research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(benzo[d]thia­zol-2-yl)-6-methyl-2H-chromen-2-one

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 March 2023; accepted 17 April 2023; online 25 April 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The mol­ecule of the title compound, C17H11NO2S, is almost planar, with an inter­planar angle of 3.01 (3)° between the benzo­thia­zole and chromene ring systems. A short intra­molecular S⋯O=C contact of 2.727 (2) Å is observed. The crystal packing involves a layer structure parallel to (211), containing dimeric inversion-symmetric units connected by a `weak' C—H⋯O=C hydrogen bond.

1. Chemical context

Benzo­thia­zole and its derivatives are important heterocyclic aromatic compounds. Benzo­thia­zole can be readily substituted at the C-2 position of the thia­zole ring (Elgemeie et al., 2020[Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.]). Compounds containing a benzo­thia­zolyl group have found numerous applications in medicine and in nonlinear optics (Sigmundová et al., 2007[Sigmundová, I., Zahradník, P. & Loos, D. (2007). Collect. Czech. Chem. Commun. 72, 1069-1093.]). Benzo­thia­zole derivatives can also display strong fluorescence and luminescence in the solid state and in solution (Wang et al., 2010[Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238-248.]). Benzo­thia­zole compounds as incorporated in organic light-emitting diodes have attracted substantial attention because of their notable photovoltaic properties (Ghanavatkar et al., 2020[Ghanavatkar, C. W., Mishra, V. R., Sekar, N., Mathew, E., Thomas, S. S. & Joe, I. H. (2020). J. Mol. Struct. 1203, 127401.]). Recently, we have synthesized novel heterocyclic derivatives involving the benzo­thia­zole moiety, many of which showed significant biological and fluorescence activities (Azzam et al., 2020[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020). ACS Omega, 5, 1640-1655.]; Khedr et al., 2022[Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022). Nucleosides Nucleotides Nucleic Acids, 41, 643-670.]).

[Scheme 1]

Coumarin is a natural product with the systematic name 2H-chromen-2-one. Its derivatives represent an important class of organic heterocycles. Thus, they are constituents of many intensively investigated and commercially important organic fluorescent materials; they also display important biological activities and are found in synthetic drugs (Curini et al., 2006[Curini, M., Cravotto, G., Epifano, F. & Giannone, G. (2006). Curr. Med. Chem. 13, 199-222.]). Furthermore, many coumarin compounds are current photosensitizers with valuable applications in medicinal chemistry (Bansal et al., 2013[Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049-3060.]). Because of their photochemical properties, coumarin compounds have found applications in nonlinear optical materials, solar energy collectors and charge-transfer agents (Kim et al., 2011[Kim, G.-J., Lee, K., Kwon, H. & Kim, H.-J. (2011). Org. Lett. 13, 2799-2801.]), and also as daylight fluorescent pigments, tunable dye lasers, fluorescent probes and components of organic light-emitting diodes (Christie & Lui, 2000[Christie, R. M. & Lui, C. H. (2000). Dyes Pigments, 47, 79-89.]). The emission intensities of coumarin chromophores depend on the nature of their substituents at various sites (Żamojć et al., 2014[Żamojć, K., Wiczk, W., Zaborowski, B., Jacewicz, D. & Chmurzyński, L. (2014). J. Fluoresc. 24, 713-718.]).

In two recent papers (Abdallah et al., 2022[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.], 2023[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E78, 441-445.]), we have given a more extensive list of references concerning the pro­perties of benzo­thia­zoles and coumarins, including many of our own publications in these fields.

Some decades ago, we reported the syntheses and characterizations of novel coumarin derivatives that have found applications as laser dyes (Elgemeie, 1989[Elgemeie, G. H. (1989). Chem. Ind. 19, 653-654.]); these included 3-(benzo[d]thia­zol-2-yl)-2H-chromen-2-one, the desmethyl ana­logue of title compound 4, a benzo­thia­zole-based cou­marin derivative which was synthesized by the reaction of 2-(cyano­meth­yl)benzo­thia­zole with salicyaldehyde. Afterwards, other research groups utilized essentially the same reaction to synthesize different derivatives of the same heterocyclic framework, including compound 4 (Chao et al., 2010[Chao, R. Y., Ding, M., Chen, J., Lee, C. & Lin, S. (2010). J. Chin. Chem. Soc. 57, 213-221.]; Makowska et al., 2019[Makowska, A., Wolff, L., Sączewski, F., Bednarski, P. J. & Kornicka, A. (2019). Pharmazie, 74, 648-657.]).

Recently, we attempted to synthesize N-[3-(benzo[d]thia­zol-2-yl)-6-methyl-2-oxoquinolin-1(2H)-yl]benzamide (5) by the reaction of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzo­hy­dra­zide (1) (Azzam et al., 2021[Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891-894.]) with 5-methyl­salicylaldehyde (2) (Fig. 1[link]). However, the product gave a mass spectrum that was inconsistent with the proposed structure. Therefore, the X-ray crystal structure was determined, indicating the form­ation of 3-(benzo[d]thia­zol-2-yl)-6-methyl-2H-chro­men-2-one (4) as the sole product, presumably arising via the initial form­ation of adduct 3 and the subsequent elimination of benzohydrazide rather than water. This is consistent with our recent observation that the desmethyl compound mentioned above is also formed as an unintended product by an exactly analogous reaction (Abdallah et al., 2022[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.]). The products thus represent, by coincidence, a continuation of our research on developing new benzo­thia­zole and coumarin derivatives as organic fluorescent constituents (Elgemeie et al., 2015[Elgemeie, G. H., Ahmed, K. A., Ahmed, E. A., Helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87-93.]).

[Figure 1]
Figure 1
Reaction scheme showing the the attempted synthesis of compound 5, which led instead to the product 4.

2. Structural commentary

The structure of compound 4 is shown in Fig. 2[link]. Its bond lengths and angles may be regarded as normal; a selection is presented in Table 1[link]. The chromene and benzo­thia­zole ring systems are planar as expected, with respective r.m.s. deviations of 0.020 and 0.015 Å; the angle between these planes is only 3.01 (3)°, so that the whole mol­ecule almost planar. A short intra­molecular S11⋯O2 contact of 2.792 (1) Å is observed. The desmethyl analogue (Abdallah et al., 2022[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.]) has, as expected, a closely similar mol­ecular structure, with an S⋯O=C contact of 2.727 (2) Å and an inter­planar angle of 6.47 (6)°, but is not isotypic to 4.

Table 1
Selected geometric parameters (Å, °)

O1—C2 1.3723 (17) S11—C17A 1.7343 (14)
O1—C8A 1.3765 (18) S11—C12 1.7515 (15)
O2—C2 1.2077 (19) C12—N13 1.3076 (18)
C3—C12 1.4698 (19) N13—C13A 1.3836 (18)
       
C2—O1—C8A 122.52 (11) N13—C12—S11 115.94 (11)
O2—C2—O1 116.99 (12) C3—C12—S11 123.35 (10)
O2—C2—C3 125.69 (14) N13—C13A—C14 124.90 (13)
O1—C2—C3 117.32 (13) N13—C13A—C17A 115.23 (12)
C17A—S11—C12 88.94 (7) C17—C17A—S11 129.05 (12)
N13—C12—C3 120.72 (13) C13A—C17A—S11 109.42 (11)
[Figure 2]
Figure 2
The mol­ecule of compound 4 in the crystal. Displacement ellipsoids represent 50% probability levels.

3. Supra­molecular features

The short contact H17⋯O2 (at −x + 2, −y, −z + 1; see Table 2[link]) may be regarded as a `weak' hydrogen bond. It links the mol­ecules to form inversion-symmetric dimers (Fig. 3[link]) in which the S⋯S distance is 3.678 (1) Å. Adjacent dimers are related by translation to give an extended structure consisting of layers parallel to (211). The inter­centroid distances (in Å) between rings of neighbouring layers, defining rings AD as thia­zole, the arene ring of benzo­thia­zole, pyran and the arene ring of chromene, respectively, are AC = 3.64, AD = 3.70 and BD = 3.61 [all with the symmetry code (−x + 1, −y + 1, −z + 1)], BC = 3.51 and BD = 3.66 Å [both with the symmetry code (−x + 2, −y + 1, −z + 1)]. The ring offsets (in the same order) are 1.44, 1.32, 0.80, 0.86 and 1.39 Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.95 2.43 3.3235 (19) 157
Symmetry code: (i) [-x+2, -y, -z+1].
[Figure 3]
Figure 3
Packing diagram of compound 4, viewed perpendicular to (211). Dashed lines indicate `weak' hydrogen bonds. Atom labels indicate the asymmetric unit. H atoms other than H17 have been omitted.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for structures con­taining both a coumarin and a benzo­thia­zole ring system in the same residue gave 16 hits. After excluding ring systems with more extended annelation and mol­ecules where the ring systems were not directly bonded to each other, 7 hits remained. In all of these, the benzo­thia­zole was bonded via its 2-position. The structure with refcode AKUCUG (Bakthadoss & Selvakumar, 2016[Bakthadoss, M. & Selvakumar, R. (2016). J. Org. Chem. 81, 3381-3389.]) involved a linkage via the 8-position of the coumarin; the other 6 hits [VIVWEF and VIWDOX (Shi et al., 2019[Shi, D., Chen, S., Dong, B., Zhang, Y., Sheng, C., James, T. D. & Guo, Y. (2019). Chem. Sci. 10, 3715-3722.]); WINZAU (Jasinski & Paight, 1995[Jasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531-533.]); SECSEC (Abdallah et al., 2022[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.]); PEGMEX and PEGMIB (Singh et al., 2022[Singh, R., Chen, D.-G., Wang, C.-H., Wu, C.-C., Hsu, C.-H., Wu, C., Lai, T., Chou, P. & Chen, C. (2022). J. Mater. Chem. B, 10, 6228-6236.])] all had this linkage at the 3-position, as in compound 4. In all cases, a short intra­molecular S⋯O=C contact was observed, with distances in the range 2.681–2.786 Å.

5. Synthesis and crystallization

5-Methyl­salicyl­aldehyde, 2 (1.36 g, 0.01 mol) and ammonium acetate (0.77 g, 0.01 mol) were added to a solution of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide, 1 (3.11 g, 0.01 mol), in ethanol (10 mL). The reaction mixture was refluxed for ca 3 h and the resulting precipitate was collected by filtration and recrystallized from ethanol.

Pale-yellow crystals; yield: 96% (2.82 g); m.p. 495–497 K; IR (KBr, cm−1): ν 3062, (CH-aromatic), 2918 (CH3), 1710 (C=O), 1582 (C=N) and 1619, 1485 (C=C). 1H NMR (400 MHz, DMSO-d6): δ 2.40 (s, 3H, CH3), 7.42–8.18 (m, 7H, C6H4, C6H3), 9.19 (s, 1H, CH-pyran). 13C NMR (100 MHz, DMSO-d6): δ 20.8 (CH3), 116.5, 119.0, 120.0, 122.7, 123.0, 124.5, 125.9, 127.2, 128.6, 130.2, 135.2, 136.4, 142.4, 152.4 (aromatic C atoms, pyran ring), 160.0 (C=N), 160.4 (C=O). MS (EI): m/z (%) 293 [M+] (100.00). Analysis calculated (%) for C17H11NO2S: C 69.61, H 3.78, N 4.77, S 10.93; found: C 69.42, H 3.90, N 4.66, S 10.99.

6. Refinement

The title crystal was a non-merohedral two-component twin. The orientations are related by a 180° rotation around the reciprocal axis c*. The structure was refined using the HKLF5 method, whereby the relative volume of the smaller twin component refined to 0.387 (1). For non-merohedral twins thus refined, Rint is not a valid concept, and the number of reflections should be inter­preted with caution, because the equivalent reflections in the intensity file have already been merged.

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The methyl group was included as an idealized rigid group allowed to rotate but not tip (C—H = 0.98 Å and H—C—H = 109.5°). Other H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å). The Uiso(H) values were fixed at 1.5 times Ueq of the parent C atoms for methyl groups and at 1.2 times Ueq for the other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H11NO2S
Mr 293.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.1592 (2), 9.0048 (2), 10.8678 (3)
α, β, γ (°) 82.779 (2), 76.016 (2), 75.078 (2)
V3) 655.42 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.22
Crystal size (mm) 0.2 × 0.08 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd Inc., Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.391, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4408, 4408, 4313
Rint See Refinement
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.07
No. of reflections 4408
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd Inc., Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

3-(Benzo[d]thiazol-2-yl)-6-methyl-2H-chromen-2-one top
Crystal data top
C17H11NO2SZ = 2
Mr = 293.33F(000) = 304
Triclinic, P1Dx = 1.486 Mg m3
a = 7.1592 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.0048 (2) ÅCell parameters from 15669 reflections
c = 10.8678 (3) Åθ = 5.1–76.9°
α = 82.779 (2)°µ = 2.22 mm1
β = 76.016 (2)°T = 100 K
γ = 75.078 (2)°Lath, yellow
V = 655.42 (3) Å30.2 × 0.08 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer
4408 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4408 independent reflections
Mirror monochromator4313 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 4.2°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
k = 1111
Tmin = 0.391, Tmax = 1.000l = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.069P)2 + 0.1477P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4408 reflectionsΔρmax = 0.36 e Å3
192 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51103 (16)0.48246 (12)0.81168 (9)0.0190 (2)
O20.6896 (2)0.26471 (13)0.73105 (10)0.0284 (3)
C20.6325 (2)0.40210 (18)0.71141 (13)0.0193 (3)
C30.6808 (2)0.48993 (17)0.58998 (12)0.0165 (3)
C40.6030 (2)0.64361 (17)0.57955 (12)0.0167 (3)
H40.6327320.6990400.4998000.020*
C4A0.4771 (2)0.72457 (17)0.68581 (13)0.0163 (3)
C50.3967 (2)0.88415 (17)0.68151 (13)0.0180 (3)
H50.4216600.9433500.6031630.022*
C60.2821 (2)0.95747 (18)0.78852 (13)0.0186 (3)
C70.2475 (2)0.86682 (17)0.90335 (13)0.0179 (3)
H70.1698550.9154690.9778310.022*
C8A0.4369 (2)0.63944 (17)0.80150 (13)0.0163 (3)
C80.3231 (2)0.70939 (17)0.91095 (13)0.0185 (3)
H80.2978260.6501940.9892680.022*
C90.1992 (3)1.12900 (19)0.78301 (15)0.0253 (3)
H9A0.1093851.1582360.8643140.038*
H9B0.1264691.1591230.7146670.038*
H9C0.3079441.1813730.7664760.038*
S110.92276 (5)0.21156 (4)0.48745 (3)0.01826 (13)
C120.8130 (2)0.40930 (16)0.48039 (13)0.0163 (3)
N130.85618 (18)0.48415 (14)0.37018 (11)0.0170 (3)
C13A0.9840 (2)0.38535 (17)0.28225 (13)0.0167 (3)
C141.0636 (2)0.42978 (18)0.15610 (13)0.0189 (3)
H141.0296840.5339830.1239850.023*
C151.1927 (2)0.31842 (18)0.07949 (13)0.0200 (3)
H151.2497200.3470720.0057300.024*
C161.2408 (2)0.16354 (18)0.12571 (14)0.0205 (3)
H161.3279480.0891020.0705640.025*
C17A1.0364 (2)0.23021 (17)0.32803 (13)0.0177 (3)
C171.1641 (2)0.11734 (18)0.24965 (14)0.0198 (3)
H171.1969100.0125680.2805840.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (6)0.0148 (5)0.0158 (5)0.0030 (4)0.0012 (4)0.0006 (4)
O20.0399 (7)0.0162 (6)0.0212 (5)0.0006 (5)0.0006 (5)0.0007 (4)
C20.0228 (7)0.0171 (7)0.0174 (6)0.0044 (6)0.0029 (5)0.0018 (5)
C30.0178 (7)0.0169 (7)0.0151 (6)0.0046 (5)0.0036 (5)0.0016 (5)
C40.0188 (7)0.0177 (7)0.0141 (6)0.0050 (6)0.0036 (5)0.0008 (5)
C4A0.0165 (7)0.0178 (7)0.0153 (6)0.0044 (6)0.0037 (5)0.0021 (5)
C50.0196 (7)0.0173 (7)0.0163 (6)0.0043 (6)0.0034 (5)0.0009 (5)
C60.0179 (7)0.0181 (7)0.0198 (6)0.0034 (6)0.0046 (5)0.0024 (5)
C70.0157 (7)0.0205 (7)0.0167 (6)0.0029 (5)0.0017 (5)0.0041 (5)
C8A0.0170 (7)0.0149 (7)0.0174 (6)0.0047 (5)0.0039 (5)0.0004 (5)
C80.0198 (7)0.0197 (7)0.0158 (6)0.0060 (6)0.0024 (5)0.0002 (5)
C90.0317 (8)0.0180 (8)0.0217 (7)0.0002 (6)0.0027 (6)0.0034 (5)
S110.0232 (2)0.01407 (19)0.01565 (19)0.00208 (14)0.00330 (13)0.00092 (13)
C120.0172 (6)0.0160 (7)0.0162 (6)0.0040 (5)0.0046 (5)0.0011 (5)
N130.0174 (6)0.0172 (6)0.0160 (5)0.0038 (5)0.0031 (4)0.0018 (4)
C13A0.0157 (7)0.0168 (7)0.0180 (6)0.0038 (5)0.0037 (5)0.0027 (5)
C140.0190 (7)0.0190 (7)0.0184 (6)0.0047 (6)0.0038 (5)0.0003 (5)
C150.0186 (7)0.0240 (8)0.0175 (6)0.0067 (6)0.0017 (5)0.0028 (5)
C160.0185 (7)0.0227 (8)0.0211 (7)0.0041 (6)0.0036 (5)0.0076 (6)
C17A0.0186 (7)0.0171 (7)0.0186 (6)0.0052 (6)0.0051 (5)0.0016 (5)
C170.0206 (7)0.0176 (7)0.0216 (7)0.0036 (6)0.0054 (5)0.0039 (5)
Geometric parameters (Å, º) top
O1—C21.3723 (17)C13A—C141.4022 (19)
O1—C8A1.3765 (18)C13A—C17A1.409 (2)
O2—C21.2077 (19)C14—C151.383 (2)
C2—C31.4645 (19)C15—C161.406 (2)
C3—C41.354 (2)C16—C171.381 (2)
C3—C121.4698 (19)C17A—C171.399 (2)
C4—C4A1.4310 (19)C4—H40.9500
C4A—C8A1.3956 (19)C5—H50.9500
C4A—C51.403 (2)C7—H70.9500
C5—C61.384 (2)C8—H80.9500
C6—C71.4083 (19)C9—H9A0.9800
C6—C91.504 (2)C9—H9B0.9800
C7—C81.381 (2)C9—H9C0.9800
C8A—C81.3897 (19)C14—H140.9500
S11—C17A1.7343 (14)C15—H150.9500
S11—C121.7515 (15)C16—H160.9500
C12—N131.3076 (18)C17—H170.9500
N13—C13A1.3836 (18)
C2—O1—C8A122.52 (11)C14—C15—C16121.07 (13)
O2—C2—O1116.99 (12)C17—C16—C15121.37 (14)
O2—C2—C3125.69 (14)C17—C17A—C13A121.53 (13)
O1—C2—C3117.32 (13)C17—C17A—S11129.05 (12)
C4—C3—C2119.91 (13)C13A—C17A—S11109.42 (11)
C4—C3—C12120.78 (12)C16—C17—C17A117.68 (14)
C2—C3—C12119.31 (13)C3—C4—H4119.2
C3—C4—C4A121.57 (12)C4A—C4—H4119.2
C8A—C4A—C5118.28 (13)C6—C5—H5119.2
C8A—C4A—C4117.62 (13)C4A—C5—H5119.2
C5—C4A—C4124.07 (12)C8—C7—H7119.0
C6—C5—C4A121.65 (13)C6—C7—H7119.0
C5—C6—C7117.94 (14)C7—C8—H8120.7
C5—C6—C9121.11 (13)C8A—C8—H8120.7
C7—C6—C9120.94 (13)C6—C9—H9A109.5
C8—C7—C6122.00 (13)C6—C9—H9B109.5
O1—C8A—C8117.40 (12)H9A—C9—H9B109.5
O1—C8A—C4A121.01 (13)C6—C9—H9C109.5
C8—C8A—C4A121.59 (14)H9A—C9—H9C109.5
C7—C8—C8A118.53 (13)H9B—C9—H9C109.5
C17A—S11—C1288.94 (7)C15—C14—H14120.8
N13—C12—C3120.72 (13)C13A—C14—H14120.8
N13—C12—S11115.94 (11)C14—C15—H15119.5
C3—C12—S11123.35 (10)C16—C15—H15119.5
C12—N13—C13A110.47 (12)C17—C16—H16119.3
N13—C13A—C14124.90 (13)C15—C16—H16119.3
N13—C13A—C17A115.23 (12)C16—C17—H17121.2
C14—C13A—C17A119.86 (13)C17A—C17—H17121.2
C15—C14—C13A118.48 (14)
C8A—O1—C2—O2179.74 (13)C4A—C8A—C8—C70.5 (2)
C8A—O1—C2—C30.6 (2)C4—C3—C12—N130.9 (2)
O2—C2—C3—C4178.35 (15)C2—C3—C12—N13178.82 (13)
O1—C2—C3—C41.3 (2)C4—C3—C12—S11178.79 (11)
O2—C2—C3—C121.3 (2)C2—C3—C12—S111.53 (19)
O1—C2—C3—C12178.98 (12)C17A—S11—C12—N130.22 (11)
C2—C3—C4—C4A1.5 (2)C17A—S11—C12—C3179.88 (12)
C12—C3—C4—C4A178.79 (13)C3—C12—N13—C13A179.37 (12)
C3—C4—C4A—C8A0.1 (2)S11—C12—N13—C13A0.31 (15)
C3—C4—C4A—C5178.18 (13)C12—N13—C13A—C14178.01 (13)
C8A—C4A—C5—C60.7 (2)C12—N13—C13A—C17A0.85 (17)
C4—C4A—C5—C6177.38 (13)N13—C13A—C14—C15178.86 (13)
C4A—C5—C6—C70.0 (2)C17A—C13A—C14—C150.1 (2)
C4A—C5—C6—C9179.11 (13)C13A—C14—C15—C161.1 (2)
C5—C6—C7—C80.4 (2)C14—C15—C16—C171.2 (2)
C9—C6—C7—C8179.54 (14)N13—C13A—C17A—C17179.81 (13)
C2—O1—C8A—C8177.01 (13)C14—C13A—C17A—C171.3 (2)
C2—O1—C8A—C4A2.3 (2)N13—C13A—C17A—S111.00 (16)
C5—C4A—C8A—O1179.81 (12)C14—C13A—C17A—S11177.92 (11)
C4—C4A—C8A—O12.0 (2)C12—S11—C17A—C17179.76 (15)
C5—C4A—C8A—C81.0 (2)C12—S11—C17A—C13A0.66 (11)
C4—C4A—C8A—C8177.23 (13)C15—C16—C17—C17A0.0 (2)
C6—C7—C8—C8A0.2 (2)C13A—C17A—C17—C161.2 (2)
O1—C8A—C8—C7179.80 (12)S11—C17A—C17—C16177.78 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.433.3235 (19)157
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.  Google Scholar
First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E78, 441–445.  CrossRef Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBakthadoss, M. & Selvakumar, R. (2016). J. Org. Chem. 81, 3381–3389.  Web of Science CSD CrossRef Google Scholar
First citationBansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060.  Web of Science CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChao, R. Y., Ding, M., Chen, J., Lee, C. & Lin, S. (2010). J. Chin. Chem. Soc. 57, 213–221.  Web of Science CrossRef CAS Google Scholar
First citationChristie, R. M. & Lui, C. H. (2000). Dyes Pigments, 47, 79–89.  Web of Science CrossRef CAS Google Scholar
First citationCurini, M., Cravotto, G., Epifano, F. & Giannone, G. (2006). Curr. Med. Chem. 13, 199–222.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H. (1989). Chem. Ind. 19, 653–654.  Google Scholar
First citationElgemeie, G. H., Ahmed, K. A., Ahmed, E. A., Helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87–93.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.  Web of Science CrossRef Google Scholar
First citationGhanavatkar, C. W., Mishra, V. R., Sekar, N., Mathew, E., Thomas, S. S. & Joe, I. H. (2020). J. Mol. Struct. 1203, 127401.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531–533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022). Nucleosides Nucleotides Nucleic Acids, 41, 643–670.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, G.-J., Lee, K., Kwon, H. & Kim, H.-J. (2011). Org. Lett. 13, 2799–2801.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMakowska, A., Wolff, L., Sączewski, F., Bednarski, P. J. & Kornicka, A. (2019). Pharmazie, 74, 648–657.  Web of Science CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd Inc., Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, D., Chen, S., Dong, B., Zhang, Y., Sheng, C., James, T. D. & Guo, Y. (2019). Chem. Sci. 10, 3715–3722.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSigmundová, I., Zahradník, P. & Loos, D. (2007). Collect. Czech. Chem. Commun. 72, 1069–1093.  Google Scholar
First citationSingh, R., Chen, D.-G., Wang, C.-H., Wu, C.-C., Hsu, C.-H., Wu, C., Lai, T., Chou, P. & Chen, C. (2022). J. Mater. Chem. B, 10, 6228–6236.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.  Web of Science CrossRef CAS Google Scholar
First citationŻamojć, K., Wiczk, W., Zaborowski, B., Jacewicz, D. & Chmurzyński, L. (2014). J. Fluoresc. 24, 713–718.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds