130 (12)0.0040 (10)
C310.0386 (19)0.0336 (16)0.0463 (19)0.0041 (14)0.0354 (17)0.0082 (14)
C320.042 (2)0.061 (2)0.0363 (18)0.0250 (18)0.0292 (17)0.0301 (17)
Geometric parameters (Å, º) top
Au1—S12.2674 (8)C2—C221.539 (4)
Au1—Cl12.2762 (9)C2—C211.553 (4)
P1—C31.851 (3)C2—C22'1.587 (11)
P1—C21.873 (3)C2—C23'1.612 (12)
P1—C11.885 (3)C21—H21A0.9800
P1—S12.0351 (11)C21—H21B0.9800
C1—C13'1.510 (12)C21—H21C0.9800
C1—C111.512 (4)C22—H22A0.9800
C1—C121.534 (4)C22—H22B0.9800
C1—C131.555 (4)C22—H22C0.9800
C1—C11'1.564 (13)C23—H23A0.9800
C1—C12'1.606 (12)C23—H23B0.9800
C11—H11A0.9800C23—H23C0.9800
C11—H11B0.9800C21'—H21D0.9800
C11—H11C0.9800C21'—H21E0.9800
C12—H12A0.9800C21'—H21F0.9800
C12—H12B0.9800C22'—H22D0.9800
C12—H12C0.9800C22'—H22E0.9800
C13—H13A0.9800C22'—H22F0.9800
C13—H13B0.9800C23'—H23D0.9800
C13—H13C0.9800C23'—H23E0.9800
C11'—H11D0.9800C23'—H23F0.9800
C11'—H11E0.9800C3—C311.516 (4)
C11'—H11F0.9800C3—C321.521 (4)
C12'—H12D0.9800C3—H31.0000
C12'—H12E0.9800C31—H31A0.9800
C12'—H12F0.9800C31—H31B0.9800
C13'—H13D0.9800C31—H31C0.9800
C13'—H13E0.9800C32—H32A0.9800
C13'—H13F0.9800C32—H32B0.9800
C2—C21'1.504 (12)C32—H32C0.9800
C2—C231.508 (4)
S1—Au1—Cl1174.71 (2)C22'—C2—C23'98.8 (9)
C3—P1—C2113.13 (12)C21'—C2—P1115.5 (9)
C3—P1—C1107.61 (12)C23—C2—P1109.6 (2)
C2—P1—C1113.55 (13)C22—C2—P1110.93 (19)
C3—P1—S1108.67 (10)C21—C2—P1108.6 (2)
C2—P1—S1103.85 (9)C22'—C2—P1116.1 (6)
C1—P1—S1109.91 (9)C23'—C2—P1110.6 (7)
P1—S1—Au1107.40 (4)C2—C21—H21A109.5
C11—C1—C12110.8 (3)C2—C21—H21B109.5
C11—C1—C13108.7 (3)H21A—C21—H21B109.5
C12—C1—C13106.5 (3)C2—C21—H21C109.5
C13'—C1—C11'108.1 (11)H21A—C21—H21C109.5
C13'—C1—C12'105.1 (10)H21B—C21—H21C109.5
C11'—C1—C12'100.3 (11)C2—C22—H22A109.5
C13'—C1—P1115.4 (8)C2—C22—H22B109.5
C11—C1—P1112.9 (2)H22A—C22—H22B109.5
C12—C1—P1109.55 (19)C2—C22—H22C109.5
C13—C1—P1108.1 (2)H22A—C22—H22C109.5
C11'—C1—P1115.3 (9)H22B—C22—H22C109.5
C12'—C1—P1111.2 (7)C2—C23—H23A109.5
C1—C11—H11A109.5C2—C23—H23B109.5
C1—C11—H11B109.5H23A—C23—H23B109.5
H11A—C11—H11B109.5C2—C23—H23C109.5
C1—C11—H11C109.5H23A—C23—H23C109.5
H11A—C11—H11C109.5H23B—C23—H23C109.5
H11B—C11—H11C109.5C2—C21'—H21D109.5
C1—C12—H12A109.5C2—C21'—H21E109.5
C1—C12—H12B109.5H21D—C21'—H21E109.5
H12A—C12—H12B109.5C2—C21'—H21F109.5
C1—C12—H12C109.5H21D—C21'—H21F109.5
H12A—C12—H12C109.5H21E—C21'—H21F109.5
H12B—C12—H12C109.5C2—C22'—H22D109.5
C1—C13—H13A109.5C2—C22'—H22E109.5
C1—C13—H13B109.5H22D—C22'—H22E109.5
H13A—C13—H13B109.5C2—C22'—H22F109.5
C1—C13—H13C109.5H22D—C22'—H22F109.5
H13A—C13—H13C109.5H22E—C22'—H22F109.5
H13B—C13—H13C109.5C2—C23'—H23D109.5
C1—C11'—H11D109.5C2—C23'—H23E109.5
C1—C11'—H11E109.5H23D—C23'—H23E109.5
H11D—C11'—H11E109.5C2—C23'—H23F109.5
C1—C11'—H11F109.5H23D—C23'—H23F109.5
H11D—C11'—H11F109.5H23E—C23'—H23F109.5
H11E—C11'—H11F109.5C31—C3—C32110.5 (2)
C1—C12'—H12D109.5C31—C3—P1113.99 (19)
C1—C12'—H12E109.5C32—C3—P1117.4 (2)
H12D—C12'—H12E109.5C31—C3—H3104.5
C1—C12'—H12F109.5C32—C3—H3104.5
H12D—C12'—H12F109.5P1—C3—H3104.5
H12E—C12'—H12F109.5C3—C31—H31A109.5
C1—C13'—H13D109.5C3—C31—H31B109.5
C1—C13'—H13E109.5H31A—C31—H31B109.5
H13D—C13'—H13E109.5C3—C31—H31C109.5
C1—C13'—H13F109.5H31A—C31—H31C109.5
H13D—C13'—H13F109.5H31B—C31—H31C109.5
H13E—C13'—H13F109.5C3—C32—H32A109.5
C23—C2—C22111.9 (3)C3—C32—H32B109.5
C23—C2—C21108.9 (3)H32A—C32—H32B109.5
C22—C2—C21106.8 (3)C3—C32—H32C109.5
C21'—C2—C22'110.0 (10)H32A—C32—H32C109.5
C21'—C2—C23'103.9 (10)H32B—C32—H32C109.5
C3—P1—S1—Au151.44 (10)S1—P1—C2—C21'68.9 (9)
C2—P1—S1—Au1172.13 (9)C3—P1—C2—C23171.3 (3)
C1—P1—S1—Au166.07 (10)C1—P1—C2—C2348.2 (3)
C3—P1—C1—C13'67.3 (10)S1—P1—C2—C2371.1 (3)
C2—P1—C1—C13'166.7 (10)C3—P1—C2—C2247.2 (3)
S1—P1—C1—C13'50.9 (10)C1—P1—C2—C2275.8 (3)
C3—P1—C1—C1181.8 (3)S1—P1—C2—C22164.9 (2)
C2—P1—C1—C1144.2 (3)C3—P1—C2—C2169.9 (3)
S1—P1—C1—C11160.0 (3)C1—P1—C2—C21167.1 (2)
C3—P1—C1—C12154.2 (3)S1—P1—C2—C2147.8 (2)
C2—P1—C1—C1279.8 (3)C3—P1—C2—C22'82.2 (8)
S1—P1—C1—C1236.0 (3)C1—P1—C2—C22'40.9 (8)
C3—P1—C1—C1338.5 (2)S1—P1—C2—C22'160.2 (8)
C2—P1—C1—C13164.5 (2)C3—P1—C2—C23'166.3 (8)
S1—P1—C1—C1379.7 (2)C1—P1—C2—C23'70.7 (8)
C3—P1—C1—C11'59.9 (10)S1—P1—C2—C23'48.7 (8)
C2—P1—C1—C11'66.1 (10)C2—P1—C3—C3163.8 (2)
S1—P1—C1—C11'178.1 (10)C1—P1—C3—C31170.0 (2)
C3—P1—C1—C12'173.1 (9)S1—P1—C3—C3151.0 (2)
C2—P1—C1—C12'47.1 (9)C2—P1—C3—C3267.6 (3)
S1—P1—C1—C12'68.7 (9)C1—P1—C3—C3258.6 (3)
C3—P1—C2—C21'48.7 (10)S1—P1—C3—C32177.6 (2)
C1—P1—C2—C21'171.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Au10.982.713.611 (3)154
C12—H12C···S10.982.783.291 (4)113
C21—H21B···S10.982.723.211 (5)111
Chlorido(tri-tert-butylphosphane sulfide-κS)gold (4a) top
Crystal data top
[AuCl(C12H27PS)]F(000) = 452
Mr = 466.78Dx = 1.933 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.45319 (17) ÅCell parameters from 9477 reflections
b = 10.9040 (3) Åθ = 2.3–30.7°
c = 8.7166 (2) ŵ = 9.55 mm1
β = 93.583 (2)°T = 100 K
V = 801.87 (3) Å3Block, colourless
Z = 20.12 × 0.04 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4617 independent reflections
Radiation source: Enhance (Mo) X-ray Source4382 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.036
ω scanθmax = 30.8°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1211
Tmin = 0.707, Tmax = 1.000k = 1515
22238 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.011P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.62 e Å3
4617 reflectionsΔρmin = 0.75 e Å3
156 parametersExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00088 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.493 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.31201 (2)0.56415 (4)0.17075 (2)0.01412 (5)
Cl10.16221 (10)0.5699 (4)0.05619 (10)0.0189 (2)
P10.68768 (10)0.5570 (4)0.34887 (10)0.0112 (3)
S10.45445 (11)0.5525 (4)0.39973 (11)0.0160 (4)
C10.7946 (4)0.5705 (10)0.5465 (4)0.0157 (8)
C20.7399 (9)0.4069 (6)0.2529 (8)0.0107 (13)
C30.7305 (9)0.6940 (6)0.2248 (8)0.0126 (14)
C110.9722 (5)0.5399 (5)0.5433 (5)0.0218 (14)
H11A1.0255480.5583480.6436760.033*
H11B1.0193360.5891480.4638930.033*
H11C0.9848370.4525820.5201740.033*
C120.7763 (6)0.7022 (5)0.6099 (5)0.0217 (10)
H12A0.8284160.7605000.5439360.033*
H12B0.8254120.7067760.7145820.033*
H12C0.6634820.7225550.6112070.033*
C130.7204 (6)0.4856 (5)0.6633 (5)0.0225 (10)
H13A0.7843270.4879150.7610220.034*
H13B0.7171210.4014490.6236210.034*
H13C0.6124180.5131840.6797290.034*
C210.9051 (8)0.4118 (6)0.1875 (6)0.0159 (13)
H21A0.9059820.4753380.1079540.024*
H21B0.9293630.3321330.1425870.024*
H21C0.9849850.4312010.2702600.024*
C220.7334 (5)0.3014 (4)0.3689 (5)0.0187 (9)
H22A0.7396560.2228650.3149820.028*
H22B0.6337120.3055860.4202960.028*
H22C0.8228230.3084150.4456200.028*
C230.6179 (5)0.3757 (4)0.1209 (5)0.0180 (9)
H23A0.6485240.2993470.0715200.027*
H23B0.6139310.4423530.0452670.027*
H23C0.5131700.3656670.1616100.027*
C310.9079 (9)0.7322 (6)0.2387 (6)0.0155 (13)
H31A0.9386750.7529110.3458080.023*
H31B0.9236580.8036890.1732560.023*
H31C0.9733330.6640160.2057250.023*
C320.6276 (5)0.8046 (4)0.2701 (5)0.0180 (9)
H32A0.6530750.8762030.2083300.027*
H32B0.6496340.8232820.3793340.027*
H32C0.5151990.7841270.2512790.027*
C330.6890 (5)0.6701 (4)0.0529 (5)0.0160 (9)
H33A0.7590570.6064720.0159720.024*
H33B0.7028140.7459150.0052240.024*
H33C0.5785750.6428590.0385110.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01100 (6)0.01472 (8)0.01674 (7)0.00010 (15)0.00179 (4)0.00056 (16)
Cl10.0194 (4)0.0200 (7)0.0169 (4)0.0010 (11)0.0007 (3)0.0003 (11)
P10.0120 (3)0.0113 (9)0.0102 (4)0.0018 (8)0.0004 (3)0.0003 (9)
S10.0140 (4)0.0195 (13)0.0149 (4)0.0012 (7)0.0038 (3)0.0002 (7)
C10.0178 (15)0.018 (2)0.0109 (15)0.004 (4)0.0020 (12)0.002 (4)
C20.016 (3)0.006 (3)0.009 (3)0.001 (2)0.000 (2)0.000 (2)
C30.014 (3)0.009 (3)0.015 (3)0.002 (2)0.004 (2)0.004 (2)
C110.0218 (19)0.027 (4)0.0156 (19)0.006 (2)0.0070 (15)0.0032 (19)
C120.026 (2)0.022 (3)0.017 (2)0.005 (2)0.001 (2)0.005 (2)
C130.028 (3)0.029 (3)0.010 (2)0.006 (2)0.0004 (19)0.000 (2)
C210.016 (2)0.013 (3)0.019 (3)0.002 (2)0.001 (3)0.002 (2)
C220.022 (2)0.013 (2)0.021 (2)0.0009 (18)0.0005 (18)0.0008 (18)
C230.019 (2)0.016 (2)0.019 (2)0.0015 (18)0.0001 (18)0.0061 (19)
C310.019 (2)0.014 (3)0.014 (3)0.001 (2)0.003 (2)0.000 (2)
C320.024 (2)0.012 (2)0.019 (2)0.0024 (18)0.0042 (18)0.0033 (18)
C330.017 (2)0.017 (2)0.015 (2)0.0016 (18)0.0007 (17)0.0029 (18)
Geometric parameters (Å, º) top
Au1—S12.2692 (10)C13—H13A0.9800
Au1—Cl12.2820 (8)C13—H13B0.9800
P1—C31.892 (8)C13—H13C0.9800
P1—C11.901 (4)C21—H21A0.9800
P1—C21.903 (8)C21—H21B0.9800
P1—S12.0482 (12)C21—H21C0.9800
C1—C131.539 (8)C22—H22A0.9800
C1—C111.540 (6)C22—H22B0.9800
C1—C121.549 (11)C22—H22C0.9800
C2—C231.535 (8)C23—H23A0.9800
C2—C221.535 (7)C23—H23B0.9800
C2—C211.542 (10)C23—H23C0.9800
C3—C331.540 (8)C31—H31A0.9800
C3—C321.553 (8)C31—H31B0.9800
C3—C311.554 (10)C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800C33—H33A0.9800
C12—H12B0.9800C33—H33B0.9800
C12—H12C0.9800C33—H33C0.9800
S1—Au1—Cl1177.70 (15)H13A—C13—H13B109.5
C3—P1—C1111.1 (4)C1—C13—H13C109.5
C3—P1—C2111.7 (2)H13A—C13—H13C109.5
C1—P1—C2110.8 (4)H13B—C13—H13C109.5
C3—P1—S1111.3 (3)C2—C21—H21A109.5
C1—P1—S1102.45 (12)C2—C21—H21B109.5
C2—P1—S1109.1 (3)H21A—C21—H21B109.5
P1—S1—Au1105.86 (5)C2—C21—H21C109.5
C13—C1—C11108.6 (6)H21A—C21—H21C109.5
C13—C1—C12105.5 (4)H21B—C21—H21C109.5
C11—C1—C12109.1 (5)C2—C22—H22A109.5
C13—C1—P1111.2 (4)C2—C22—H22B109.5
C11—C1—P1112.1 (3)H22A—C22—H22B109.5
C12—C1—P1110.0 (5)C2—C22—H22C109.5
C23—C2—C22106.2 (5)H22A—C22—H22C109.5
C23—C2—C21108.2 (5)H22B—C22—H22C109.5
C22—C2—C21109.9 (5)C2—C23—H23A109.5
C23—C2—P1110.9 (4)C2—C23—H23B109.5
C22—C2—P1109.6 (4)H23A—C23—H23B109.5
C21—C2—P1111.9 (4)C2—C23—H23C109.5
C33—C3—C32106.3 (5)H23A—C23—H23C109.5
C33—C3—C31106.4 (5)H23B—C23—H23C109.5
C32—C3—C31109.0 (5)C3—C31—H31A109.5
C33—C3—P1112.5 (4)C3—C31—H31B109.5
C32—C3—P1109.7 (5)H31A—C31—H31B109.5
C31—C3—P1112.7 (5)C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5C3—C33—H33A109.5
C1—C12—H12C109.5C3—C33—H33B109.5
H12A—C12—H12C109.5H33A—C33—H33B109.5
H12B—C12—H12C109.5C3—C33—H33C109.5
C1—C13—H13A109.5H33A—C33—H33C109.5
C1—C13—H13B109.5H33B—C33—H33C109.5
C3—P1—S1—Au153.2 (3)C3—P1—C2—C22169.3 (5)
C1—P1—S1—Au1172.0 (4)C1—P1—C2—C2244.9 (5)
C2—P1—S1—Au170.5 (3)S1—P1—C2—C2267.2 (5)
C3—P1—C1—C13161.2 (5)C3—P1—C2—C2147.1 (4)
C2—P1—C1—C1374.0 (5)C1—P1—C2—C2177.3 (5)
S1—P1—C1—C1342.3 (6)S1—P1—C2—C21170.6 (3)
C3—P1—C1—C1176.9 (7)C1—P1—C3—C33163.0 (4)
C2—P1—C1—C1147.8 (7)C2—P1—C3—C3338.7 (4)
S1—P1—C1—C11164.1 (6)S1—P1—C3—C3383.5 (5)
C3—P1—C1—C1244.6 (4)C1—P1—C3—C3278.8 (5)
C2—P1—C1—C12169.4 (4)C2—P1—C3—C32156.9 (5)
S1—P1—C1—C1274.3 (4)S1—P1—C3—C3234.6 (5)
C3—P1—C2—C2373.8 (4)C1—P1—C3—C3142.8 (5)
C1—P1—C2—C23161.8 (4)C2—P1—C3—C3181.5 (5)
S1—P1—C2—C2349.7 (5)S1—P1—C3—C31156.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cl1i0.982.803.765 (4)170
C21—H21A···Cl1ii0.982.863.575 (7)130
C23—H23C···Au10.982.763.352 (4)120
C33—H33C···Au10.982.733.599 (4)148
C13—H13C···S10.982.743.197 (5)109
C32—H32C···S10.982.903.344 (6)109
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Chlorido(tripropylphosphane selenide-κSe)gold (5a) top
Crystal data top
[AuCl(C9H21PSe)]F(000) = 880
Mr = 471.60Dx = 2.299 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0938 (2) ÅCell parameters from 8059 reflections
b = 11.3088 (4) Åθ = 2.3–30.9°
c = 14.9798 (6) ŵ = 13.74 mm1
β = 96.403 (2)°T = 100 K
V = 1362.56 (8) Å3Block, colourless
Z = 40.25 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4086 independent reflections
Radiation source: Enhance (Mo) X-ray Source3254 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.052
ω scanθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1111
Tmin = 0.672, Tmax = 1.000k = 1516
39551 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0076P)2 + 0.9306P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4086 reflectionsΔρmax = 0.63 e Å3
125 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00043 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.49486 (2)0.50427 (2)0.29627 (2)0.01590 (4)
Cl10.29534 (9)0.47658 (7)0.17758 (5)0.02236 (16)
P10.78642 (9)0.69476 (7)0.42140 (5)0.01221 (15)
Se10.69997 (4)0.51162 (3)0.42250 (2)0.02040 (7)
C10.9237 (4)0.7102 (3)0.5263 (2)0.0168 (6)
H11.0054000.6438760.5264600.020*
C20.6099 (4)0.7980 (3)0.4075 (2)0.0168 (6)
H20.5462030.7789220.3481570.020*
C30.9145 (4)0.7232 (3)0.33009 (19)0.0159 (6)
H30.9577300.8058190.3378450.019*
C111.0279 (4)0.8238 (3)0.5314 (2)0.0208 (7)
H11A0.9565080.8917230.5406450.031*
H11B1.0777550.8341620.4752410.031*
H11C1.1161200.8182000.5816860.031*
C120.8366 (4)0.6931 (3)0.6111 (2)0.0241 (7)
H12A0.9193620.6741280.6619240.036*
H12B0.7562670.6282470.6016530.036*
H12C0.7783680.7660850.6240610.036*
C210.4891 (4)0.7819 (3)0.4778 (2)0.0295 (9)
H21A0.5400670.8115630.5359170.044*
H21B0.4628970.6977620.4831500.044*
H21C0.3866620.8260200.4595220.044*
C220.6638 (4)0.9269 (3)0.4020 (3)0.0269 (8)
H22A0.5666250.9761250.3828800.040*
H22B0.7450060.9342210.3584330.040*
H22C0.7143920.9531090.4611810.040*
C311.0648 (4)0.6410 (3)0.3356 (2)0.0279 (8)
H31A1.0268580.5588530.3285300.042*
H31B1.1307300.6504270.3941450.042*
H31C1.1332840.6607860.2877610.042*
C320.8140 (4)0.7165 (3)0.2381 (2)0.0231 (7)
H32A0.8874290.7303350.1913860.035*
H32B0.7265460.7767740.2338640.035*
H32C0.7633670.6379500.2298620.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01504 (6)0.01335 (6)0.01956 (6)0.00148 (5)0.00305 (4)0.00202 (5)
Cl10.0215 (4)0.0252 (4)0.0204 (4)0.0003 (3)0.0018 (3)0.0055 (3)
P10.0113 (3)0.0118 (4)0.0132 (4)0.0002 (3)0.0000 (3)0.0009 (3)
Se10.02040 (15)0.01185 (15)0.02735 (17)0.00217 (12)0.00436 (12)0.00413 (13)
C10.0161 (15)0.0186 (16)0.0152 (16)0.0004 (12)0.0007 (12)0.0005 (12)
C20.0152 (15)0.0148 (15)0.0206 (17)0.0018 (11)0.0024 (13)0.0027 (12)
C30.0179 (15)0.0148 (15)0.0156 (16)0.0008 (12)0.0038 (13)0.0013 (12)
C110.0206 (16)0.0254 (18)0.0164 (16)0.0086 (13)0.0016 (13)0.0016 (13)
C120.0286 (18)0.0267 (19)0.0168 (17)0.0053 (14)0.0013 (14)0.0033 (14)
C210.0197 (17)0.032 (2)0.039 (2)0.0112 (15)0.0124 (17)0.0095 (16)
C220.0197 (17)0.0135 (16)0.048 (2)0.0047 (13)0.0049 (16)0.0055 (15)
C310.0232 (18)0.033 (2)0.029 (2)0.0083 (15)0.0085 (15)0.0009 (15)
C320.0303 (19)0.0234 (18)0.0155 (17)0.0048 (14)0.0023 (14)0.0004 (13)
Geometric parameters (Å, º) top
Au1—Cl12.2862 (8)C11—H11C0.9800
Au1—Se12.3745 (3)C12—H12A0.9800
P1—C11.829 (3)C12—H12B0.9800
P1—C31.834 (3)C12—H12C0.9800
P1—C21.839 (3)C21—H21A0.9800
P1—Se12.1868 (8)C21—H21B0.9800
C1—C121.533 (4)C21—H21C0.9800
C1—C111.534 (4)C22—H22A0.9800
C1—H11.0000C22—H22B0.9800
C2—C221.526 (4)C22—H22C0.9800
C2—C211.526 (4)C31—H31A0.9800
C2—H21.0000C31—H31B0.9800
C3—C321.522 (4)C31—H31C0.9800
C3—C311.526 (4)C32—H32A0.9800
C3—H31.0000C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800
Cl1—Au1—Se1174.03 (2)H11B—C11—H11C109.5
C1—P1—C3106.51 (14)C1—C12—H12A109.5
C1—P1—C2115.25 (14)C1—C12—H12B109.5
C3—P1—C2107.49 (14)H12A—C12—H12B109.5
C1—P1—Se1104.38 (10)C1—C12—H12C109.5
C3—P1—Se1112.30 (10)H12A—C12—H12C109.5
C2—P1—Se1110.93 (10)H12B—C12—H12C109.5
P1—Se1—Au1102.89 (2)C2—C21—H21A109.5
C12—C1—C11111.4 (3)C2—C21—H21B109.5
C12—C1—P1114.1 (2)H21A—C21—H21B109.5
C11—C1—P1113.7 (2)C2—C21—H21C109.5
C12—C1—H1105.6H21A—C21—H21C109.5
C11—C1—H1105.6H21B—C21—H21C109.5
P1—C1—H1105.6C2—C22—H22A109.5
C22—C2—C21111.1 (3)C2—C22—H22B109.5
C22—C2—P1112.9 (2)H22A—C22—H22B109.5
C21—C2—P1113.3 (2)C2—C22—H22C109.5
C22—C2—H2106.3H22A—C22—H22C109.5
C21—C2—H2106.3H22B—C22—H22C109.5
P1—C2—H2106.3C3—C31—H31A109.5
C32—C3—C31111.2 (3)C3—C31—H31B109.5
C32—C3—P1112.1 (2)H31A—C31—H31B109.5
C31—C3—P1111.5 (2)C3—C31—H31C109.5
C32—C3—H3107.3H31A—C31—H31C109.5
C31—C3—H3107.3H31B—C31—H31C109.5
P1—C3—H3107.3C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
C1—P1—Se1—Au1172.39 (10)Se1—P1—C2—C22177.4 (2)
C3—P1—Se1—Au172.63 (11)C1—P1—C2—C2163.1 (3)
C2—P1—Se1—Au147.67 (11)C3—P1—C2—C21178.3 (2)
C3—P1—C1—C12178.2 (2)Se1—P1—C2—C2155.2 (3)
C2—P1—C1—C1259.1 (3)C1—P1—C3—C32178.4 (2)
Se1—P1—C1—C1262.8 (2)C2—P1—C3—C3254.4 (3)
C3—P1—C1—C1149.0 (3)Se1—P1—C3—C3267.9 (2)
C2—P1—C1—C1170.1 (3)C1—P1—C3—C3156.2 (3)
Se1—P1—C1—C11167.9 (2)C2—P1—C3—C31179.8 (2)
C1—P1—C2—C2264.3 (3)Se1—P1—C3—C3157.5 (2)
C3—P1—C2—C2254.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.913.700 (3)138
C3—H3···Cl1i1.002.813.715 (3)151
C12—H12B···Au1ii0.983.073.864 (3)139
C1—H1···Se1iii1.002.993.955 (3)162
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
[(tert-Butyl)bis(propan-2-yl)phosphane selenide-κSe]chloridogold (6a) top
Crystal data top
[AuCl(C10H23PSe)]F(000) = 912
Mr = 485.63Dx = 2.270 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2215 (2) ÅCell parameters from 9950 reflections
b = 11.3519 (3) Åθ = 2.2–30.7°
c = 15.2400 (4) ŵ = 13.18 mm1
β = 92.389 (4)°T = 100 K
V = 1421.11 (6) Å3Prism, colourless
Z = 40.35 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4214 independent reflections
Radiation source: Enhance (Mo) X-ray Source3424 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.038
ω scanθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.11 (Rigaku OD, 2020)
h = 1111
Tmin = 0.368, Tmax = 1.000k = 1616
36891 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0131P)2 + 2.1498P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4214 reflectionsΔρmax = 1.74 e Å3
135 parametersΔρmin = 1.12 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00065 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.51576 (2)0.50144 (2)0.29309 (2)0.01255 (4)
Cl10.33329 (9)0.48370 (6)0.17636 (5)0.01807 (14)
P10.79619 (8)0.68697 (6)0.41430 (5)0.00986 (13)
Se10.69999 (4)0.50672 (2)0.41681 (2)0.01570 (6)
C10.6364 (3)0.8032 (2)0.40600 (19)0.0133 (5)
C20.9170 (3)0.6949 (3)0.51899 (18)0.0148 (6)
H20.9854170.6221010.5205410.018*
C30.9432 (3)0.7041 (3)0.32700 (19)0.0146 (6)
H30.9754570.7889260.3248710.018*
C110.7097 (4)0.9209 (3)0.4378 (2)0.0178 (6)
H11A0.8063810.9387430.4046950.027*
H11B0.7403830.9154020.5004690.027*
H11C0.6290810.9837760.4284400.027*
C120.4927 (3)0.7699 (3)0.4627 (2)0.0205 (6)
H12A0.4106200.8325380.4591610.031*
H12B0.5317600.7600030.5238880.031*
H12C0.4441810.6959750.4411480.031*
C130.5721 (4)0.8178 (3)0.31115 (19)0.0172 (6)
H13A0.4756870.8687050.3096680.026*
H13B0.5427590.7405080.2866540.026*
H13C0.6564890.8536410.2762640.026*
C210.8138 (4)0.6870 (3)0.60037 (19)0.0204 (6)
H21A0.8848000.6716730.6523590.031*
H21B0.7348330.6227820.5927130.031*
H21C0.7558550.7615140.6080100.031*
C221.0385 (3)0.7976 (3)0.5278 (2)0.0180 (6)
H22A0.9838960.8667900.5513720.027*
H22B1.0793130.8165710.4699560.027*
H22C1.1297730.7749990.5676730.027*
C311.0967 (4)0.6316 (3)0.3482 (2)0.0277 (8)
H31A1.0683680.5478090.3500140.042*
H31B1.1443080.6557640.4054360.042*
H31C1.1756350.6448330.3028180.042*
C320.8785 (4)0.6686 (3)0.23553 (19)0.0201 (6)
H32A0.9651100.6770200.1937070.030*
H32B0.7867620.7195730.2176490.030*
H32C0.8419840.5864520.2364510.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01313 (6)0.01068 (6)0.01384 (6)0.00204 (4)0.00049 (4)0.00166 (4)
Cl10.0184 (3)0.0190 (3)0.0165 (3)0.0009 (3)0.0025 (3)0.0028 (3)
P10.0106 (3)0.0094 (3)0.0096 (3)0.0000 (3)0.0005 (2)0.0002 (3)
Se10.01910 (14)0.00999 (13)0.01761 (15)0.00313 (11)0.00410 (11)0.00246 (11)
C10.0131 (13)0.0122 (13)0.0145 (14)0.0013 (10)0.0006 (11)0.0002 (11)
C20.0153 (13)0.0175 (14)0.0112 (14)0.0008 (11)0.0054 (11)0.0015 (11)
C30.0143 (13)0.0144 (13)0.0154 (15)0.0028 (11)0.0043 (11)0.0029 (11)
C110.0212 (15)0.0131 (14)0.0192 (16)0.0011 (11)0.0001 (12)0.0006 (11)
C120.0146 (14)0.0235 (16)0.0235 (17)0.0026 (12)0.0029 (12)0.0008 (13)
C130.0170 (14)0.0162 (14)0.0180 (15)0.0048 (11)0.0053 (12)0.0002 (11)
C210.0267 (16)0.0220 (15)0.0121 (15)0.0032 (13)0.0033 (12)0.0025 (12)
C220.0148 (14)0.0204 (15)0.0185 (15)0.0020 (12)0.0043 (11)0.0031 (12)
C310.0192 (16)0.039 (2)0.0256 (19)0.0066 (14)0.0053 (14)0.0058 (15)
C320.0236 (15)0.0244 (16)0.0126 (15)0.0009 (13)0.0045 (12)0.0013 (12)
Geometric parameters (Å, º) top
Au1—Cl12.2877 (7)C12—H12A0.9800
Au1—Se12.3696 (3)C12—H12B0.9800
P1—C31.845 (3)C12—H12C0.9800
P1—C21.846 (3)C13—H13A0.9800
P1—C11.863 (3)C13—H13B0.9800
P1—Se12.1947 (7)C13—H13C0.9800
C1—C131.527 (4)C21—H21A0.9800
C1—C111.536 (4)C21—H21B0.9800
C1—C121.540 (4)C21—H21C0.9800
C2—C211.534 (4)C22—H22A0.9800
C2—C221.538 (4)C22—H22B0.9800
C2—H21.0000C22—H22C0.9800
C3—C321.525 (4)C31—H31A0.9800
C3—C311.529 (4)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
Cl1—Au1—Se1176.13 (2)H12A—C12—H12B109.5
C3—P1—C2105.85 (13)C1—C12—H12C109.5
C3—P1—C1110.98 (13)H12A—C12—H12C109.5
C2—P1—C1112.11 (13)H12B—C12—H12C109.5
C3—P1—Se1110.99 (10)C1—C13—H13A109.5
C2—P1—Se1102.23 (10)C1—C13—H13B109.5
C1—P1—Se1114.09 (9)H13A—C13—H13B109.5
P1—Se1—Au1103.21 (2)C1—C13—H13C109.5
C13—C1—C11108.7 (2)H13A—C13—H13C109.5
C13—C1—C12108.3 (2)H13B—C13—H13C109.5
C11—C1—C12109.7 (2)C2—C21—H21A109.5
C13—C1—P1110.88 (19)C2—C21—H21B109.5
C11—C1—P1109.18 (19)H21A—C21—H21B109.5
C12—C1—P1110.1 (2)C2—C21—H21C109.5
C21—C2—C22110.7 (2)H21A—C21—H21C109.5
C21—C2—P1113.6 (2)H21B—C21—H21C109.5
C22—C2—P1115.9 (2)C2—C22—H22A109.5
C21—C2—H2105.2C2—C22—H22B109.5
C22—C2—H2105.2H22A—C22—H22B109.5
P1—C2—H2105.2C2—C22—H22C109.5
C32—C3—C31107.7 (2)H22A—C22—H22C109.5
C32—C3—P1114.7 (2)H22B—C22—H22C109.5
C31—C3—P1110.5 (2)C3—C31—H31A109.5
C32—C3—H3107.9C3—C31—H31B109.5
C31—C3—H3107.9H31A—C31—H31B109.5
P1—C3—H3107.9C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
C3—P1—Se1—Au174.90 (10)C3—P1—C2—C21177.8 (2)
C2—P1—Se1—Au1172.61 (10)C1—P1—C2—C2156.7 (2)
C1—P1—Se1—Au151.36 (10)Se1—P1—C2—C2165.9 (2)
C3—P1—C1—C1345.6 (2)C3—P1—C2—C2248.0 (2)
C2—P1—C1—C13163.8 (2)C1—P1—C2—C2273.1 (2)
Se1—P1—C1—C1380.6 (2)Se1—P1—C2—C22164.26 (19)
C3—P1—C1—C1174.1 (2)C2—P1—C3—C32164.8 (2)
C2—P1—C1—C1144.1 (2)C1—P1—C3—C3273.4 (2)
Se1—P1—C1—C11159.67 (17)Se1—P1—C3—C3254.6 (2)
C3—P1—C1—C12165.5 (2)C2—P1—C3—C3142.8 (2)
C2—P1—C1—C1276.4 (2)C1—P1—C3—C31164.6 (2)
Se1—P1—C1—C1239.2 (2)Se1—P1—C3—C3167.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.733.630 (3)154
C3—H3···Au1i1.003.013.861 (3)144
C3—H3···Cl1i1.002.713.669 (3)160
C2—H2···Se1ii1.003.093.982 (3)150
C13—H13A···Cl1iii0.982.873.839 (3)169
C22—H22A···Cl1iv0.982.873.802 (3)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
[Bis(tert-butyl)(propan-2-yl)phosphane selenide-κSe]chloridogold (7a) top
Crystal data top
[AuCl(C11H25PSe)]F(000) = 944
Mr = 499.66Dx = 2.161 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.64505 (10) ÅCell parameters from 24794 reflections
b = 14.6437 (2) Åθ = 2.7–30.8°
c = 13.7211 (2) ŵ = 12.20 mm1
β = 90.4954 (12)°T = 100 K
V = 1536.05 (4) Å3Plate, colourless
Z = 40.3 × 0.2 × 0.08 mm
Data collection top
Oxford Diffration Xcalibur, Eos
diffractometer
4654 independent reflections
Radiation source: Enhance (Mo) X-ray Source4270 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.047
ω scanθmax = 30.9°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.11 (Rigaku OD, 2020)
h = 1010
Tmin = 0.178, Tmax = 1.000k = 2020
64129 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0167P)2 + 2.0383P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4654 reflectionsΔρmax = 2.04 e Å3
145 parametersΔρmin = 1.36 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00130 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.12703 (2)0.62141 (2)0.08973 (2)0.01679 (4)
Cl10.15337 (9)0.77264 (4)0.05004 (5)0.02287 (13)
P10.26432 (7)0.42241 (4)0.23500 (4)0.01046 (11)
Se10.08348 (3)0.46295 (2)0.11688 (2)0.01764 (6)
C10.2385 (3)0.49681 (16)0.34533 (18)0.0157 (5)
C20.4922 (3)0.41782 (17)0.18606 (19)0.0178 (5)
C30.1824 (3)0.30857 (16)0.27179 (19)0.0187 (5)
H30.0869910.3214120.3192880.022*
C110.3050 (4)0.4493 (2)0.4383 (2)0.0256 (6)
H11A0.4267910.4304790.4294880.038*
H11B0.2327420.3955010.4513760.038*
H11C0.2977880.4917550.4933700.038*
C120.0418 (3)0.51502 (17)0.3594 (2)0.0189 (5)
H12A0.0252360.5531890.4172190.028*
H12B0.0195420.4568520.3679110.028*
H12C0.0052780.5465950.3018990.028*
C130.3335 (4)0.58828 (18)0.3330 (2)0.0234 (6)
H13A0.3020370.6292880.3865320.035*
H13B0.2989230.6159910.2707630.035*
H13C0.4601310.5779970.3339240.035*
C210.6285 (4)0.3994 (3)0.2661 (3)0.0361 (8)
H21A0.7445690.3939170.2368780.054*
H21B0.5995530.3424030.2998400.054*
H21C0.6287450.4499410.3128970.054*
C220.4953 (4)0.34047 (19)0.1099 (2)0.0325 (7)
H22A0.4021330.3504850.0615890.049*
H22B0.4769180.2817160.1424510.049*
H22C0.6088300.3400360.0773010.049*
C230.5391 (3)0.50705 (18)0.1344 (2)0.0201 (5)
H23A0.5409910.5571030.1818040.030*
H23B0.4516200.5199950.0836210.030*
H23C0.6546490.5011730.1046970.030*
C310.3123 (4)0.24696 (19)0.3274 (3)0.0340 (7)
H31A0.2490800.1958000.3567110.051*
H31B0.3706930.2824600.3787040.051*
H31C0.3998120.2234070.2820550.051*
C320.0945 (5)0.2535 (2)0.1900 (2)0.0347 (7)
H32A0.1833850.2324320.1441790.052*
H32B0.0095130.2921980.1555970.052*
H32C0.0342430.2006840.2179620.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01726 (5)0.02062 (6)0.01251 (5)0.00498 (3)0.00192 (3)0.00362 (3)
Cl10.0321 (3)0.0194 (3)0.0172 (3)0.0056 (2)0.0043 (2)0.0006 (2)
P10.0110 (3)0.0095 (2)0.0109 (3)0.00019 (19)0.0013 (2)0.0001 (2)
Se10.01578 (11)0.02326 (13)0.01381 (12)0.00408 (9)0.00414 (8)0.00283 (9)
C10.0191 (11)0.0168 (11)0.0114 (11)0.0044 (9)0.0015 (8)0.0032 (9)
C20.0113 (10)0.0212 (12)0.0211 (13)0.0034 (9)0.0050 (9)0.0050 (10)
C30.0246 (12)0.0106 (10)0.0211 (13)0.0015 (9)0.0074 (10)0.0020 (9)
C110.0254 (14)0.0366 (16)0.0147 (13)0.0062 (11)0.0017 (10)0.0033 (11)
C120.0218 (12)0.0153 (11)0.0198 (13)0.0019 (9)0.0083 (9)0.0028 (9)
C130.0316 (14)0.0198 (12)0.0190 (13)0.0115 (10)0.0046 (11)0.0060 (10)
C210.0127 (12)0.059 (2)0.0367 (18)0.0078 (13)0.0029 (11)0.0220 (16)
C220.0385 (17)0.0195 (13)0.0401 (19)0.0061 (12)0.0241 (14)0.0013 (12)
C230.0166 (11)0.0216 (12)0.0223 (13)0.0033 (9)0.0069 (9)0.0015 (10)
C310.0384 (17)0.0185 (13)0.045 (2)0.0126 (12)0.0176 (14)0.0166 (13)
C320.053 (2)0.0179 (13)0.0329 (17)0.0162 (13)0.0126 (14)0.0085 (12)
Geometric parameters (Å, º) top
Au1—Cl12.2898 (6)C12—H12C0.9800
Au1—Se12.3740 (3)C13—H13A0.9800
P1—C31.853 (2)C13—H13B0.9800
P1—C21.874 (2)C13—H13C0.9800
P1—C11.877 (2)C21—H21A0.9800
P1—Se12.2027 (6)C21—H21B0.9800
C1—C131.534 (3)C21—H21C0.9800
C1—C111.535 (4)C22—H22A0.9800
C1—C121.540 (3)C22—H22B0.9800
C2—C231.531 (3)C22—H22C0.9800
C2—C211.532 (4)C23—H23A0.9800
C2—C221.541 (4)C23—H23B0.9800
C3—C321.532 (4)C23—H23C0.9800
C3—C311.539 (4)C31—H31A0.9800
C3—H31.0000C31—H31B0.9800
C11—H11A0.9800C31—H31C0.9800
C11—H11B0.9800C32—H32A0.9800
C11—H11C0.9800C32—H32B0.9800
C12—H12A0.9800C32—H32C0.9800
C12—H12B0.9800
Cl1—Au1—Se1174.465 (18)H12B—C12—H12C109.5
C3—P1—C2112.52 (11)C1—C13—H13A109.5
C3—P1—C1105.33 (11)C1—C13—H13B109.5
C2—P1—C1114.50 (12)H13A—C13—H13B109.5
C3—P1—Se1103.38 (9)C1—C13—H13C109.5
C2—P1—Se1109.00 (8)H13A—C13—H13C109.5
C1—P1—Se1111.54 (8)H13B—C13—H13C109.5
P1—Se1—Au1106.911 (18)C2—C21—H21A109.5
C13—C1—C11109.5 (2)C2—C21—H21B109.5
C13—C1—C12109.0 (2)H21A—C21—H21B109.5
C11—C1—C12106.9 (2)C2—C21—H21C109.5
C13—C1—P1111.40 (17)H21A—C21—H21C109.5
C11—C1—P1111.77 (18)H21B—C21—H21C109.5
C12—C1—P1108.12 (16)C2—C22—H22A109.5
C23—C2—C21108.8 (2)C2—C22—H22B109.5
C23—C2—C22108.0 (2)H22A—C22—H22B109.5
C21—C2—C22110.0 (2)C2—C22—H22C109.5
C23—C2—P1110.95 (16)H22A—C22—H22C109.5
C21—C2—P1112.23 (19)H22B—C22—H22C109.5
C22—C2—P1106.81 (18)C2—C23—H23A109.5
C32—C3—C31109.4 (2)C2—C23—H23B109.5
C32—C3—P1114.91 (19)H23A—C23—H23B109.5
C31—C3—P1116.4 (2)C2—C23—H23C109.5
C32—C3—H3105.0H23A—C23—H23C109.5
C31—C3—H3105.0H23B—C23—H23C109.5
P1—C3—H3105.0C3—C31—H31A109.5
C1—C11—H11A109.5C3—C31—H31B109.5
C1—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C3—C31—H31C109.5
C1—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5C3—C32—H32A109.5
C1—C12—H12A109.5C3—C32—H32B109.5
C1—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12B109.5C3—C32—H32C109.5
C1—C12—H12C109.5H32A—C32—H32C109.5
H12A—C12—H12C109.5H32B—C32—H32C109.5
C3—P1—Se1—Au1166.02 (8)Se1—P1—C2—C2352.4 (2)
C2—P1—Se1—Au174.09 (9)C3—P1—C2—C2171.6 (2)
C1—P1—Se1—Au153.31 (8)C1—P1—C2—C2148.6 (2)
C3—P1—C1—C13168.86 (19)Se1—P1—C2—C21174.31 (19)
C2—P1—C1—C1344.7 (2)C3—P1—C2—C2249.0 (2)
Se1—P1—C1—C1379.65 (19)C1—P1—C2—C22169.23 (18)
C3—P1—C1—C1146.1 (2)Se1—P1—C2—C2265.06 (19)
C2—P1—C1—C1178.1 (2)C2—P1—C3—C3287.3 (2)
Se1—P1—C1—C11157.55 (15)C1—P1—C3—C32147.3 (2)
C3—P1—C1—C1271.34 (19)Se1—P1—C3—C3230.1 (2)
C2—P1—C1—C12164.51 (16)C2—P1—C3—C3142.3 (2)
Se1—P1—C1—C1240.14 (18)C1—P1—C3—C3183.0 (2)
C3—P1—C2—C23166.43 (18)Se1—P1—C3—C31159.79 (19)
C1—P1—C2—C2373.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.803.712 (3)155
C23—H23B···Au10.982.893.615 (3)131
C32—H32B···Se10.982.623.228 (3)120
C3—H3···Cl1i1.002.683.599 (3)154
Symmetry code: (i) x, y1/2, z+1/2.
Bromido(tripropylphosphane sulfide-κS)gold (1b) top
Crystal data top
[AuBr(C9H21PS)]F(000) = 880
Mr = 469.16Dx = 2.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1898 (2) ÅCell parameters from 13927 reflections
b = 11.1421 (3) Åθ = 2.3–30.8°
c = 15.3064 (4) ŵ = 13.73 mm1
β = 97.394 (2)°T = 100 K
V = 1385.11 (6) Å3Block, colourless
Z = 40.13 × 0.08 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4194 independent reflections
Radiation source: Enhance (Mo) X-ray Source3563 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.040
ω scanθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1111
Tmin = 0.568, Tmax = 1.000k = 1515
51956 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.032 w = 1/[σ2(Fo2) + (0.0096P)2 + 0.8742P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
4194 reflectionsΔρmax = 0.88 e Å3
125 parametersΔρmin = 0.79 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00097 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.50533 (2)0.50190 (2)0.30576 (2)0.01676 (3)
Br10.29839 (3)0.46987 (2)0.18238 (2)0.02092 (5)
P10.78167 (7)0.68773 (5)0.42436 (4)0.01290 (11)
S10.70072 (7)0.51535 (5)0.42538 (4)0.02204 (12)
C10.9233 (3)0.7019 (2)0.52658 (14)0.0160 (4)
H11.0005320.6322910.5273870.019*
C20.6094 (3)0.7937 (2)0.41329 (15)0.0178 (5)
H20.5462890.7787800.3539120.021*
C30.9023 (3)0.7181 (2)0.33447 (15)0.0180 (5)
H30.9488690.8007610.3440340.022*
C111.0320 (3)0.8151 (2)0.53096 (15)0.0211 (5)
H11A0.9651070.8857420.5403610.032*
H11B1.0786830.8240400.4755030.032*
H11C1.1212970.8075480.5798080.032*
C120.8390 (3)0.6899 (2)0.60990 (15)0.0236 (5)
H12A0.9224210.6762910.6608510.035*
H12B0.7624920.6218700.6033530.035*
H12C0.7782330.7636740.6188000.035*
C210.4881 (3)0.7726 (3)0.48039 (18)0.0314 (6)
H21A0.5387660.7978920.5389830.047*
H21B0.4604170.6870660.4816760.047*
H21C0.3876290.8192730.4633230.047*
C220.6653 (3)0.9251 (2)0.41341 (19)0.0278 (6)
H22A0.5693700.9769720.3977510.042*
H22B0.7429050.9356550.3703510.042*
H22C0.7192640.9465350.4722190.042*
C311.0483 (3)0.6317 (3)0.33672 (18)0.0313 (6)
H31A1.0073980.5498180.3250310.047*
H31B1.1139450.6347500.3949200.047*
H31C1.1169900.6551090.2916450.047*
C320.7990 (3)0.7174 (2)0.24383 (15)0.0263 (6)
H32A0.8702810.7331770.1983510.039*
H32B0.7142400.7797690.2416980.039*
H32C0.7464430.6388140.2333590.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01631 (5)0.01400 (5)0.01994 (5)0.00208 (3)0.00219 (3)0.00182 (3)
Br10.02089 (11)0.02406 (12)0.01774 (11)0.00058 (9)0.00220 (8)0.00462 (9)
P10.0126 (3)0.0119 (3)0.0137 (3)0.0002 (2)0.0004 (2)0.0010 (2)
S10.0227 (3)0.0127 (3)0.0286 (3)0.0025 (2)0.0049 (2)0.0037 (2)
C10.0152 (11)0.0180 (11)0.0140 (11)0.0008 (8)0.0012 (8)0.0026 (8)
C20.0133 (10)0.0170 (11)0.0224 (12)0.0025 (8)0.0008 (9)0.0042 (9)
C30.0172 (11)0.0199 (12)0.0171 (11)0.0014 (9)0.0031 (9)0.0018 (9)
C110.0196 (12)0.0282 (13)0.0146 (11)0.0055 (10)0.0013 (9)0.0013 (10)
C120.0287 (13)0.0281 (13)0.0136 (11)0.0065 (10)0.0014 (10)0.0038 (9)
C210.0206 (13)0.0337 (15)0.0421 (18)0.0100 (11)0.0123 (12)0.0102 (12)
C220.0226 (13)0.0150 (12)0.0453 (17)0.0048 (10)0.0021 (11)0.0029 (11)
C310.0296 (14)0.0386 (16)0.0276 (14)0.0098 (12)0.0106 (11)0.0014 (12)
C320.0335 (14)0.0293 (14)0.0157 (12)0.0105 (11)0.0012 (10)0.0006 (10)
Geometric parameters (Å, º) top
Au1—S12.2763 (6)C11—H11C0.9800
Au1—Br12.3963 (3)C12—H12A0.9800
P1—C31.826 (2)C12—H12B0.9800
P1—C21.831 (2)C12—H12C0.9800
P1—C11.831 (2)C21—H21A0.9800
P1—S12.0325 (8)C21—H21B0.9800
C1—C121.532 (3)C21—H21C0.9800
C1—C111.540 (3)C22—H22A0.9800
C1—H11.0000C22—H22B0.9800
C2—C221.534 (3)C22—H22C0.9800
C2—C211.536 (3)C31—H31A0.9800
C2—H21.0000C31—H31B0.9800
C3—C321.529 (3)C31—H31C0.9800
C3—C311.533 (3)C32—H32A0.9800
C3—H31.0000C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800
S1—Au1—Br1175.134 (15)H11B—C11—H11C109.5
C3—P1—C2107.21 (10)C1—C12—H12A109.5
C3—P1—C1106.45 (10)C1—C12—H12B109.5
C2—P1—C1114.79 (11)H12A—C12—H12B109.5
C3—P1—S1112.94 (8)C1—C12—H12C109.5
C2—P1—S1111.22 (8)H12A—C12—H12C109.5
C1—P1—S1104.27 (8)H12B—C12—H12C109.5
P1—S1—Au1104.61 (3)C2—C21—H21A109.5
C12—C1—C11110.82 (19)C2—C21—H21B109.5
C12—C1—P1113.58 (15)H21A—C21—H21B109.5
C11—C1—P1114.01 (15)C2—C21—H21C109.5
C12—C1—H1105.9H21A—C21—H21C109.5
C11—C1—H1105.9H21B—C21—H21C109.5
P1—C1—H1105.9C2—C22—H22A109.5
C22—C2—C21111.3 (2)C2—C22—H22B109.5
C22—C2—P1112.91 (15)H22A—C22—H22B109.5
C21—C2—P1113.35 (16)C2—C22—H22C109.5
C22—C2—H2106.2H22A—C22—H22C109.5
C21—C2—H2106.2H22B—C22—H22C109.5
P1—C2—H2106.2C3—C31—H31A109.5
C32—C3—C31110.8 (2)C3—C31—H31B109.5
C32—C3—P1113.14 (16)H31A—C31—H31B109.5
C31—C3—P1111.27 (17)C3—C31—H31C109.5
C32—C3—H3107.1H31A—C31—H31C109.5
C31—C3—H3107.1H31B—C31—H31C109.5
P1—C3—H3107.1C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
C3—P1—S1—Au170.35 (8)S1—P1—C2—C22179.27 (16)
C2—P1—S1—Au150.25 (9)C3—P1—C2—C21175.40 (18)
C1—P1—S1—Au1174.50 (8)C1—P1—C2—C2166.6 (2)
C3—P1—C1—C12175.00 (17)S1—P1—C2—C2151.48 (19)
C2—P1—C1—C1256.6 (2)C2—P1—C3—C3253.2 (2)
S1—P1—C1—C1265.37 (17)C1—P1—C3—C32176.49 (17)
C3—P1—C1—C1146.76 (19)S1—P1—C3—C3269.68 (18)
C2—P1—C1—C1171.68 (19)C2—P1—C3—C31178.74 (17)
S1—P1—C1—C11166.39 (15)C1—P1—C3—C3157.95 (19)
C3—P1—C2—C2256.8 (2)S1—P1—C3—C3155.89 (18)
C1—P1—C2—C2261.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1i1.002.873.756 (2)149
C21—H21C···Br1ii0.983.043.878 (3)144
C32—H32C···Au10.982.833.611 (2)137
C1—H1···S1iii1.002.963.911 (2)159
C12—H12B···S10.982.953.495 (2)116
C21—H21B···S10.982.953.512 (3)117
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
[Bis(tert-butyl)(propan-2-yl)tripropylphosphane sulfide-κS]bromidogold (3b) top
Crystal data top
[AuBr(C11H25PS)]F(000) = 1888
Mr = 497.22Dx = 2.121 Mg m3
Dm = 2.121 Mg m3
Dm measured by ?
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.3157 (10) ÅCell parameters from 37811 reflections
b = 8.16931 (13) Åθ = 2.7–30.7°
c = 18.8362 (7) ŵ = 12.22 mm1
β = 132.187 (7)°T = 101 K
V = 3114.5 (3) Å3Tablet, colourless
Z = 80.3 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4712 independent reflections
Radiation source: fine-focus sealed X-ray tube4383 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.034
ω scansθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.41.93a (Rigaku OD, 2020)
h = 3939
Tmin = 0.300, Tmax = 1.000k = 1111
72942 measured reflectionsl = 2726
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0119P)2 + 6.187P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max = 0.003
S = 1.08Δρmax = 1.22 e Å3
4712 reflectionsΔρmin = 0.87 e Å3
145 parametersExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000358 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.32867 (2)0.54617 (2)0.46731 (2)0.01580 (3)
Br10.42769 (2)0.38744 (3)0.55782 (2)0.02257 (5)
S10.24093 (2)0.71919 (6)0.38834 (3)0.01798 (9)
P10.15993 (2)0.58893 (6)0.27968 (3)0.01231 (9)
C10.14221 (10)0.4248 (2)0.32985 (14)0.0173 (4)
C20.09309 (10)0.7473 (2)0.20816 (14)0.0177 (4)
C30.17765 (9)0.4863 (2)0.21154 (13)0.0153 (4)
H30.2158610.4124130.2589580.018*
C110.07062 (11)0.3644 (3)0.25725 (16)0.0252 (4)
H11A0.0604250.3265710.1991840.038*
H11B0.0407800.4541660.2409660.038*
H11C0.0648380.2738090.2851660.038*
C120.15778 (12)0.4879 (3)0.42027 (16)0.0253 (4)
H12A0.1301890.5834900.4037610.038*
H12B0.2044910.5188040.4685710.038*
H12C0.1485740.4014020.4459850.038*
C130.18831 (10)0.2781 (2)0.36103 (15)0.0219 (4)
H13A0.1817030.1955200.3916630.033*
H13B0.2343540.3151710.4065390.033*
H13C0.1781970.2302660.3047200.033*
C210.11876 (11)0.8966 (3)0.19185 (16)0.0244 (4)
H21A0.0835500.9784140.1536740.037*
H21B0.1325520.8623610.1576630.037*
H21C0.1565510.9440900.2538140.037*
C220.03174 (11)0.6830 (3)0.10901 (15)0.0272 (5)
H22A0.0181890.5780480.1164120.041*
H22B0.0423290.6677680.0689890.041*
H22C0.0043730.7621670.0784980.041*
C230.07463 (11)0.8058 (3)0.26499 (17)0.0279 (5)
H23A0.1145920.8410940.3289770.042*
H23B0.0537820.7159140.2708610.042*
H23C0.0437220.8977990.2314200.042*
C310.20259 (11)0.6028 (3)0.17818 (17)0.0241 (4)
H31A0.2212730.5390960.1571050.036*
H31B0.2367310.6744580.2312850.036*
H31C0.1657680.6693130.1247710.036*
C320.12394 (11)0.3737 (3)0.12933 (15)0.0249 (4)
H32A0.0854390.4391820.0781050.037*
H32B0.1109490.2939540.1529460.037*
H32C0.1410850.3158600.1043240.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01264 (4)0.01862 (4)0.01150 (4)0.00495 (3)0.00620 (3)0.00108 (3)
Br10.01514 (9)0.02561 (10)0.01862 (9)0.00098 (7)0.00792 (8)0.00264 (8)
S10.0155 (2)0.0156 (2)0.0152 (2)0.00548 (17)0.00713 (18)0.00504 (17)
P10.0118 (2)0.0117 (2)0.0116 (2)0.00213 (16)0.00715 (18)0.00276 (16)
C10.0203 (9)0.0166 (9)0.0172 (9)0.0051 (7)0.0135 (8)0.0030 (7)
C20.0157 (9)0.0179 (9)0.0146 (8)0.0015 (7)0.0082 (8)0.0027 (7)
C30.0152 (8)0.0146 (8)0.0156 (8)0.0001 (7)0.0101 (8)0.0022 (7)
C110.0207 (10)0.0295 (11)0.0258 (11)0.0100 (9)0.0158 (9)0.0034 (9)
C120.0346 (12)0.0252 (10)0.0217 (10)0.0078 (9)0.0212 (10)0.0045 (8)
C130.0232 (10)0.0170 (9)0.0230 (10)0.0039 (8)0.0145 (9)0.0002 (8)
C210.0284 (11)0.0152 (9)0.0281 (11)0.0047 (8)0.0183 (10)0.0033 (8)
C220.0175 (10)0.0258 (11)0.0211 (10)0.0019 (8)0.0060 (9)0.0020 (8)
C230.0266 (11)0.0322 (12)0.0282 (11)0.0095 (9)0.0199 (10)0.0008 (9)
C310.0300 (11)0.0234 (10)0.0312 (11)0.0000 (9)0.0256 (10)0.0002 (9)
C320.0232 (10)0.0296 (11)0.0207 (10)0.0062 (9)0.0142 (9)0.0122 (9)
Geometric parameters (Å, º) top
Au1—S12.2731 (5)C12—H12C0.9800
Au1—Br12.3896 (3)C13—H13A0.9800
S1—P12.0333 (7)C13—H13B0.9800
P1—C31.849 (2)C13—H13C0.9800
P1—C21.876 (2)C21—H21A0.9800
P1—C11.881 (2)C21—H21B0.9800
C1—C111.532 (3)C21—H21C0.9800
C1—C131.540 (3)C22—H22A0.9800
C1—C121.541 (3)C22—H22B0.9800
C2—C231.534 (3)C22—H22C0.9800
C2—C211.537 (3)C23—H23A0.9800
C2—C221.539 (3)C23—H23B0.9800
C3—C311.529 (3)C23—H23C0.9800
C3—C321.532 (3)C31—H31A0.9800
C3—H31.0000C31—H31B0.9800
C11—H11A0.9800C31—H31C0.9800
C11—H11B0.9800C32—H32A0.9800
C11—H11C0.9800C32—H32B0.9800
C12—H12A0.9800C32—H32C0.9800
C12—H12B0.9800
S1—Au1—Br1174.382 (13)H12B—C12—H12C109.5
P1—S1—Au1106.84 (3)C1—C13—H13A109.5
C3—P1—C2113.35 (9)C1—C13—H13B109.5
C3—P1—C1107.53 (9)H13A—C13—H13B109.5
C2—P1—C1113.42 (9)C1—C13—H13C109.5
C3—P1—S1108.72 (6)H13A—C13—H13C109.5
C2—P1—S1103.79 (6)H13B—C13—H13C109.5
C1—P1—S1109.91 (7)C2—C21—H21A109.5
C11—C1—C13108.46 (17)C2—C21—H21B109.5
C11—C1—C12109.49 (18)H21A—C21—H21B109.5
C13—C1—C12106.89 (17)C2—C21—H21C109.5
C11—C1—P1112.71 (14)H21A—C21—H21C109.5
C13—C1—P1109.01 (14)H21B—C21—H21C109.5
C12—C1—P1110.10 (14)C2—C22—H22A109.5
C23—C2—C21107.45 (17)C2—C22—H22B109.5
C23—C2—C22110.66 (18)H22A—C22—H22B109.5
C21—C2—C22107.42 (18)C2—C22—H22C109.5
C23—C2—P1109.35 (14)H22A—C22—H22C109.5
C21—C2—P1109.63 (14)H22B—C22—H22C109.5
C22—C2—P1112.20 (14)C2—C23—H23A109.5
C31—C3—C32110.28 (17)C2—C23—H23B109.5
C31—C3—P1113.58 (14)H23A—C23—H23B109.5
C32—C3—P1117.06 (14)C2—C23—H23C109.5
C31—C3—H3104.9H23A—C23—H23C109.5
C32—C3—H3104.9H23B—C23—H23C109.5
P1—C3—H3104.9C3—C31—H31A109.5
C1—C11—H11A109.5C3—C31—H31B109.5
C1—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C3—C31—H31C109.5
C1—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5C3—C32—H32A109.5
C1—C12—H12A109.5C3—C32—H32B109.5
C1—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12B109.5C3—C32—H32C109.5
C1—C12—H12C109.5H32A—C32—H32C109.5
H12A—C12—H12C109.5H32B—C32—H32C109.5
Au1—S1—P1—C350.79 (7)S1—P1—C2—C2370.94 (15)
Au1—S1—P1—C2171.73 (7)C3—P1—C2—C2171.15 (16)
Au1—S1—P1—C166.65 (7)C1—P1—C2—C21165.86 (13)
C3—P1—C1—C1182.85 (16)S1—P1—C2—C2146.62 (14)
C2—P1—C1—C1143.29 (17)C3—P1—C2—C2248.12 (18)
S1—P1—C1—C11158.97 (13)C1—P1—C2—C2274.87 (17)
C3—P1—C1—C1337.63 (15)S1—P1—C2—C22165.89 (14)
C2—P1—C1—C13163.77 (13)C2—P1—C3—C3162.01 (17)
S1—P1—C1—C1380.56 (13)C1—P1—C3—C31171.81 (14)
C3—P1—C1—C12154.58 (15)S1—P1—C3—C3152.86 (15)
C2—P1—C1—C1279.27 (17)C2—P1—C3—C3268.36 (18)
S1—P1—C1—C1236.40 (16)C1—P1—C3—C3257.83 (17)
C3—P1—C2—C23171.29 (14)S1—P1—C3—C32176.78 (14)
C1—P1—C2—C2348.30 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.753.633 (2)151
C23—H23A···S10.982.993.515 (2)114
C21—H21C···S10.982.703.216 (2)114
C11—H11C···Br1i0.983.124.019 (2)154
C12—H12B···S1ii0.982.943.603 (2)126
C12—H12C···Br1i0.983.124.039 (2)158
C31—H31C···Br1iii0.983.124.073 (2)165
C23—H23C···Br1iv0.983.154.072 (2)158
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z1/2.
Bromido(tri-tert-butylphosphane sulfide-κS)gold (4b) top
Crystal data top
[AuBr(C12H27PS)]F(000) = 976
Mr = 511.24Dx = 2.053 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3107 (6) ÅCell parameters from 7046 reflections
b = 13.4820 (5) Åθ = 2.5–30.8°
c = 14.7591 (9) ŵ = 11.51 mm1
β = 90.424 (6)°T = 100 K
V = 1653.64 (17) Å3Needle, colourless
Z = 40.15 × 0.04 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4445 independent reflections
Radiation source: fine-focus sealed tube3863 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.079
ω scanθmax = 29.1°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1111
Tmin = 0.445, Tmax = 1.000k = 1818
44298 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0357P)2 + 8.6603P]
where P = (Fo2 + 2Fc2)/3
4445 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 2.68 e Å3
0 restraintsΔρmin = 1.32 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.26092 (4)0.32868 (2)0.61759 (2)0.01906 (7)
Br10.16622 (9)0.23114 (5)0.49272 (5)0.02403 (16)
P10.2555 (2)0.54919 (11)0.74196 (11)0.0137 (3)
S10.3601 (2)0.41208 (13)0.74016 (14)0.0245 (4)
C10.3108 (9)0.5970 (5)0.8589 (5)0.0217 (15)
C20.0295 (9)0.5402 (5)0.7268 (5)0.0200 (15)
C30.3463 (8)0.6302 (5)0.6502 (5)0.0177 (13)
C110.2926 (9)0.7109 (5)0.8681 (5)0.0231 (16)
H11A0.1810890.7298140.8547340.035*
H11B0.3646190.7439140.8253030.035*
H11C0.3206450.7309800.9300220.035*
C120.4866 (10)0.5690 (6)0.8838 (6)0.0341 (19)
H12A0.5113110.5921430.9452930.051*
H12B0.5602270.6003980.8408950.051*
H12C0.4992940.4968190.8809860.051*
C130.2073 (11)0.5475 (6)0.9308 (5)0.0309 (19)
H13A0.2407990.5707570.9909570.046*
H13B0.2205130.4754130.9273020.046*
H13C0.0940850.5646700.9203340.046*
C210.0521 (9)0.6350 (6)0.7618 (6)0.0271 (17)
H21A0.0057170.6929310.7314790.041*
H21B0.0346290.6406140.8273180.041*
H21C0.1677730.6319240.7488300.041*
C220.0357 (10)0.4489 (6)0.7779 (6)0.0308 (19)
H22A0.1528360.4456510.7705100.046*
H22B0.0084690.4545960.8424030.046*
H22C0.0129190.3885270.7532190.046*
C230.0183 (9)0.5267 (6)0.6269 (6)0.0267 (17)
H23A0.1348320.5168530.6221090.040*
H23B0.0373420.4687910.6020680.040*
H23C0.0122310.5860320.5926120.040*
C310.2618 (10)0.7307 (5)0.6391 (4)0.0232 (15)
H31A0.2486370.7616050.6986670.035*
H31B0.1558990.7207630.6108820.035*
H31C0.3269270.7739620.6005740.035*
C320.5246 (10)0.6472 (6)0.6746 (6)0.0304 (19)
H32A0.5767460.6841080.6257780.046*
H32B0.5782390.5830150.6826060.046*
H32C0.5322530.6852300.7310830.046*
C330.3433 (11)0.5764 (6)0.5579 (5)0.0287 (17)
H33A0.2315960.5673150.5379350.043*
H33B0.3954570.5115520.5641010.043*
H33C0.4010880.6162480.5131290.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02512 (12)0.00978 (10)0.02229 (13)0.00194 (11)0.00216 (12)0.00021 (10)
Br10.0340 (4)0.0159 (3)0.0221 (4)0.0005 (3)0.0007 (3)0.0011 (3)
P10.0172 (8)0.0095 (6)0.0143 (7)0.0003 (7)0.0005 (7)0.0003 (5)
S10.0300 (10)0.0137 (8)0.0296 (10)0.0064 (7)0.0078 (8)0.0020 (7)
C10.035 (4)0.016 (3)0.014 (3)0.000 (3)0.006 (3)0.001 (3)
C20.020 (3)0.017 (3)0.024 (4)0.000 (3)0.001 (3)0.002 (3)
C30.018 (3)0.018 (3)0.017 (3)0.004 (3)0.001 (3)0.003 (3)
C110.034 (4)0.015 (3)0.020 (4)0.006 (3)0.005 (3)0.003 (3)
C120.041 (5)0.034 (4)0.027 (4)0.009 (4)0.020 (4)0.007 (4)
C130.048 (5)0.027 (4)0.018 (4)0.006 (4)0.001 (3)0.001 (3)
C210.018 (4)0.031 (4)0.032 (5)0.000 (3)0.000 (3)0.013 (3)
C220.027 (4)0.020 (4)0.045 (5)0.010 (3)0.003 (4)0.001 (4)
C230.024 (4)0.023 (4)0.033 (5)0.003 (3)0.008 (3)0.011 (3)
C310.037 (4)0.019 (3)0.013 (3)0.003 (3)0.001 (4)0.005 (2)
C320.023 (4)0.023 (4)0.045 (5)0.003 (3)0.007 (4)0.000 (4)
C330.043 (5)0.023 (4)0.020 (4)0.004 (3)0.010 (4)0.002 (3)
Geometric parameters (Å, º) top
Au1—S12.2791 (19)C13—H13A0.9800
Au1—Br12.3925 (8)C13—H13B0.9800
P1—C21.894 (7)C13—H13C0.9800
P1—C11.895 (7)C21—H21A0.9800
P1—C31.900 (7)C21—H21B0.9800
P1—S12.043 (2)C21—H21C0.9800
C1—C131.525 (11)C22—H22A0.9800
C1—C111.549 (9)C22—H22B0.9800
C1—C121.550 (11)C22—H22C0.9800
C2—C231.535 (11)C23—H23A0.9800
C2—C211.539 (10)C23—H23B0.9800
C2—C221.544 (10)C23—H23C0.9800
C3—C311.534 (9)C31—H31A0.9800
C3—C321.540 (11)C31—H31B0.9800
C3—C331.543 (10)C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800C33—H33A0.9800
C12—H12B0.9800C33—H33B0.9800
C12—H12C0.9800C33—H33C0.9800
S1—Au1—Br1176.04 (5)H13A—C13—H13B109.5
C2—P1—C1111.3 (3)C1—C13—H13C109.5
C2—P1—C3110.5 (3)H13A—C13—H13C109.5
C1—P1—C3111.0 (3)H13B—C13—H13C109.5
C2—P1—S1111.2 (2)C2—C21—H21A109.5
C1—P1—S1102.7 (2)C2—C21—H21B109.5
C3—P1—S1109.9 (2)H21A—C21—H21B109.5
P1—S1—Au1107.77 (9)C2—C21—H21C109.5
C13—C1—C11108.4 (6)H21A—C21—H21C109.5
C13—C1—C12105.3 (6)H21B—C21—H21C109.5
C11—C1—C12108.2 (6)C2—C22—H22A109.5
C13—C1—P1110.5 (5)C2—C22—H22B109.5
C11—C1—P1113.2 (5)H22A—C22—H22B109.5
C12—C1—P1110.8 (5)C2—C22—H22C109.5
C23—C2—C21108.0 (6)H22A—C22—H22C109.5
C23—C2—C22106.6 (6)H22B—C22—H22C109.5
C21—C2—C22109.9 (6)C2—C23—H23A109.5
C23—C2—P1111.8 (5)C2—C23—H23B109.5
C21—C2—P1110.2 (5)H23A—C23—H23B109.5
C22—C2—P1110.2 (5)C2—C23—H23C109.5
C31—C3—C32109.4 (6)H23A—C23—H23C109.5
C31—C3—C33108.4 (6)H23B—C23—H23C109.5
C32—C3—C33106.6 (6)C3—C31—H31A109.5
C31—C3—P1113.6 (5)C3—C31—H31B109.5
C32—C3—P1107.7 (5)H31A—C31—H31B109.5
C33—C3—P1110.8 (5)C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5C3—C33—H33A109.5
C1—C12—H12C109.5C3—C33—H33B109.5
H12A—C12—H12C109.5H33A—C33—H33B109.5
H12B—C12—H12C109.5C3—C33—H33C109.5
C1—C13—H13A109.5H33A—C33—H33C109.5
C1—C13—H13B109.5H33B—C33—H33C109.5
C2—P1—S1—Au148.4 (3)C1—P1—C2—C2145.8 (6)
C1—P1—S1—Au1167.6 (3)C3—P1—C2—C2178.1 (6)
C3—P1—S1—Au174.3 (3)S1—P1—C2—C21159.6 (5)
C2—P1—C1—C1343.1 (6)C1—P1—C2—C2275.7 (6)
C3—P1—C1—C13166.7 (5)C3—P1—C2—C22160.4 (5)
S1—P1—C1—C1376.0 (6)S1—P1—C2—C2238.1 (6)
C2—P1—C1—C1178.8 (6)C2—P1—C3—C3150.2 (6)
C3—P1—C1—C1144.8 (6)C1—P1—C3—C3173.8 (6)
S1—P1—C1—C11162.1 (5)S1—P1—C3—C31173.4 (4)
C2—P1—C1—C12159.4 (5)C2—P1—C3—C32171.6 (5)
C3—P1—C1—C1277.0 (6)C1—P1—C3—C3247.6 (6)
S1—P1—C1—C1240.3 (5)S1—P1—C3—C3265.3 (5)
C1—P1—C2—C23165.9 (5)C2—P1—C3—C3372.1 (6)
C3—P1—C2—C2342.1 (6)C1—P1—C3—C33163.8 (5)
S1—P1—C2—C2380.3 (5)S1—P1—C3—C3351.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Br1i0.982.983.882 (8)153
C32—H32A···Br1ii0.983.003.936 (8)161
C33—H33B···Au10.982.823.523 (8)129
C23—H23B···Au10.982.663.541 (7)150
C12—H12C···S10.982.633.169 (9)115
C33—H33B···S10.982.943.487 (8)116
C22—H22C···S10.982.913.377 (9)110
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Bromido(tripropylphosphane selenide-κSe)gold (5b) top
Crystal data top
[AuBr(C9H21PSe)]F(000) = 952
Mr = 516.06Dx = 2.438 Mg m3
Dm = 2.438 Mg m3
Dm measured by ?
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.22500 (14) ÅCell parameters from 21807 reflections
b = 11.31793 (17) Åθ = 2.2–30.8°
c = 15.2065 (3) ŵ = 15.97 mm1
β = 96.6895 (16)°T = 100 K
V = 1405.93 (4) Å3Block, colourless
Z = 40.16 × 0.15 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4276 independent reflections
Radiation source: Enhance (Mo) X-ray Source3812 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.029
ω scansθmax = 30.8°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1111
Tmin = 0.529, Tmax = 1.000k = 1616
63480 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0087P)2 + 1.4421P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.029(Δ/σ)max = 0.003
S = 1.07Δρmax = 1.09 e Å3
4276 reflectionsΔρmin = 0.94 e Å3
125 parametersExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00114 (3)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.49755 (2)0.50261 (2)0.30090 (2)0.01658 (3)
Br10.29020 (3)0.47321 (2)0.17815 (2)0.02114 (5)
P10.78688 (6)0.69268 (4)0.42405 (3)0.01254 (9)
Se10.70069 (3)0.51007 (2)0.42556 (2)0.02173 (5)
C10.9266 (2)0.70575 (17)0.52661 (13)0.0172 (4)
H11.0047610.6381940.5258090.021*
C20.6147 (2)0.79671 (17)0.41269 (14)0.0178 (4)
H20.5500500.7792830.3543050.021*
C30.9087 (2)0.72149 (17)0.33310 (13)0.0169 (4)
H30.9517860.8038910.3410460.020*
C111.0329 (2)0.81786 (19)0.53110 (14)0.0217 (4)
H11A0.9658700.8865030.5425820.032*
H11B1.0775850.8286570.4746530.032*
H11C1.1229500.8098470.5789300.032*
C120.8445 (3)0.6900 (2)0.61111 (14)0.0240 (4)
H12A0.9280600.6738230.6610090.036*
H12B0.7674770.6236640.6035630.036*
H12C0.7852350.7623400.6228870.036*
C210.4976 (3)0.7796 (2)0.48295 (16)0.0309 (5)
H21A0.5502350.8072200.5404160.046*
H21B0.4703820.6956450.4870190.046*
H21C0.3972780.8250480.4663760.046*
C220.6705 (3)0.92562 (18)0.40853 (17)0.0275 (5)
H22A0.5755370.9761110.3908030.041*
H22B0.7492420.9329950.3651700.041*
H22C0.7224510.9501680.4669470.041*
C311.0568 (3)0.6395 (2)0.33646 (17)0.0302 (5)
H31A1.0194340.5576500.3278050.045*
H31B1.1226760.6469200.3941840.045*
H31C1.1233210.6613060.2895310.045*
C320.8064 (3)0.7166 (2)0.24266 (14)0.0256 (5)
H32A0.8768270.7318500.1961730.038*
H32B0.7201640.7767350.2399360.038*
H32C0.7565600.6382540.2338560.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01623 (4)0.01300 (4)0.02085 (4)0.00145 (3)0.00355 (3)0.00179 (3)
Br10.02214 (9)0.02341 (10)0.01810 (9)0.00032 (8)0.00328 (7)0.00458 (7)
P10.0119 (2)0.0115 (2)0.0139 (2)0.00059 (16)0.00022 (17)0.00121 (17)
Se10.02161 (10)0.01164 (9)0.03017 (11)0.00203 (7)0.00448 (8)0.00471 (8)
C10.0162 (9)0.0196 (9)0.0154 (9)0.0008 (7)0.0003 (7)0.0031 (7)
C20.0138 (9)0.0142 (9)0.0254 (10)0.0023 (7)0.0017 (7)0.0040 (7)
C30.0189 (9)0.0166 (9)0.0154 (9)0.0001 (7)0.0029 (7)0.0007 (7)
C110.0203 (10)0.0284 (11)0.0158 (9)0.0084 (8)0.0001 (8)0.0007 (8)
C120.0297 (11)0.0260 (11)0.0164 (10)0.0058 (9)0.0032 (8)0.0048 (8)
C210.0224 (11)0.0313 (12)0.0415 (14)0.0103 (9)0.0150 (10)0.0107 (10)
C220.0199 (10)0.0142 (9)0.0483 (14)0.0029 (8)0.0042 (10)0.0036 (9)
C310.0292 (12)0.0314 (12)0.0327 (12)0.0097 (9)0.0145 (10)0.0016 (10)
C320.0346 (12)0.0264 (11)0.0156 (10)0.0093 (9)0.0021 (9)0.0007 (8)
Geometric parameters (Å, º) top
Au1—Se12.3779 (2)C11—H11C0.9800
Au1—Br12.4004 (2)C12—H12A0.9800
P1—C31.829 (2)C12—H12B0.9800
P1—C11.832 (2)C12—H12C0.9800
P1—C21.8343 (19)C21—H21A0.9800
P1—Se12.1860 (5)C21—H21B0.9800
C1—C121.530 (3)C21—H21C0.9800
C1—C111.538 (3)C22—H22A0.9800
C1—H11.0000C22—H22B0.9800
C2—C211.532 (3)C22—H22C0.9800
C2—C221.533 (3)C31—H31A0.9800
C2—H21.0000C31—H31B0.9800
C3—C321.527 (3)C31—H31C0.9800
C3—C311.528 (3)C32—H32A0.9800
C3—H31.0000C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800
Se1—Au1—Br1173.957 (8)H11B—C11—H11C109.5
C3—P1—C1106.54 (9)C1—C12—H12A109.5
C3—P1—C2107.42 (9)C1—C12—H12B109.5
C1—P1—C2115.41 (9)H12A—C12—H12B109.5
C3—P1—Se1112.54 (7)C1—C12—H12C109.5
C1—P1—Se1103.85 (6)H12A—C12—H12C109.5
C2—P1—Se1111.11 (6)H12B—C12—H12C109.5
P1—Se1—Au1102.931 (14)C2—C21—H21A109.5
C12—C1—C11111.30 (17)C2—C21—H21B109.5
C12—C1—P1114.26 (14)H21A—C21—H21B109.5
C11—C1—P1113.66 (13)C2—C21—H21C109.5
C12—C1—H1105.6H21A—C21—H21C109.5
C11—C1—H1105.6H21B—C21—H21C109.5
P1—C1—H1105.6C2—C22—H22A109.5
C21—C2—C22111.39 (18)C2—C22—H22B109.5
C21—C2—P1113.24 (14)H22A—C22—H22B109.5
C22—C2—P1112.53 (13)C2—C22—H22C109.5
C21—C2—H2106.4H22A—C22—H22C109.5
C22—C2—H2106.4H22B—C22—H22C109.5
P1—C2—H2106.4C3—C31—H31A109.5
C32—C3—C31111.21 (18)C3—C31—H31B109.5
C32—C3—P1112.43 (14)H31A—C31—H31B109.5
C31—C3—P1111.80 (14)C3—C31—H31C109.5
C32—C3—H3107.0H31A—C31—H31C109.5
C31—C3—H3107.0H31B—C31—H31C109.5
P1—C3—H3107.0C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
C3—P1—Se1—Au171.46 (7)Se1—P1—C2—C2154.33 (17)
C1—P1—Se1—Au1173.72 (7)C3—P1—C2—C2254.75 (18)
C2—P1—Se1—Au149.05 (7)C1—P1—C2—C2263.89 (18)
C3—P1—C1—C12177.33 (14)Se1—P1—C2—C22178.24 (14)
C2—P1—C1—C1258.21 (17)C1—P1—C3—C32178.55 (14)
Se1—P1—C1—C1263.65 (15)C2—P1—C3—C3254.33 (16)
C3—P1—C1—C1148.10 (17)Se1—P1—C3—C3268.27 (15)
C2—P1—C1—C1171.03 (17)C1—P1—C3—C3155.53 (17)
Se1—P1—C1—C11167.12 (13)C2—P1—C3—C31179.74 (15)
C3—P1—C2—C21177.82 (16)Se1—P1—C3—C3157.65 (16)
C1—P1—C2—C2163.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1i1.002.903.792 (2)149
C1—H1···Se1ii1.002.973.9210 (19)159
C12—H12B···Se10.982.993.568 (2)119
C21—H21B···Se10.983.053.633 (2)120
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+1, z+1.
Bromido[(tert-butyl)bis(propan-2-yl)phosphane selenide-κSe]gold (6b) top
Crystal data top
[AuBr(C10H23PSe)]F(000) = 1968
Mr = 530.09Dx = 2.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5037 (2) ÅCell parameters from 36701 reflections
b = 15.2440 (2) Åθ = 2.4–30.6°
c = 16.8366 (2) ŵ = 15.21 mm1
β = 90.053 (2)°T = 100 K
V = 2952.52 (7) Å3Prism, dichroic colourless/orange
Z = 80.3 × 0.15 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
8952 independent reflections
Radiation source: fine-focus sealed tube8049 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.044
ω–scanθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.37.35 (Rigaku OD, 2020)
h = 1616
Tmin = 0.427, Tmax = 1.000k = 2121
117465 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.012P)2 + 5.1823P]
where P = (Fo2 + 2Fc2)/3
8952 reflections(Δ/σ)max = 0.004
267 parametersΔρmax = 1.84 e Å3
0 restraintsΔρmin = 1.22 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.02177 (2)0.28535 (2)0.62749 (2)0.01448 (3)
Br10.03797 (3)0.22537 (2)0.49594 (2)0.02124 (6)
Se10.01257 (3)0.33941 (2)0.76041 (2)0.01625 (6)
P10.00117 (6)0.48111 (4)0.73996 (4)0.00900 (12)
C10.1221 (2)0.51372 (18)0.67384 (16)0.0121 (5)
C20.0212 (2)0.53038 (18)0.83845 (16)0.0132 (5)
H20.0286590.5951690.8306890.016*
C30.1436 (2)0.52303 (18)0.70749 (16)0.0135 (5)
H30.1996860.5027790.7490550.016*
C110.1610 (3)0.60789 (19)0.69365 (18)0.0192 (6)
H11A0.0948270.6479010.6878990.029*
H11B0.1895970.6100780.7484110.029*
H11C0.2231830.6256040.6572290.029*
C120.2235 (2)0.4494 (2)0.68408 (19)0.0198 (6)
H12A0.2875330.4664480.6488660.030*
H12B0.2502170.4506160.7393280.030*
H12C0.1976420.3899820.6705840.030*
C130.0837 (3)0.5116 (2)0.58690 (17)0.0204 (6)
H13A0.0510740.4537700.5745610.031*
H13B0.0246310.5567710.5779270.031*
H13C0.1509050.5227370.5525220.031*
C210.1324 (3)0.4988 (2)0.87964 (17)0.0217 (6)
H21A0.1282460.4352210.8878050.033*
H21B0.1998240.5127470.8463380.033*
H21C0.1402100.5282340.9311050.033*
C220.0831 (3)0.5149 (2)0.89326 (17)0.0207 (6)
H22A0.0681170.5420170.9450450.031*
H22B0.1527340.5411820.8696570.031*
H22C0.0951580.4517660.9001630.031*
C310.1522 (3)0.62356 (18)0.70859 (18)0.0184 (6)
H31A0.2335430.6411830.7021860.028*
H31B0.1226140.6457870.7593230.028*
H31C0.1057860.6478540.6649780.028*
C320.1907 (3)0.4859 (2)0.62945 (18)0.0214 (6)
H32A0.1561560.5178040.5847170.032*
H32B0.1705770.4235950.6254930.032*
H32C0.2753650.4925860.6281410.032*
Au20.49087 (2)0.42333 (2)0.35333 (2)0.01308 (3)
Br20.53893 (3)0.46757 (2)0.22030 (2)0.02186 (6)
Se20.43625 (2)0.39463 (2)0.48744 (2)0.01454 (6)
P20.47987 (6)0.25612 (4)0.50370 (4)0.00837 (12)
C40.6322 (2)0.22881 (17)0.47325 (16)0.0112 (5)
C50.4635 (2)0.23505 (18)0.61056 (15)0.0126 (5)
H50.4864360.1726500.6200380.015*
C60.3685 (2)0.18711 (17)0.45599 (16)0.0119 (5)
H60.2933860.2059440.4804670.014*
C410.6760 (2)0.1496 (2)0.52158 (18)0.0187 (6)
H41A0.7533780.1325600.5028160.028*
H41B0.6221800.1002680.5147400.028*
H41C0.6801540.1654170.5779130.028*
C420.7118 (2)0.3078 (2)0.48810 (18)0.0179 (6)
H42A0.7923630.2916040.4761560.027*
H42B0.7058900.3257260.5438460.027*
H42C0.6880470.3565470.4537940.027*
C430.6357 (2)0.20605 (19)0.38448 (17)0.0166 (6)
H43A0.6003680.2538090.3538540.025*
H43B0.5922910.1516840.3751670.025*
H43C0.7165630.1981320.3677290.025*
C510.5426 (3)0.2924 (2)0.66223 (17)0.0229 (6)
H51A0.5265390.3544270.6514890.034*
H51B0.6241190.2796280.6498220.034*
H51C0.5279110.2798880.7184160.034*
C520.3367 (3)0.2447 (2)0.63743 (18)0.0218 (6)
H52A0.3314570.2337640.6946760.033*
H52B0.2881910.2022230.6089440.033*
H52C0.3095320.3042700.6258500.033*
C610.3797 (3)0.08939 (18)0.47667 (17)0.0175 (6)
H61A0.3105510.0579860.4579860.026*
H61B0.3867400.0826490.5343630.026*
H61C0.4489410.0651430.4508730.026*
C620.3514 (2)0.20028 (19)0.36642 (16)0.0159 (5)
H62A0.4063340.1631250.3373360.024*
H62B0.3652060.2619260.3528870.024*
H62C0.2717230.1841900.3518010.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01496 (5)0.00911 (5)0.01935 (6)0.00057 (4)0.00121 (4)0.00208 (4)
Br10.01947 (14)0.02124 (15)0.02301 (15)0.00216 (11)0.00056 (11)0.00789 (12)
Se10.02462 (14)0.00794 (12)0.01617 (14)0.00090 (10)0.00295 (11)0.00250 (10)
P10.0112 (3)0.0081 (3)0.0078 (3)0.0005 (2)0.0001 (2)0.0001 (2)
C10.0138 (12)0.0118 (12)0.0107 (12)0.0027 (10)0.0045 (10)0.0006 (10)
C20.0154 (13)0.0138 (13)0.0103 (12)0.0034 (10)0.0007 (10)0.0020 (10)
C30.0134 (12)0.0130 (13)0.0141 (13)0.0018 (10)0.0011 (10)0.0005 (10)
C110.0185 (14)0.0174 (14)0.0216 (15)0.0058 (11)0.0053 (11)0.0037 (12)
C120.0142 (13)0.0214 (15)0.0239 (16)0.0007 (11)0.0059 (11)0.0046 (12)
C130.0296 (16)0.0200 (15)0.0117 (13)0.0078 (12)0.0031 (12)0.0010 (11)
C210.0237 (15)0.0288 (17)0.0128 (14)0.0064 (12)0.0043 (11)0.0029 (12)
C220.0263 (15)0.0238 (16)0.0119 (13)0.0049 (12)0.0055 (11)0.0002 (12)
C310.0204 (14)0.0122 (13)0.0227 (15)0.0048 (11)0.0071 (11)0.0037 (11)
C320.0200 (14)0.0199 (15)0.0245 (16)0.0029 (11)0.0094 (12)0.0051 (12)
Au20.01609 (5)0.00896 (5)0.01419 (5)0.00013 (4)0.00107 (4)0.00259 (4)
Br20.03473 (17)0.01653 (14)0.01433 (14)0.00345 (12)0.00149 (12)0.00132 (11)
Se20.02155 (14)0.00709 (12)0.01500 (13)0.00347 (10)0.00236 (10)0.00092 (10)
P20.0101 (3)0.0067 (3)0.0083 (3)0.0007 (2)0.0001 (2)0.0007 (2)
C40.0099 (11)0.0123 (12)0.0115 (12)0.0016 (9)0.0008 (9)0.0011 (10)
C50.0138 (12)0.0138 (13)0.0101 (12)0.0005 (10)0.0008 (10)0.0025 (10)
C60.0099 (11)0.0106 (12)0.0153 (13)0.0028 (9)0.0005 (9)0.0002 (10)
C410.0152 (13)0.0193 (15)0.0217 (15)0.0065 (11)0.0020 (11)0.0071 (12)
C420.0123 (13)0.0211 (15)0.0202 (15)0.0031 (11)0.0001 (11)0.0008 (12)
C430.0155 (13)0.0173 (14)0.0168 (14)0.0015 (10)0.0042 (10)0.0017 (11)
C510.0297 (16)0.0277 (17)0.0114 (14)0.0067 (13)0.0009 (12)0.0011 (12)
C520.0220 (15)0.0272 (17)0.0161 (15)0.0011 (12)0.0074 (12)0.0026 (12)
C610.0243 (15)0.0105 (13)0.0178 (14)0.0057 (11)0.0023 (11)0.0014 (11)
C620.0172 (13)0.0167 (14)0.0139 (13)0.0006 (10)0.0055 (10)0.0004 (11)
Geometric parameters (Å, º) top
Au1—Se12.3872 (3)Au2—Se22.3848 (3)
Au1—Br12.4036 (3)Au2—Br22.4040 (3)
Se1—P12.1911 (7)Se2—P22.1875 (7)
P1—C21.839 (3)P2—C51.837 (3)
P1—C31.842 (3)P2—C61.841 (3)
P1—C11.869 (3)P2—C41.874 (3)
C1—C131.530 (4)C4—C421.533 (4)
C1—C121.534 (4)C4—C431.535 (4)
C1—C111.540 (4)C4—C411.541 (4)
C2—C221.531 (4)C5—C511.533 (4)
C2—C211.533 (4)C5—C521.534 (4)
C2—H21.0000C5—H51.0000
C3—C321.530 (4)C6—C621.534 (4)
C3—C311.536 (4)C6—C611.535 (4)
C3—H31.0000C6—H61.0000
C11—H11A0.9800C41—H41A0.9800
C11—H11B0.9800C41—H41B0.9800
C11—H11C0.9800C41—H41C0.9800
C12—H12A0.9800C42—H42A0.9800
C12—H12B0.9800C42—H42B0.9800
C12—H12C0.9800C42—H42C0.9800
C13—H13A0.9800C43—H43A0.9800
C13—H13B0.9800C43—H43B0.9800
C13—H13C0.9800C43—H43C0.9800
C21—H21A0.9800C51—H51A0.9800
C21—H21B0.9800C51—H51B0.9800
C21—H21C0.9800C51—H51C0.9800
C22—H22A0.9800C52—H52A0.9800
C22—H22B0.9800C52—H52B0.9800
C22—H22C0.9800C52—H52C0.9800
C31—H31A0.9800C61—H61A0.9800
C31—H31B0.9800C61—H61B0.9800
C31—H31C0.9800C61—H61C0.9800
C32—H32A0.9800C62—H62A0.9800
C32—H32B0.9800C62—H62B0.9800
C32—H32C0.9800C62—H62C0.9800
Se1—Au1—Br1177.083 (11)Se2—Au2—Br2174.050 (11)
P1—Se1—Au1101.29 (2)P2—Se2—Au2103.59 (2)
C2—P1—C3104.54 (12)C5—P2—C6104.78 (12)
C2—P1—C1108.77 (12)C5—P2—C4109.03 (12)
C3—P1—C1113.93 (13)C6—P2—C4113.85 (12)
C2—P1—Se1105.63 (9)C5—P2—Se2105.52 (9)
C3—P1—Se1109.60 (9)C6—P2—Se2109.72 (9)
C1—P1—Se1113.64 (9)C4—P2—Se2113.25 (9)
C13—C1—C12108.3 (2)C42—C4—C43108.7 (2)
C13—C1—C11108.1 (2)C42—C4—C41109.6 (2)
C12—C1—C11110.5 (2)C43—C4—C41109.2 (2)
C13—C1—P1110.16 (19)C42—C4—P2109.85 (18)
C12—C1—P1109.86 (19)C43—C4—P2109.97 (18)
C11—C1—P1109.82 (18)C41—C4—P2109.56 (18)
C22—C2—C21109.4 (2)C51—C5—C52110.0 (2)
C22—C2—P1111.75 (19)C51—C5—P2113.23 (19)
C21—C2—P1113.40 (19)C52—C5—P2111.75 (19)
C22—C2—H2107.3C51—C5—H5107.2
C21—C2—H2107.3C52—C5—H5107.2
P1—C2—H2107.3P2—C5—H5107.2
C32—C3—C31110.9 (2)C62—C6—C61111.1 (2)
C32—C3—P1116.2 (2)C62—C6—P2116.28 (19)
C31—C3—P1113.55 (19)C61—C6—P2113.41 (19)
C32—C3—H3105.0C62—C6—H6104.9
C31—C3—H3105.0C61—C6—H6104.9
P1—C3—H3105.0P2—C6—H6104.9
C1—C11—H11A109.5C4—C41—H41A109.5
C1—C11—H11B109.5C4—C41—H41B109.5
H11A—C11—H11B109.5H41A—C41—H41B109.5
C1—C11—H11C109.5C4—C41—H41C109.5
H11A—C11—H11C109.5H41A—C41—H41C109.5
H11B—C11—H11C109.5H41B—C41—H41C109.5
C1—C12—H12A109.5C4—C42—H42A109.5
C1—C12—H12B109.5C4—C42—H42B109.5
H12A—C12—H12B109.5H42A—C42—H42B109.5
C1—C12—H12C109.5C4—C42—H42C109.5
H12A—C12—H12C109.5H42A—C42—H42C109.5
H12B—C12—H12C109.5H42B—C42—H42C109.5
C1—C13—H13A109.5C4—C43—H43A109.5
C1—C13—H13B109.5C4—C43—H43B109.5
H13A—C13—H13B109.5H43A—C43—H43B109.5
C1—C13—H13C109.5C4—C43—H43C109.5
H13A—C13—H13C109.5H43A—C43—H43C109.5
H13B—C13—H13C109.5H43B—C43—H43C109.5
C2—C21—H21A109.5C5—C51—H51A109.5
C2—C21—H21B109.5C5—C51—H51B109.5
H21A—C21—H21B109.5H51A—C51—H51B109.5
C2—C21—H21C109.5C5—C51—H51C109.5
H21A—C21—H21C109.5H51A—C51—H51C109.5
H21B—C21—H21C109.5H51B—C51—H51C109.5
C2—C22—H22A109.5C5—C52—H52A109.5
C2—C22—H22B109.5C5—C52—H52B109.5
H22A—C22—H22B109.5H52A—C52—H52B109.5
C2—C22—H22C109.5C5—C52—H52C109.5
H22A—C22—H22C109.5H52A—C52—H52C109.5
H22B—C22—H22C109.5H52B—C52—H52C109.5
C3—C31—H31A109.5C6—C61—H61A109.5
C3—C31—H31B109.5C6—C61—H61B109.5
H31A—C31—H31B109.5H61A—C61—H61B109.5
C3—C31—H31C109.5C6—C61—H61C109.5
H31A—C31—H31C109.5H61A—C61—H61C109.5
H31B—C31—H31C109.5H61B—C61—H61C109.5
C3—C32—H32A109.5C6—C62—H62A109.5
C3—C32—H32B109.5C6—C62—H62B109.5
H32A—C32—H32B109.5H62A—C62—H62B109.5
C3—C32—H32C109.5C6—C62—H62C109.5
H32A—C32—H32C109.5H62A—C62—H62C109.5
H32B—C32—H32C109.5H62B—C62—H62C109.5
Au1—Se1—P1—C2174.51 (9)Au2—Se2—P2—C5170.47 (9)
Au1—Se1—P1—C373.38 (10)Au2—Se2—P2—C677.14 (9)
Au1—Se1—P1—C155.36 (9)Au2—Se2—P2—C451.29 (9)
C2—P1—C1—C13154.4 (2)C5—P2—C4—C4285.4 (2)
C3—P1—C1—C1338.3 (2)C6—P2—C4—C42158.01 (18)
Se1—P1—C1—C1388.2 (2)Se2—P2—C4—C4231.7 (2)
C2—P1—C1—C1286.4 (2)C5—P2—C4—C43155.01 (19)
C3—P1—C1—C12157.48 (19)C6—P2—C4—C4338.4 (2)
Se1—P1—C1—C1231.0 (2)Se2—P2—C4—C4387.85 (19)
C2—P1—C1—C1135.4 (2)C5—P2—C4—C4135.0 (2)
C3—P1—C1—C1180.7 (2)C6—P2—C4—C4181.6 (2)
Se1—P1—C1—C11152.76 (17)Se2—P2—C4—C41152.16 (17)
C3—P1—C2—C2251.7 (2)C6—P2—C5—C51175.3 (2)
C1—P1—C2—C22173.72 (19)C4—P2—C5—C5162.4 (2)
Se1—P1—C2—C2264.0 (2)Se2—P2—C5—C5159.5 (2)
C3—P1—C2—C21175.9 (2)C6—P2—C5—C5250.4 (2)
C1—P1—C2—C2162.0 (2)C4—P2—C5—C52172.7 (2)
Se1—P1—C2—C2160.3 (2)Se2—P2—C5—C5265.4 (2)
C2—P1—C3—C32174.6 (2)C5—P2—C6—C62172.4 (2)
C1—P1—C3—C3266.8 (2)C4—P2—C6—C6268.6 (2)
Se1—P1—C3—C3261.8 (2)Se2—P2—C6—C6259.5 (2)
C2—P1—C3—C3154.9 (2)C5—P2—C6—C6156.9 (2)
C1—P1—C3—C3163.7 (2)C4—P2—C6—C6162.1 (2)
Se1—P1—C3—C31167.75 (18)Se2—P2—C6—C61169.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Au10.982.843.719 (3)149
C32—H32B···Au10.982.723.623 (3)154
C43—H43A···Au20.982.873.744 (3)148
C62—H62B···Au20.982.853.766 (3)155
C5—H5···Br2i1.002.793.702 (3)152
C6—H6···Br11.002.963.906 (3)157
C3—H3···Br2ii1.003.083.850 (3)134
C42—H42A···Br1iii0.983.023.959 (3)161
C2—H2···Au1iv1.002.983.929 (3)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1/2, z+3/2.
[Bis(tert-butyl)(propan-2-yl)phosphane selenide-κSe]bromidogold (7b) top
Crystal data top
[AuBr(C11H25PSe)]F(000) = 1016
Mr = 544.11Dx = 2.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.66804 (8) ÅCell parameters from 31967 reflections
b = 14.77026 (16) Åθ = 2.7–30.9°
c = 13.94963 (15) ŵ = 14.22 mm1
β = 90.4697 (10)°T = 100 K
V = 1579.87 (3) Å3Plate, colourless
Z = 40.4 × 0.35 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4774 independent reflections
Radiation source: fine-focus sealed tube4380 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.072
ω scansθmax = 30.9°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.11 (Rigaku OD, 2020)
h = 1110
Tmin = 0.070, Tmax = 0.125k = 2121
86680 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0399P)2 + 11.7761P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4774 reflectionsΔρmax = 3.43 e Å3
145 parametersΔρmin = 2.67 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00170 (12)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.12154 (2)0.61614 (2)0.08770 (2)0.01304 (7)
Br10.14892 (6)0.77340 (3)0.04695 (3)0.01770 (10)
P10.26695 (13)0.42557 (7)0.23413 (7)0.00711 (18)
Se10.08490 (6)0.45875 (3)0.11646 (3)0.01459 (10)
C10.2357 (6)0.5025 (3)0.3393 (3)0.0136 (8)
C20.4942 (6)0.4238 (3)0.1859 (4)0.0164 (9)
C30.1932 (6)0.3128 (3)0.2746 (3)0.0154 (8)
H30.0971300.3252960.3208280.018*
C110.3046 (7)0.4592 (4)0.4329 (3)0.0230 (10)
H11A0.4261590.4406260.4244780.035*
H11B0.2335770.4061810.4486130.035*
H11C0.2977180.5034280.4851760.035*
C120.0399 (6)0.5180 (3)0.3520 (3)0.0161 (9)
H12A0.0207440.5572390.4076020.024*
H12B0.0182590.4597580.3621720.024*
H12C0.0082520.5469810.2943820.024*
C130.3256 (7)0.5940 (4)0.3238 (4)0.0219 (10)
H13A0.2908410.6361860.3744530.033*
H13B0.2910000.6186310.2612470.033*
H13C0.4523900.5858110.3258780.033*
C210.6313 (7)0.4103 (5)0.2660 (5)0.0351 (15)
H21A0.7475630.4063310.2376910.053*
H21B0.6060560.3542960.3008920.053*
H21C0.6273510.4617170.3103320.053*
C220.5029 (9)0.3448 (4)0.1148 (5)0.0317 (14)
H22A0.4144180.3532060.0645260.048*
H22B0.4810160.2878620.1486950.048*
H22C0.6188330.3429050.0858680.048*
C230.5365 (6)0.5109 (3)0.1325 (4)0.0178 (9)
H23A0.5314250.5621470.1769890.027*
H23B0.4514770.5199120.0805550.027*
H23C0.6539000.5066290.1056150.027*
C310.3266 (8)0.2557 (4)0.3313 (5)0.0313 (13)
H31A0.2660050.2066960.3646210.047*
H31B0.3867430.2942000.3782890.047*
H31C0.4118860.2299950.2870310.047*
C320.1103 (10)0.2537 (4)0.1965 (4)0.0336 (14)
H32A0.2003640.2339310.1516470.050*
H32B0.0214620.2887690.1617670.050*
H32C0.0558880.2006300.2259050.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01544 (10)0.01557 (10)0.00815 (10)0.00387 (5)0.00217 (6)0.00420 (6)
Br10.0288 (2)0.0135 (2)0.0109 (2)0.00579 (17)0.00564 (16)0.00103 (15)
P10.0098 (4)0.0051 (4)0.0064 (4)0.0002 (3)0.0019 (3)0.0002 (3)
Se10.0162 (2)0.0180 (2)0.0094 (2)0.00575 (16)0.00396 (15)0.00316 (16)
C10.017 (2)0.016 (2)0.0078 (18)0.0067 (16)0.0044 (14)0.0039 (16)
C20.0135 (19)0.017 (2)0.019 (2)0.0043 (16)0.0093 (16)0.0048 (18)
C30.024 (2)0.0070 (18)0.015 (2)0.0013 (16)0.0093 (17)0.0035 (16)
C110.025 (2)0.035 (3)0.009 (2)0.009 (2)0.0027 (17)0.0015 (19)
C120.023 (2)0.0109 (19)0.015 (2)0.0016 (16)0.0096 (17)0.0023 (16)
C130.032 (3)0.017 (2)0.017 (2)0.0115 (19)0.0070 (19)0.0048 (18)
C210.012 (2)0.060 (4)0.033 (3)0.008 (2)0.003 (2)0.025 (3)
C220.043 (3)0.015 (2)0.037 (3)0.008 (2)0.028 (3)0.001 (2)
C230.016 (2)0.019 (2)0.019 (2)0.0043 (16)0.0095 (16)0.0027 (18)
C310.035 (3)0.018 (2)0.041 (3)0.013 (2)0.015 (3)0.018 (2)
C320.064 (4)0.012 (2)0.025 (3)0.016 (2)0.012 (3)0.009 (2)
Geometric parameters (Å, º) top
Au1—Se12.3761 (5)C12—H12C0.9800
Au1—Br12.4009 (5)C13—H13A0.9800
P1—C31.848 (4)C13—H13B0.9800
P1—C11.873 (4)C13—H13C0.9800
P1—C21.873 (4)C21—H21A0.9800
P1—Se12.2013 (11)C21—H21B0.9800
C1—C121.531 (6)C21—H21C0.9800
C1—C131.533 (6)C22—H22A0.9800
C1—C111.544 (7)C22—H22B0.9800
C2—C231.523 (7)C22—H22C0.9800
C2—C221.532 (7)C23—H23A0.9800
C2—C211.541 (8)C23—H23B0.9800
C3—C321.531 (7)C23—H23C0.9800
C3—C311.539 (7)C31—H31A0.9800
C3—H31.0000C31—H31B0.9800
C11—H11A0.9800C31—H31C0.9800
C11—H11B0.9800C32—H32A0.9800
C11—H11C0.9800C32—H32B0.9800
C12—H12A0.9800C32—H32C0.9800
C12—H12B0.9800
Se1—Au1—Br1175.696 (17)H12B—C12—H12C109.5
C3—P1—C1105.4 (2)C1—C13—H13A109.5
C3—P1—C2112.6 (2)C1—C13—H13B109.5
C1—P1—C2114.5 (2)H13A—C13—H13B109.5
C3—P1—Se1103.58 (16)C1—C13—H13C109.5
C1—P1—Se1111.39 (16)H13A—C13—H13C109.5
C2—P1—Se1108.73 (16)H13B—C13—H13C109.5
P1—Se1—Au1105.58 (3)C2—C21—H21A109.5
C12—C1—C13109.1 (4)C2—C21—H21B109.5
C12—C1—C11107.0 (4)H21A—C21—H21B109.5
C13—C1—C11109.5 (4)C2—C21—H21C109.5
C12—C1—P1108.3 (3)H21A—C21—H21C109.5
C13—C1—P1111.4 (3)H21B—C21—H21C109.5
C11—C1—P1111.5 (3)C2—C22—H22A109.5
C23—C2—C22108.4 (4)C2—C22—H22B109.5
C23—C2—C21108.5 (4)H22A—C22—H22B109.5
C22—C2—C21109.7 (5)C2—C22—H22C109.5
C23—C2—P1111.5 (3)H22A—C22—H22C109.5
C22—C2—P1106.8 (4)H22B—C22—H22C109.5
C21—C2—P1111.9 (3)C2—C23—H23A109.5
C32—C3—C31108.9 (5)C2—C23—H23B109.5
C32—C3—P1115.0 (3)H23A—C23—H23B109.5
C31—C3—P1116.6 (4)C2—C23—H23C109.5
C32—C3—H3105.1H23A—C23—H23C109.5
C31—C3—H3105.1H23B—C23—H23C109.5
P1—C3—H3105.1C3—C31—H31A109.5
C1—C11—H11A109.5C3—C31—H31B109.5
C1—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C3—C31—H31C109.5
C1—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5C3—C32—H32A109.5
C1—C12—H12A109.5C3—C32—H32B109.5
C1—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12B109.5C3—C32—H32C109.5
C1—C12—H12C109.5H32A—C32—H32C109.5
H12A—C12—H12C109.5H32B—C32—H32C109.5
C3—P1—Se1—Au1165.57 (15)Se1—P1—C2—C2352.7 (4)
C1—P1—Se1—Au152.70 (15)C3—P1—C2—C2248.6 (4)
C2—P1—Se1—Au174.43 (17)C1—P1—C2—C22169.1 (4)
C3—P1—C1—C1271.7 (4)Se1—P1—C2—C2265.6 (4)
C2—P1—C1—C12163.9 (3)C3—P1—C2—C2171.4 (5)
Se1—P1—C1—C1240.0 (3)C1—P1—C2—C2149.1 (5)
C3—P1—C1—C13168.3 (4)Se1—P1—C2—C21174.4 (4)
C2—P1—C1—C1343.9 (4)C1—P1—C3—C32147.5 (4)
Se1—P1—C1—C1380.0 (4)C2—P1—C3—C3287.0 (5)
C3—P1—C1—C1145.7 (4)Se1—P1—C3—C3230.3 (4)
C2—P1—C1—C1178.7 (4)C1—P1—C3—C3183.3 (4)
Se1—P1—C1—C11157.4 (3)C2—P1—C3—C3142.2 (4)
C3—P1—C2—C23166.9 (3)Se1—P1—C3—C31159.5 (4)
C1—P1—C2—C2372.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.743.650 (6)155
C23—H23B···Au10.982.903.592 (5)128
C32—H32B···Se10.982.643.233 (6)120
C3—H3···Br1i1.002.763.677 (4)153
C13—H13A···Br1ii0.982.973.928 (5)167
C21—H21B···Br1iii0.983.073.697 (6)123
C22—H22C···Br1iv0.983.103.921 (5)142
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z.
Bromido(tri-tert-butylphosphane selenide-κSe)gold (8b) top
Crystal data top
[AuBr(C12H27PSe)]F(000) = 1048
Mr = 558.14Dx = 2.228 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.29705 (16) ÅCell parameters from 15187 reflections
b = 13.6959 (3) Åθ = 2.5–30.8°
c = 14.6444 (3) ŵ = 13.50 mm1
β = 90.0892 (18)°T = 100 K
V = 1664.11 (5) Å3Block, pale orange
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5005 independent reflections
Radiation source: fine-focus sealed tube4493 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.041
ω scanθmax = 30.9°, θmin = 2.5°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1111
Tmin = 0.398, Tmax = 1.000k = 1919
48617 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0129P)2 + 2.7511P]
where P = (Fo2 + 2Fc2)/3
5005 reflections(Δ/σ)max = 0.003
154 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.91 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.26368 (2)0.32467 (2)0.61575 (2)0.01604 (3)
Br10.16630 (4)0.23290 (2)0.48775 (2)0.02017 (6)
P10.25185 (8)0.54948 (5)0.74590 (5)0.01046 (13)
Se10.37034 (4)0.40571 (2)0.74633 (2)0.02129 (7)
C10.3046 (4)0.5991 (2)0.86343 (18)0.0166 (6)
C20.0258 (3)0.5366 (2)0.7309 (2)0.0167 (6)
C30.3426 (3)0.6278 (2)0.65252 (19)0.0151 (5)
C110.2808 (4)0.7110 (2)0.8708 (2)0.0209 (6)
H11A0.1711350.7280310.8515240.031*
H11B0.3587480.7442500.8313640.031*
H11C0.2973020.7316560.9342240.031*
C120.4803 (4)0.5754 (3)0.8886 (2)0.0262 (7)
H12A0.5056620.6035050.9484640.039*
H12B0.5525450.6030580.8425040.039*
H12C0.4946430.5043840.8909250.039*
C130.2007 (4)0.5493 (2)0.93707 (19)0.0242 (7)
H13A0.2359630.5709540.9976770.036*
H13B0.2126910.4783140.9323740.036*
H13C0.0873560.5670120.9279800.036*
C210.0612 (4)0.6293 (2)0.7649 (2)0.0240 (7)
H21A0.0150040.6867810.7348550.036*
H21B0.0474930.6351670.8311240.036*
H21C0.1762140.6248040.7502050.036*
C220.0362 (4)0.4462 (3)0.7834 (2)0.0283 (7)
H22A0.1535370.4416770.7767780.042*
H22B0.0084710.4525700.8482020.042*
H22C0.0139950.3872180.7585310.042*
C230.0190 (4)0.5217 (2)0.6304 (2)0.0220 (6)
H23A0.1346540.5080520.6254390.033*
H23B0.0422130.4666240.6056090.033*
H23C0.0066330.5810000.5959000.033*
C310.2556 (4)0.7263 (2)0.6405 (2)0.0211 (6)
H31A0.2453750.7584350.6999480.032*
H31B0.1481980.7150640.6146240.032*
H31C0.3179650.7679550.5991590.032*
C320.5199 (4)0.6478 (3)0.6764 (2)0.0250 (7)
H32A0.5710760.6833570.6261570.038*
H32B0.5760320.5857060.6861090.038*
H32C0.5256170.6871000.7322600.038*
C330.3432 (4)0.5742 (2)0.5605 (2)0.0241 (7)
H33A0.2320500.5640880.5399090.036*
H33B0.3966900.5108080.5675880.036*
H33C0.4013880.6133630.5152870.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01950 (6)0.00993 (5)0.01870 (5)0.00180 (4)0.00244 (4)0.00047 (4)
Br10.02619 (15)0.01570 (14)0.01861 (13)0.00027 (11)0.00072 (11)0.00063 (11)
P10.0114 (3)0.0093 (3)0.0107 (3)0.0004 (2)0.0003 (2)0.0001 (2)
Se10.02680 (16)0.01297 (14)0.02409 (15)0.00737 (12)0.00708 (12)0.00134 (12)
C10.0213 (14)0.0168 (14)0.0116 (12)0.0014 (11)0.0037 (10)0.0002 (11)
C20.0119 (13)0.0162 (14)0.0221 (14)0.0021 (11)0.0003 (11)0.0057 (11)
C30.0153 (13)0.0156 (14)0.0144 (12)0.0002 (11)0.0021 (10)0.0002 (11)
C110.0310 (17)0.0155 (14)0.0162 (14)0.0050 (13)0.0023 (12)0.0036 (11)
C120.0271 (17)0.0309 (18)0.0206 (15)0.0028 (14)0.0128 (13)0.0012 (13)
C130.0391 (19)0.0226 (16)0.0110 (13)0.0055 (14)0.0014 (12)0.0025 (12)
C210.0120 (14)0.0257 (17)0.0343 (17)0.0041 (12)0.0003 (12)0.0118 (14)
C220.0254 (17)0.0253 (18)0.0341 (18)0.0118 (14)0.0065 (14)0.0033 (14)
C230.0168 (14)0.0234 (16)0.0258 (15)0.0042 (12)0.0073 (12)0.0095 (13)
C310.0344 (18)0.0149 (15)0.0140 (13)0.0024 (12)0.0005 (12)0.0031 (11)
C320.0172 (15)0.0252 (17)0.0326 (17)0.0050 (13)0.0065 (13)0.0019 (14)
C330.0356 (18)0.0217 (16)0.0150 (14)0.0007 (14)0.0094 (13)0.0018 (12)
Geometric parameters (Å, º) top
Au1—Se12.3805 (3)C13—H13A0.9800
Au1—Br12.3961 (3)C13—H13B0.9800
P1—C31.895 (3)C13—H13C0.9800
P1—C21.896 (3)C21—H21A0.9800
P1—C11.901 (3)C21—H21B0.9800
P1—Se12.2008 (7)C21—H21C0.9800
C1—C121.538 (4)C22—H22A0.9800
C1—C131.541 (4)C22—H22B0.9800
C1—C111.549 (4)C22—H22C0.9800
C2—C231.530 (4)C23—H23A0.9800
C2—C211.543 (4)C23—H23B0.9800
C2—C221.545 (4)C23—H23C0.9800
C3—C331.535 (4)C31—H31A0.9800
C3—C321.536 (4)C31—H31B0.9800
C3—C311.539 (4)C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800C33—H33A0.9800
C12—H12B0.9800C33—H33B0.9800
C12—H12C0.9800C33—H33C0.9800
Se1—Au1—Br1175.936 (11)H13A—C13—H13B109.5
C3—P1—C2111.30 (13)C1—C13—H13C109.5
C3—P1—C1111.06 (13)H13A—C13—H13C109.5
C2—P1—C1111.39 (13)H13B—C13—H13C109.5
C3—P1—Se1109.31 (9)C2—C21—H21A109.5
C2—P1—Se1111.01 (10)C2—C21—H21B109.5
C1—P1—Se1102.43 (9)H21A—C21—H21B109.5
P1—Se1—Au1104.44 (2)C2—C21—H21C109.5
C12—C1—C13105.6 (2)H21A—C21—H21C109.5
C12—C1—C11108.3 (3)H21B—C21—H21C109.5
C13—C1—C11108.5 (2)C2—C22—H22A109.5
C12—C1—P1111.0 (2)C2—C22—H22B109.5
C13—C1—P1110.3 (2)H22A—C22—H22B109.5
C11—C1—P1112.82 (19)C2—C22—H22C109.5
C23—C2—C21107.8 (3)H22A—C22—H22C109.5
C23—C2—C22107.0 (2)H22B—C22—H22C109.5
C21—C2—C22110.0 (2)C2—C23—H23A109.5
C23—C2—P1111.3 (2)C2—C23—H23B109.5
C21—C2—P1110.4 (2)H23A—C23—H23B109.5
C22—C2—P1110.3 (2)C2—C23—H23C109.5
C33—C3—C32106.3 (2)H23A—C23—H23C109.5
C33—C3—C31108.7 (2)H23B—C23—H23C109.5
C32—C3—C31108.6 (3)C3—C31—H31A109.5
C33—C3—P1111.4 (2)C3—C31—H31B109.5
C32—C3—P1108.5 (2)H31A—C31—H31B109.5
C31—C3—P1113.07 (19)C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5C3—C33—H33A109.5
C1—C12—H12C109.5C3—C33—H33B109.5
H12A—C12—H12C109.5H33A—C33—H33B109.5
H12B—C12—H12C109.5C3—C33—H33C109.5
C1—C13—H13A109.5H33A—C33—H33C109.5
C1—C13—H13B109.5H33B—C33—H33C109.5
C3—P1—Se1—Au174.10 (10)C3—P1—C2—C2178.5 (2)
C2—P1—Se1—Au149.06 (10)C1—P1—C2—C2146.0 (3)
C1—P1—Se1—Au1168.05 (9)Se1—P1—C2—C21159.45 (19)
C3—P1—C1—C1275.8 (2)C3—P1—C2—C22159.7 (2)
C2—P1—C1—C12159.5 (2)C1—P1—C2—C2275.8 (2)
Se1—P1—C1—C1240.8 (2)Se1—P1—C2—C2237.7 (2)
C3—P1—C1—C13167.5 (2)C2—P1—C3—C3371.6 (2)
C2—P1—C1—C1342.8 (3)C1—P1—C3—C33163.7 (2)
Se1—P1—C1—C1375.9 (2)Se1—P1—C3—C3351.4 (2)
C3—P1—C1—C1145.9 (2)C2—P1—C3—C32171.7 (2)
C2—P1—C1—C1178.7 (2)C1—P1—C3—C3247.0 (2)
Se1—P1—C1—C11162.5 (2)Se1—P1—C3—C3265.3 (2)
C3—P1—C2—C2341.1 (2)C2—P1—C3—C3151.2 (2)
C1—P1—C2—C23165.7 (2)C1—P1—C3—C3173.5 (2)
Se1—P1—C2—C2380.9 (2)Se1—P1—C3—C31174.16 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Br1i0.983.033.946 (3)156
C32—H32A···Br1ii0.982.983.905 (3)159
C33—H33B···Au10.982.873.573 (3)130
C23—H23B···Au10.982.683.582 (3)153
C12—H12C···Se10.982.713.251 (3)115
C33—H33B···Se10.983.003.574 (3)119
C22—H22C···Se10.982.973.462 (3)112
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
[(tert-Butyl)bis(propan-2-yl)phosphane sulfide-κS]iodidogold (2c) top
Crystal data top
[AuI(C10H23PS)]F(000) = 984
Mr = 530.18Dx = 2.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6010 (2) ÅCell parameters from 18460 reflections
b = 15.0435 (3) Åθ = 2.2–30.8°
c = 11.7218 (2) ŵ = 11.95 mm1
β = 91.202 (2)°T = 100 K
V = 1516.34 (5) Å3Block, pale yellow
Z = 40.25 × 0.2 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4580 independent reflections
Radiation source: fine-focus sealed tube4213 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.044
ω scansθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.19 (Rigaku OD, 2020)
h = 1212
Tmin = 0.435, Tmax = 1.000k = 2121
54148 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.0088P)2 + 1.0273P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
4580 reflectionsΔρmax = 0.92 e Å3
135 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00148 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.47494 (2)0.40378 (2)0.28431 (2)0.01328 (3)
I10.74408 (2)0.33406 (2)0.27831 (2)0.01669 (4)
S10.22595 (7)0.45551 (4)0.30480 (5)0.01601 (12)
P10.23375 (7)0.58788 (4)0.27079 (5)0.00961 (11)
C10.3011 (3)0.61276 (16)0.12332 (19)0.0122 (4)
C20.0321 (3)0.62736 (17)0.2848 (2)0.0135 (5)
H20.0314680.6926910.2690230.016*
C30.3454 (3)0.64662 (16)0.38423 (19)0.0128 (4)
H30.2946560.6290940.4568540.015*
C110.2360 (3)0.70321 (17)0.0835 (2)0.0182 (5)
H11A0.2747950.7500850.1347320.027*
H11B0.1221650.7018200.0847860.027*
H11C0.2697330.7152980.0056880.027*
C120.2443 (3)0.53869 (17)0.0413 (2)0.0193 (5)
H12A0.2760130.5527140.0364850.029*
H12B0.1306730.5345500.0433010.029*
H12C0.2901580.4818110.0649820.029*
C130.4788 (3)0.61594 (17)0.1207 (2)0.0172 (5)
H13A0.5121450.6205950.0415260.026*
H13B0.5216870.5615830.1550510.026*
H13C0.5163790.6676890.1639710.026*
C210.0821 (3)0.58348 (18)0.1996 (2)0.0195 (5)
H21A0.0756480.5187160.2073660.029*
H21B0.0554070.6005990.1217960.029*
H21C0.1881430.6031200.2153940.029*
C220.0260 (3)0.6138 (2)0.4063 (2)0.0237 (6)
H22A0.1301890.6394570.4125440.036*
H22B0.0451740.6432610.4606940.036*
H22C0.0299860.5501070.4233910.036*
C310.3296 (3)0.74827 (17)0.3790 (2)0.0203 (5)
H31A0.3681030.7741780.4508690.030*
H31B0.2200470.7642340.3668620.030*
H31C0.3906900.7712450.3157530.030*
C320.5158 (3)0.61983 (17)0.4007 (2)0.0177 (5)
H32A0.5789010.6506310.3443400.027*
H32B0.5260150.5554420.3905380.027*
H32C0.5517960.6362290.4777220.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01542 (5)0.00842 (5)0.01597 (5)0.00169 (3)0.00001 (3)0.00117 (3)
I10.01663 (8)0.01449 (8)0.01896 (8)0.00388 (6)0.00109 (6)0.00049 (6)
S10.0147 (3)0.0091 (3)0.0242 (3)0.0000 (2)0.0014 (2)0.0032 (2)
P10.0096 (3)0.0077 (3)0.0114 (3)0.0004 (2)0.0004 (2)0.0001 (2)
C10.0146 (11)0.0111 (11)0.0109 (10)0.0008 (9)0.0001 (8)0.0008 (8)
C20.0105 (10)0.0134 (12)0.0167 (11)0.0029 (9)0.0011 (8)0.0008 (9)
C30.0151 (11)0.0128 (12)0.0105 (10)0.0007 (9)0.0015 (8)0.0014 (9)
C110.0254 (13)0.0139 (12)0.0154 (11)0.0012 (10)0.0005 (10)0.0037 (9)
C120.0265 (13)0.0180 (13)0.0135 (11)0.0000 (11)0.0001 (10)0.0042 (10)
C130.0163 (11)0.0188 (13)0.0167 (11)0.0009 (10)0.0043 (9)0.0001 (10)
C210.0116 (11)0.0202 (14)0.0264 (13)0.0002 (10)0.0029 (10)0.0019 (11)
C220.0154 (12)0.0359 (17)0.0200 (13)0.0064 (11)0.0048 (10)0.0015 (11)
C310.0212 (12)0.0154 (13)0.0238 (13)0.0010 (10)0.0070 (10)0.0039 (10)
C320.0157 (11)0.0174 (13)0.0198 (12)0.0012 (10)0.0056 (9)0.0036 (10)
Geometric parameters (Å, º) top
Au1—S12.2959 (6)C12—H12A0.9800
Au1—I12.5437 (2)C12—H12B0.9800
S1—P12.0322 (8)C12—H12C0.9800
P1—C21.844 (2)C13—H13A0.9800
P1—C31.848 (2)C13—H13B0.9800
P1—C11.872 (2)C13—H13C0.9800
C1—C131.530 (3)C21—H21A0.9800
C1—C111.540 (3)C21—H21B0.9800
C1—C121.544 (3)C21—H21C0.9800
C2—C221.533 (3)C22—H22A0.9800
C2—C211.535 (3)C22—H22B0.9800
C2—H21.0000C22—H22C0.9800
C3—C321.529 (3)C31—H31A0.9800
C3—C311.536 (3)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
S1—Au1—I1173.747 (16)H12A—C12—H12B109.5
P1—S1—Au1106.08 (3)C1—C12—H12C109.5
C2—P1—C3104.91 (11)H12A—C12—H12C109.5
C2—P1—C1109.11 (10)H12B—C12—H12C109.5
C3—P1—C1113.74 (11)C1—C13—H13A109.5
C2—P1—S1105.26 (8)C1—C13—H13B109.5
C3—P1—S1110.25 (8)H13A—C13—H13B109.5
C1—P1—S1112.90 (8)C1—C13—H13C109.5
C13—C1—C11108.9 (2)H13A—C13—H13C109.5
C13—C1—C12108.25 (19)H13B—C13—H13C109.5
C11—C1—C12109.92 (19)C2—C21—H21A109.5
C13—C1—P1110.67 (15)C2—C21—H21B109.5
C11—C1—P1109.82 (16)H21A—C21—H21B109.5
C12—C1—P1109.31 (16)C2—C21—H21C109.5
C22—C2—C21109.3 (2)H21A—C21—H21C109.5
C22—C2—P1111.42 (16)H21B—C21—H21C109.5
C21—C2—P1113.20 (17)C2—C22—H22A109.5
C22—C2—H2107.6C2—C22—H22B109.5
C21—C2—H2107.6H22A—C22—H22B109.5
P1—C2—H2107.6C2—C22—H22C109.5
C32—C3—C31110.5 (2)H22A—C22—H22C109.5
C32—C3—P1116.54 (16)H22B—C22—H22C109.5
C31—C3—P1113.76 (16)C3—C31—H31A109.5
C32—C3—H3104.9C3—C31—H31B109.5
C31—C3—H3104.9H31A—C31—H31B109.5
P1—C3—H3104.9C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
Au1—S1—P1—C2178.84 (8)C3—P1—C2—C2254.3 (2)
Au1—S1—P1—C368.53 (8)C1—P1—C2—C22176.55 (18)
Au1—S1—P1—C159.91 (8)S1—P1—C2—C2262.02 (19)
C2—P1—C1—C13157.71 (17)C3—P1—C2—C21178.02 (18)
C3—P1—C1—C1341.0 (2)C1—P1—C2—C2159.8 (2)
S1—P1—C1—C1385.62 (17)S1—P1—C2—C2161.66 (18)
C2—P1—C1—C1137.51 (19)C2—P1—C3—C32174.22 (18)
C3—P1—C1—C1179.22 (18)C1—P1—C3—C3266.6 (2)
S1—P1—C1—C11154.18 (14)S1—P1—C3—C3261.36 (19)
C2—P1—C1—C1283.15 (18)C2—P1—C3—C3155.3 (2)
C3—P1—C1—C12160.11 (16)C1—P1—C3—C3163.8 (2)
S1—P1—C1—C1233.51 (18)S1—P1—C3—C31168.21 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.853.724 (3)149
C32—H32B···Au10.982.633.539 (3)154
C32—H32C···Au1i0.982.873.709 (3)144
C3—H3···I1i1.003.184.056 (2)147
C2—H2···I1ii1.003.223.973 (2)133
C2—H2···Au1ii1.003.244.237 (3)179
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
[(tert-Butyl)bis(propan-2-yl)phosphane selenide-κSe]iodidogold (6c) top
Crystal data top
[AuI(C10H23PSe)]F(000) = 2112
Mr = 577.08Dx = 2.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.70073 (16) ÅCell parameters from 37382 reflections
b = 15.4167 (2) Åθ = 2.4–30.8°
c = 17.0480 (2) ŵ = 14.02 mm1
β = 89.6296 (12)°T = 100 K
V = 3075.16 (7) Å3Plate, dichroic yellow/orange
Z = 80.2 × 0.15 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
9346 independent reflections
Radiation source: fine-focus sealed tube8443 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.042
ω scansθmax = 30.9°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.21 (Rigaku OD, 2020)
h = 1616
Tmin = 0.218, Tmax = 1.000k = 2221
124405 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0114P)2 + 8.2184P]
where P = (Fo2 + 2Fc2)/3
9346 reflections(Δ/σ)max = 0.005
267 parametersΔρmax = 2.96 e Å3
0 restraintsΔρmin = 1.28 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.02373 (2)0.28708 (2)0.62927 (2)0.01457 (3)
I10.03730 (2)0.22686 (2)0.49017 (2)0.01826 (4)
Se10.01777 (3)0.34130 (2)0.76145 (2)0.01670 (6)
P10.00031 (6)0.48087 (5)0.73953 (4)0.01007 (13)
C10.1253 (2)0.50960 (19)0.67729 (17)0.0148 (5)
C20.0185 (2)0.53016 (19)0.83730 (16)0.0142 (5)
H20.0291510.5938980.8292390.017*
C30.1368 (2)0.52481 (19)0.70298 (17)0.0139 (5)
H30.1944900.5070070.7428970.017*
C110.1667 (3)0.6019 (2)0.69746 (19)0.0201 (6)
H11A0.1034840.6429650.6905610.030*
H11B0.1934360.6035480.7520330.030*
H11C0.2295430.6179260.6625900.030*
C120.2221 (3)0.4440 (2)0.6908 (2)0.0218 (6)
H12A0.2885920.4606600.6595580.033*
H12B0.2432760.4434310.7465460.033*
H12C0.1963300.3860700.6750420.033*
C130.0924 (3)0.5072 (2)0.59001 (18)0.0214 (6)
H13A0.0560350.4515590.5777500.032*
H13B0.0390420.5545570.5783960.032*
H13C0.1612700.5140400.5581460.032*
C210.1242 (3)0.4970 (2)0.88149 (18)0.0217 (6)
H21A0.1162970.4346180.8910890.033*
H21B0.1925070.5076140.8499700.033*
H21C0.1313200.5275470.9316960.033*
C220.0884 (3)0.5185 (2)0.88792 (18)0.0204 (6)
H22A0.0760790.5460290.9390810.031*
H22B0.1541450.5454530.8616560.031*
H22C0.1033210.4564660.8953400.031*
C310.1410 (3)0.6245 (2)0.70240 (19)0.0199 (6)
H31A0.2198440.6436760.6932360.030*
H31B0.1139740.6466820.7530760.030*
H31C0.0920120.6465820.6605200.030*
C320.1816 (3)0.4879 (2)0.62553 (19)0.0216 (6)
H32A0.1451000.5181190.5817280.032*
H32B0.1638730.4258950.6227620.032*
H32C0.2645490.4961610.6223910.032*
Au20.48954 (2)0.42652 (2)0.36350 (2)0.01453 (3)
I20.54320 (2)0.47382 (2)0.22472 (2)0.01969 (4)
Se20.43272 (3)0.39455 (2)0.49591 (2)0.01620 (6)
P20.47803 (6)0.25760 (5)0.50926 (4)0.00976 (13)
C40.6276 (2)0.23204 (19)0.47698 (17)0.0131 (5)
C50.4635 (2)0.23485 (19)0.61467 (16)0.0141 (5)
H50.4837160.1724350.6225060.017*
C60.3689 (2)0.18956 (19)0.46232 (17)0.0140 (5)
H60.2952980.2072610.4877580.017*
C410.6717 (3)0.1523 (2)0.52198 (19)0.0198 (6)
H41A0.7480700.1369090.5025610.030*
H41B0.6195600.1034500.5139650.030*
H41C0.6756190.1659330.5780520.030*
C420.7056 (2)0.3105 (2)0.49220 (19)0.0194 (6)
H42A0.7846470.2954500.4786280.029*
H42B0.7010580.3266140.5477490.029*
H42C0.6807520.3595470.4599140.029*
C430.6306 (3)0.2116 (2)0.38882 (18)0.0178 (6)
H43A0.5958060.2596120.3597630.027*
H43B0.5878480.1581490.3788600.027*
H43C0.7100460.2041770.3715630.027*
C510.5445 (3)0.2885 (2)0.66618 (18)0.0220 (7)
H51A0.5308620.3503990.6572310.033*
H51B0.6238910.2744460.6526070.033*
H51C0.5303850.2747670.7215300.033*
C520.3399 (3)0.2466 (2)0.64344 (19)0.0252 (7)
H52A0.3344540.2304240.6989380.038*
H52B0.2890750.2094640.6126370.038*
H52C0.3171310.3073510.6371180.038*
C610.3802 (3)0.0926 (2)0.48032 (19)0.0200 (6)
H61A0.3132770.0617760.4601270.030*
H61B0.3848710.0841740.5371870.030*
H61C0.4494880.0698700.4551820.030*
C620.3505 (3)0.2053 (2)0.37438 (17)0.0177 (6)
H62A0.4078360.1729560.3441280.027*
H62B0.3578730.2673450.3630650.027*
H62C0.2738590.1855300.3598040.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01684 (5)0.01111 (5)0.01576 (5)0.00094 (4)0.00074 (4)0.00190 (4)
I10.01677 (9)0.01974 (10)0.01825 (9)0.00175 (7)0.00029 (7)0.00359 (7)
Se10.02671 (15)0.01004 (13)0.01338 (13)0.00031 (11)0.00245 (11)0.00175 (10)
P10.0116 (3)0.0101 (3)0.0085 (3)0.0000 (2)0.0002 (2)0.0004 (2)
C10.0143 (13)0.0160 (14)0.0142 (13)0.0032 (11)0.0041 (10)0.0011 (11)
C20.0169 (13)0.0151 (14)0.0106 (12)0.0034 (11)0.0012 (10)0.0015 (11)
C30.0131 (12)0.0132 (13)0.0153 (13)0.0004 (10)0.0010 (10)0.0001 (11)
C110.0197 (14)0.0190 (15)0.0217 (15)0.0077 (12)0.0040 (12)0.0030 (12)
C120.0159 (14)0.0252 (17)0.0243 (16)0.0009 (12)0.0046 (12)0.0020 (13)
C130.0265 (16)0.0254 (17)0.0124 (14)0.0050 (13)0.0059 (12)0.0008 (12)
C210.0225 (15)0.0282 (17)0.0145 (14)0.0026 (13)0.0064 (12)0.0028 (13)
C220.0260 (16)0.0227 (16)0.0127 (14)0.0024 (13)0.0035 (12)0.0028 (12)
C310.0226 (15)0.0146 (14)0.0224 (16)0.0059 (12)0.0032 (12)0.0002 (12)
C320.0193 (14)0.0224 (16)0.0229 (16)0.0036 (12)0.0074 (12)0.0038 (13)
Au20.01696 (5)0.01136 (5)0.01528 (5)0.00049 (4)0.00074 (4)0.00295 (4)
I20.02684 (10)0.01703 (9)0.01519 (9)0.00158 (8)0.00086 (7)0.00009 (7)
Se20.02334 (14)0.00966 (13)0.01557 (14)0.00423 (11)0.00330 (11)0.00110 (10)
P20.0110 (3)0.0089 (3)0.0093 (3)0.0004 (2)0.0000 (2)0.0004 (2)
C40.0118 (12)0.0139 (13)0.0136 (13)0.0031 (10)0.0003 (10)0.0012 (10)
C50.0165 (13)0.0162 (14)0.0097 (12)0.0003 (11)0.0008 (10)0.0010 (10)
C60.0129 (12)0.0147 (14)0.0145 (13)0.0017 (10)0.0016 (10)0.0011 (11)
C410.0162 (13)0.0200 (15)0.0231 (16)0.0076 (11)0.0020 (11)0.0053 (12)
C420.0141 (13)0.0226 (16)0.0217 (15)0.0024 (12)0.0001 (11)0.0014 (12)
C430.0181 (14)0.0198 (15)0.0153 (14)0.0012 (11)0.0038 (11)0.0004 (12)
C510.0283 (16)0.0250 (17)0.0127 (14)0.0048 (13)0.0026 (12)0.0019 (12)
C520.0230 (16)0.035 (2)0.0175 (15)0.0029 (14)0.0067 (12)0.0051 (14)
C610.0247 (15)0.0148 (14)0.0205 (15)0.0071 (12)0.0035 (12)0.0002 (12)
C620.0197 (14)0.0189 (15)0.0145 (14)0.0001 (12)0.0064 (11)0.0013 (11)
Geometric parameters (Å, º) top
Au1—Se12.4040 (3)Au2—Se22.4002 (3)
Au1—I12.5508 (2)Au2—I22.5503 (2)
Se1—P12.1938 (8)Se2—P22.1890 (8)
P1—C31.840 (3)P2—C51.838 (3)
P1—C21.844 (3)P2—C61.839 (3)
P1—C11.871 (3)P2—C41.873 (3)
C1—C131.535 (4)C4—C431.536 (4)
C1—C121.535 (4)C4—C421.539 (4)
C1—C111.542 (4)C4—C411.539 (4)
C2—C211.531 (4)C5—C521.535 (4)
C2—C221.535 (4)C5—C511.537 (4)
C2—H21.0000C5—H51.0000
C3—C321.527 (4)C6—C611.532 (4)
C3—C311.537 (4)C6—C621.535 (4)
C3—H31.0000C6—H61.0000
C11—H11A0.9800C41—H41A0.9800
C11—H11B0.9800C41—H41B0.9800
C11—H11C0.9800C41—H41C0.9800
C12—H12A0.9800C42—H42A0.9800
C12—H12B0.9800C42—H42B0.9800
C12—H12C0.9800C42—H42C0.9800
C13—H13A0.9800C43—H43A0.9800
C13—H13B0.9800C43—H43B0.9800
C13—H13C0.9800C43—H43C0.9800
C21—H21A0.9800C51—H51A0.9800
C21—H21B0.9800C51—H51B0.9800
C21—H21C0.9800C51—H51C0.9800
C22—H22A0.9800C52—H52A0.9800
C22—H22B0.9800C52—H52B0.9800
C22—H22C0.9800C52—H52C0.9800
C31—H31A0.9800C61—H61A0.9800
C31—H31B0.9800C61—H61B0.9800
C31—H31C0.9800C61—H61C0.9800
C32—H32A0.9800C62—H62A0.9800
C32—H32B0.9800C62—H62B0.9800
C32—H32C0.9800C62—H62C0.9800
Se1—Au1—I1177.832 (10)Se2—Au2—I2175.009 (10)
P1—Se1—Au1100.57 (2)P2—Se2—Au2103.30 (2)
C3—P1—C2104.65 (13)C5—P2—C6104.86 (13)
C3—P1—C1113.83 (14)C5—P2—C4109.11 (13)
C2—P1—C1108.98 (13)C6—P2—C4113.70 (13)
C3—P1—Se1109.71 (10)C5—P2—Se2105.35 (10)
C2—P1—Se1105.13 (10)C6—P2—Se2109.60 (10)
C1—P1—Se1113.77 (10)C4—P2—Se2113.51 (9)
C13—C1—C12108.1 (3)C43—C4—C42108.4 (2)
C13—C1—C11108.3 (3)C43—C4—C41108.6 (2)
C12—C1—C11110.1 (2)C42—C4—C41110.0 (2)
C13—C1—P1110.6 (2)C43—C4—P2110.23 (19)
C12—C1—P1109.9 (2)C42—C4—P2109.8 (2)
C11—C1—P1109.8 (2)C41—C4—P2109.71 (19)
C21—C2—C22110.0 (3)C52—C5—C51109.7 (3)
C21—C2—P1113.5 (2)C52—C5—P2111.8 (2)
C22—C2—P1111.5 (2)C51—C5—P2113.7 (2)
C21—C2—H2107.2C52—C5—H5107.1
C22—C2—H2107.2C51—C5—H5107.1
P1—C2—H2107.2P2—C5—H5107.1
C32—C3—C31110.8 (2)C61—C6—C62111.3 (2)
C32—C3—P1116.6 (2)C61—C6—P2114.1 (2)
C31—C3—P1113.5 (2)C62—C6—P2115.9 (2)
C32—C3—H3104.9C61—C6—H6104.7
C31—C3—H3104.9C62—C6—H6104.7
P1—C3—H3104.9P2—C6—H6104.7
C1—C11—H11A109.5C4—C41—H41A109.5
C1—C11—H11B109.5C4—C41—H41B109.5
H11A—C11—H11B109.5H41A—C41—H41B109.5
C1—C11—H11C109.5C4—C41—H41C109.5
H11A—C11—H11C109.5H41A—C41—H41C109.5
H11B—C11—H11C109.5H41B—C41—H41C109.5
C1—C12—H12A109.5C4—C42—H42A109.5
C1—C12—H12B109.5C4—C42—H42B109.5
H12A—C12—H12B109.5H42A—C42—H42B109.5
C1—C12—H12C109.5C4—C42—H42C109.5
H12A—C12—H12C109.5H42A—C42—H42C109.5
H12B—C12—H12C109.5H42B—C42—H42C109.5
C1—C13—H13A109.5C4—C43—H43A109.5
C1—C13—H13B109.5C4—C43—H43B109.5
H13A—C13—H13B109.5H43A—C43—H43B109.5
C1—C13—H13C109.5C4—C43—H43C109.5
H13A—C13—H13C109.5H43A—C43—H43C109.5
H13B—C13—H13C109.5H43B—C43—H43C109.5
C2—C21—H21A109.5C5—C51—H51A109.5
C2—C21—H21B109.5C5—C51—H51B109.5
H21A—C21—H21B109.5H51A—C51—H51B109.5
C2—C21—H21C109.5C5—C51—H51C109.5
H21A—C21—H21C109.5H51A—C51—H51C109.5
H21B—C21—H21C109.5H51B—C51—H51C109.5
C2—C22—H22A109.5C5—C52—H52A109.5
C2—C22—H22B109.5C5—C52—H52B109.5
H22A—C22—H22B109.5H52A—C52—H52B109.5
C2—C22—H22C109.5C5—C52—H52C109.5
H22A—C22—H22C109.5H52A—C52—H52C109.5
H22B—C22—H22C109.5H52B—C52—H52C109.5
C3—C31—H31A109.5C6—C61—H61A109.5
C3—C31—H31B109.5C6—C61—H61B109.5
H31A—C31—H31B109.5H61A—C61—H61B109.5
C3—C31—H31C109.5C6—C61—H61C109.5
H31A—C31—H31C109.5H61A—C61—H61C109.5
H31B—C31—H31C109.5H61B—C61—H61C109.5
C3—C32—H32A109.5C6—C62—H62A109.5
C3—C32—H32B109.5C6—C62—H62B109.5
H32A—C32—H32B109.5H62A—C62—H62B109.5
C3—C32—H32C109.5C6—C62—H62C109.5
H32A—C32—H32C109.5H62A—C62—H62C109.5
H32B—C32—H32C109.5H62B—C62—H62C109.5
Au1—Se1—P1—C372.96 (10)Au2—Se2—P2—C5169.01 (9)
Au1—Se1—P1—C2175.01 (9)Au2—Se2—P2—C678.65 (10)
Au1—Se1—P1—C155.84 (10)Au2—Se2—P2—C449.69 (10)
C3—P1—C1—C1338.2 (3)C5—P2—C4—C43155.4 (2)
C2—P1—C1—C13154.6 (2)C6—P2—C4—C4338.7 (2)
Se1—P1—C1—C1388.5 (2)Se2—P2—C4—C4387.5 (2)
C3—P1—C1—C12157.4 (2)C5—P2—C4—C4285.2 (2)
C2—P1—C1—C1286.2 (2)C6—P2—C4—C42158.2 (2)
Se1—P1—C1—C1230.8 (2)Se2—P2—C4—C4232.0 (2)
C3—P1—C1—C1181.3 (2)C5—P2—C4—C4135.9 (2)
C2—P1—C1—C1135.1 (2)C6—P2—C4—C4180.8 (2)
Se1—P1—C1—C11152.03 (18)Se2—P2—C4—C41153.02 (18)
C3—P1—C2—C21175.8 (2)C6—P2—C5—C5252.7 (3)
C1—P1—C2—C2162.1 (3)C4—P2—C5—C52174.8 (2)
Se1—P1—C2—C2160.2 (2)Se2—P2—C5—C5263.0 (2)
C3—P1—C2—C2250.9 (2)C6—P2—C5—C51177.6 (2)
C1—P1—C2—C22173.0 (2)C4—P2—C5—C5160.3 (3)
Se1—P1—C2—C2264.7 (2)Se2—P2—C5—C5161.9 (2)
C2—P1—C3—C32173.9 (2)C5—P2—C6—C6157.1 (2)
C1—P1—C3—C3267.2 (3)C4—P2—C6—C6162.0 (3)
Se1—P1—C3—C3261.6 (2)Se2—P2—C6—C61169.73 (19)
C2—P1—C3—C3155.5 (2)C5—P2—C6—C62171.7 (2)
C1—P1—C3—C3163.4 (3)C4—P2—C6—C6269.2 (2)
Se1—P1—C3—C31167.81 (19)Se2—P2—C6—C6259.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Au10.982.843.718 (3)149
C32—H32B···Au10.982.703.606 (3)154
C43—H43A···Au20.982.863.727 (3)148
C62—H62B···Au20.982.903.783 (3)151
C5—H5···I2i1.002.943.842 (3)151
C6—H6···I11.003.033.948 (3)153
C3—H3···I2ii1.003.143.949 (3)139
C42—H42A···I1iii0.983.154.090 (3)162
C2—H2···Au1iv1.003.064.002 (3)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1/2, z+3/2.
[Bis(tert-butyl)(propan-2-yl)phosphane selenide-κSe]iodidogold (7c) top
Crystal data top
[AuI(C11H25PSe)]Dx = 2.383 Mg m3
Mr = 591.10Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 52249 reflections
a = 10.7755 (2) Åθ = 2.2–30.8°
c = 28.3769 (5) ŵ = 13.09 mm1
V = 3294.86 (14) Å3T = 100 K
Z = 8Plate, colourless
F(000) = 21760.35 × 0.2 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4829 independent reflections
Radiation source: fine-focus sealed tube4768 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.044
ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlisPro, Version 1.171.35.11 (Rigaku OD, 2020)
h = 1515
Tmin = 0.092, Tmax = 0.244k = 1515
140787 measured reflectionsl = 3939
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + 46.6959P]
where P = (Fo2 + 2Fc2)/3
S = 1.42(Δ/σ)max = 0.001
4829 reflectionsΔρmax = 1.40 e Å3
145 parametersΔρmin = 1.51 e Å3
66 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.086 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.10475 (3)0.01896 (4)0.29317 (2)0.01310 (8)
I10.06625 (6)0.01598 (7)0.35532 (2)0.01677 (13)
P10.4384 (2)0.0280 (3)0.27711 (9)0.0108 (4)
Se10.26671 (10)0.03495 (11)0.23536 (4)0.0154 (2)
C10.4696 (11)0.1368 (10)0.2952 (4)0.021 (2)
C20.4370 (11)0.1386 (11)0.3281 (4)0.017 (2)
C30.5552 (10)0.0711 (11)0.2319 (4)0.017 (2)
H30.5354500.0166090.2044010.021*
C110.5839 (11)0.1471 (13)0.3288 (5)0.026 (3)
H11A0.5639220.1086230.3591500.039*
H11B0.6550080.1044670.3146340.039*
H11C0.6044030.2347850.3336730.039*
C120.4959 (12)0.2106 (12)0.2497 (5)0.032 (3)
H12A0.5023610.2991020.2572090.048*
H12B0.5740830.1819130.2357960.048*
H12C0.4281150.1975220.2272460.048*
C130.3540 (13)0.1964 (12)0.3179 (5)0.029 (3)
H13A0.2858260.1973540.2949750.044*
H13B0.3291940.1482090.3455810.044*
H13C0.3733630.2816660.3273870.044*
C210.5720 (11)0.1712 (12)0.3417 (4)0.022 (2)
H21A0.6124860.2134610.3152450.034*
H21B0.6174420.0949190.3491670.034*
H21C0.5718180.2259560.3692770.034*
C220.3696 (11)0.2575 (12)0.3139 (5)0.027 (3)
H22A0.2804710.2408830.3113130.040*
H22B0.4013780.2863470.2834820.040*
H22C0.3837920.3214430.3378720.040*
C230.3693 (11)0.0844 (13)0.3704 (4)0.024 (3)
H23A0.3832590.1372160.3979690.037*
H23B0.4009070.0007420.3767570.037*
H23C0.2802480.0801190.3636130.037*
C310.6937 (10)0.0481 (13)0.2414 (5)0.025 (3)
H31A0.7417040.0680170.2130670.038*
H31B0.7064790.0392660.2497000.038*
H31C0.7212970.1008620.2675180.038*
C320.5353 (14)0.2050 (13)0.2131 (4)0.031 (3)
H32A0.5721700.2645550.2351830.046*
H32B0.4462570.2215380.2101310.046*
H32C0.5750860.2134730.1822390.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01105 (16)0.01416 (16)0.01408 (15)0.00213 (13)0.00131 (13)0.00219 (13)
I10.0170 (3)0.0162 (3)0.0172 (3)0.0034 (2)0.0030 (2)0.0005 (2)
P10.0105 (10)0.0121 (11)0.0097 (10)0.0007 (9)0.0008 (8)0.0005 (9)
Se10.0131 (4)0.0235 (5)0.0096 (4)0.0014 (4)0.0020 (3)0.0017 (4)
C10.019 (5)0.017 (5)0.028 (5)0.003 (4)0.000 (5)0.002 (4)
C20.019 (5)0.022 (5)0.011 (4)0.004 (4)0.003 (4)0.002 (4)
C30.014 (4)0.023 (5)0.015 (4)0.009 (4)0.003 (4)0.001 (4)
C110.010 (5)0.026 (6)0.043 (7)0.004 (4)0.006 (5)0.009 (5)
C120.022 (6)0.019 (5)0.055 (8)0.007 (5)0.010 (6)0.012 (5)
C130.023 (6)0.020 (6)0.045 (7)0.003 (5)0.009 (5)0.014 (5)
C210.020 (6)0.024 (6)0.024 (6)0.000 (4)0.007 (4)0.013 (4)
C220.019 (6)0.025 (6)0.036 (6)0.007 (4)0.006 (5)0.013 (5)
C230.018 (5)0.039 (7)0.017 (5)0.006 (5)0.000 (4)0.004 (5)
C310.010 (5)0.038 (7)0.028 (6)0.002 (5)0.006 (4)0.003 (5)
C320.034 (7)0.035 (7)0.023 (6)0.014 (6)0.000 (5)0.012 (5)
Geometric parameters (Å, º) top
Au1—Se12.4014 (11)C12—H12B0.9800
Au1—I12.5509 (8)C12—H12C0.9800
Au1—Au1i3.0914 (8)C13—H13A0.9800
P1—C31.856 (11)C13—H13B0.9800
P1—C21.876 (11)C13—H13C0.9800
P1—C11.878 (11)C21—H21A0.9800
P1—Se12.198 (3)C21—H21B0.9800
C1—C131.542 (17)C21—H21C0.9800
C1—C121.543 (18)C22—H22A0.9800
C1—C111.561 (17)C22—H22B0.9800
C2—C231.520 (16)C22—H22C0.9800
C2—C221.526 (17)C23—H23A0.9800
C2—C211.546 (16)C23—H23B0.9800
C3—C311.537 (16)C23—H23C0.9800
C3—C321.553 (17)C31—H31A0.9800
C3—H31.0000C31—H31B0.9800
C11—H11A0.9800C31—H31C0.9800
C11—H11B0.9800C32—H32A0.9800
C11—H11C0.9800C32—H32B0.9800
C12—H12A0.9800C32—H32C0.9800
Se1—Au1—I1176.56 (4)H12A—C12—H12C109.5
Se1—Au1—Au1i78.63 (3)H12B—C12—H12C109.5
I1—Au1—Au1i103.36 (2)C1—C13—H13A109.5
C3—P1—C2112.3 (5)C1—C13—H13B109.5
C3—P1—C1107.7 (5)H13A—C13—H13B109.5
C2—P1—C1113.0 (5)C1—C13—H13C109.5
C3—P1—Se1100.9 (4)H13A—C13—H13C109.5
C2—P1—Se1112.8 (4)H13B—C13—H13C109.5
C1—P1—Se1109.3 (4)C2—C21—H21A109.5
P1—Se1—Au1103.94 (8)C2—C21—H21B109.5
C13—C1—C12106.4 (10)H21A—C21—H21B109.5
C13—C1—C11110.7 (10)C2—C21—H21C109.5
C12—C1—C11109.2 (10)H21A—C21—H21C109.5
C13—C1—P1111.3 (8)H21B—C21—H21C109.5
C12—C1—P1106.9 (9)C2—C22—H22A109.5
C11—C1—P1112.1 (8)C2—C22—H22B109.5
C23—C2—C22107.6 (10)H22A—C22—H22B109.5
C23—C2—C21110.0 (9)C2—C22—H22C109.5
C22—C2—C21108.8 (10)H22A—C22—H22C109.5
C23—C2—P1111.6 (8)H22B—C22—H22C109.5
C22—C2—P1109.5 (8)C2—C23—H23A109.5
C21—C2—P1109.2 (8)C2—C23—H23B109.5
C31—C3—C32110.1 (10)H23A—C23—H23B109.5
C31—C3—P1119.8 (8)C2—C23—H23C109.5
C32—C3—P1112.1 (9)H23A—C23—H23C109.5
C31—C3—H3104.4H23B—C23—H23C109.5
C32—C3—H3104.4C3—C31—H31A109.5
P1—C3—H3104.4C3—C31—H31B109.5
C1—C11—H11A109.5H31A—C31—H31B109.5
C1—C11—H11B109.5C3—C31—H31C109.5
H11A—C11—H11B109.5H31A—C31—H31C109.5
C1—C11—H11C109.5H31B—C31—H31C109.5
H11A—C11—H11C109.5C3—C32—H32A109.5
H11B—C11—H11C109.5C3—C32—H32B109.5
C1—C12—H12A109.5H32A—C32—H32B109.5
C1—C12—H12B109.5C3—C32—H32C109.5
H12A—C12—H12B109.5H32A—C32—H32C109.5
C1—C12—H12C109.5H32B—C32—H32C109.5
C3—P1—Se1—Au1169.6 (4)C3—P1—C2—C23164.0 (8)
C2—P1—Se1—Au149.5 (4)C1—P1—C2—C2341.8 (10)
C1—P1—Se1—Au177.1 (4)Se1—P1—C2—C2382.8 (8)
C3—P1—C1—C13159.2 (9)C3—P1—C2—C2277.0 (9)
I1—Au1—Au1i—I1i117.89 (4)C1—P1—C2—C22160.9 (8)
Se1—Au1—Au1i—Se1i123.62 (6)Se1—P1—C2—C2236.3 (9)
I1—Au1—Au1i—Se1i59.25 (3)C3—P1—C2—C2142.1 (10)
C2—P1—C1—C1376.2 (10)C1—P1—C2—C2180.0 (9)
Se1—P1—C1—C1350.3 (10)Se1—P1—C2—C21155.4 (7)
C3—P1—C1—C1243.4 (9)C2—P1—C3—C3174.6 (11)
C2—P1—C1—C12168.0 (8)C1—P1—C3—C3150.5 (11)
Se1—P1—C1—C1265.5 (9)Se1—P1—C3—C31165.0 (9)
C3—P1—C1—C1176.3 (10)C2—P1—C3—C3256.8 (10)
C2—P1—C1—C1148.4 (10)C1—P1—C3—C32178.1 (8)
Se1—P1—C1—C11174.9 (8)Se1—P1—C3—C3263.6 (8)
Symmetry code: (i) y, x, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23C···Au10.982.833.664 (12)144
C32—H32B···Se10.982.883.483 (13)121
C11—H11C···I1ii0.983.224.088 (13)148
C21—H21C···I1iii0.983.214.008 (12)140
C22—H22C···I1iii0.983.304.183 (12)152
C31—H31A···I1iv0.983.254.166 (11)156
C31—H31A···Au1iv0.983.193.642 (12)110
Symmetry codes: (ii) x+1/2, y1/2, z+3/4; (iii) x+1/2, y+1/2, z+3/4; (iv) y+1, x, z+1/2.
 

Footnotes

1Phosphane chalcogenides and their metal complexes, Part 6. Part 5: Upmann et al. (2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389-404.]).Dedicated to Professor Dietmar Stalke on the occasion of his 65th birthday.

Acknowledgements

It is a pleasure to acknowledge the inspiration provided by the earlier work on phosphane chalcogenides by Professor W.-W. du Mont of this Institute. We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

First citationAhrland, S., Noren, B. & Oskarsson, A. (1985). Inorg. Chem. 24, 1330–1333.  CSD CrossRef CAS Web of Science Google Scholar
First citationÁlvarez, B., Fernández, E. J., Gimeno, M. C., Jones, P. G., Laguna, A. & López-de-Luzuriaga, J. M. (1998). Polyhedron, 17, 2029–2035.  Google Scholar
First citationBennett, M. A., Mirzadeh, N., Privér, S. H., Wagler, J. & Bhargava, S. K. (2009). Z. Naturforsch. B, 64, 1463–1468.  CrossRef Google Scholar
First citationBrammer, L. (2003). Dalton Trans. pp. 3145–3157.  Web of Science CrossRef Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCanales, S., Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (2007). Zeitschrift für Naturforschung B, 62, 407–412.  CrossRef Google Scholar
First citationDaniliuc, C., Druckenbrodt, C., Hrib, C. G., Ruthe, F., Blaschette, A., Jones, P. G. & du Mont, W.-W. (2007). Chem. Commun. pp. 2060–2062.  CSD CrossRef Google Scholar
First citationDöring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationdu Mont, W.-W., Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562–4577.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHofmann, D. W. M. (2002). Acta Cryst. B58, 489–493.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHrib, C. G., Ruthe, F., Seppälä, E., Bätcher, M., Druckenbrodt, C., Wismach, C., Jones, P. G., du Mont, W.-W., Lippolis, V., Devillanova, F. A. & Bühl, M. (2006). Eur. J. Inorg. Chem. pp. 88–100.  CSD CrossRef Google Scholar
First citationHussain, M. S. & Isab, A. A. (2000). J. Chem. Crystallogr. 30, 731–735.  CSD CrossRef Google Scholar
First citationHussain, M. S. & Isab, A. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 479–480.  Google Scholar
First citationHussain, M. S., Isab, A. A., Saeed, A. & Al-Arfaj, A. R. (2001). Z. Kristallogr. New Cryst. Struct. 216, 629–630.  Google Scholar
First citationJeske, J., du Mont, W.-W. & Jones, P. G. (1999). Chem. Eur. J. 5, 385–389.  CrossRef Google Scholar
First citationMartinez, T., Vanitcha, V., Troufflard, C., Vanthuyne, N., Forté, J., Gontard, G., Lemière, G., Mouriès–Mansuy, V. & Fensterbank, L. (2021). Angew. Chem. Int. Ed. 60, 19879–19888.  CSD CrossRef Google Scholar
First citationMetrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Google Scholar
First citationPearson, R. G. (1963). J. Am. Chem. Soc. 85, 3533–3539.  CrossRef CAS Web of Science Google Scholar
First citationPérez–Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. A Eur. J. 23, 14918–14930.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.  Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  CrossRef Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  CrossRef PubMed Google Scholar
First citationSchmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931–1951.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmøkel, M. S., Cenedese, S., Overgaard, J., Jørgensen, M. R. V., Chen, Y.-S., Gatti, C., Stalke, D. & Iversen, B. B. (2012). Inorg. Chem. 51, 8607–8616.  Web of Science PubMed Google Scholar
First citationSeppälä, E., Ruthe, F., Jeske, J., du Mont, W.-W. & Jones, P. G. (1999). Chem. Commun. pp. 1471–1472.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaouss, C., Calvo, M. & Jones, P. G. (2020). Acta Cryst. E76, 1768–1770.  CSD CrossRef IUCr Journals Google Scholar
First citationTaouss, C. & Jones, P. G. (2011). Dalton Trans. 40, 11687–11689.  CSD CrossRef PubMed Google Scholar
First citationTaouss, C. & Jones, P. G. (2013). Z. Naturforsch. B, 68, 860–870.  CSD CrossRef Google Scholar
First citationTaouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911–927.  CSD CrossRef Google Scholar
First citationUpmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe. Dissertation, Technical University of Braunschweig, Germany (ISBN: 978-3-8439-1972-2).  Google Scholar
First citationUpmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526–7528.  CSD CrossRef PubMed Google Scholar
First citationUpmann, D. & Jones, P. G. (2018). Dalton Trans. 47, 2748–2758.  CSD CrossRef PubMed Google Scholar
First citationUpmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389–404.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds