research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[3-(benzo[d]thia­zol-2-yl)-6-bromo-2H-chromen-2-yl­­idene]-4-methyl­benzenamine

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 11 March 2023; accepted 30 March 2023; online 14 April 2023)

The title compound, C23H15BrN2OS, was the unexpected product in an attempted synthesis of the isomeric 3-(benzo[d]thia­zol-2-yl)-6-bromo-1-p-tolyl­quinolin-2(1H)-one. The Cchromene=N—C angle is wide [125.28 (8)°]. The benzo­thia­zole and chromene ring systems are almost coplanar, with their planes parallel to (1[\overline{1}]0); the toluene ring system is rotated by ca 40° out of the chromene plane. The mol­ecular packing involves layers with π-stacking, borderline `weak' hydrogen bonds and possible C—H⋯π contacts.

1. Chemical context

Benzo­thia­zoles exhibit strong fluorescence and luminescence properties (Wang et al., 2010[Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238-248.]). Incorporated benzo­thia­zole moieties are present in many commercially important organofluorescent materials that have attracted significant research inter­est in the field of organic light-emitting diodes (Lu et al., 2017[Lu, F., Hu, R., Wang, S., Guo, X. & Yang, G. (2017). RSC Adv. 7, 4196-4202.]; Metwally et al., 2022a[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445-448.],b[Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679-686.]). Coumarin (IUPAC name 2H-chromen-2-one) is a natural product and flavouring agent. Recently, a series of novel benzo­thia­zolyl-coumarin hybrids have been synthesized as potential biological agents and efficient emitting materials (Azzam et al., 2021[Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891-894.], 2022a[Azzam, R. A., Gad, N. M. & Elgemeie, G. H. (2022a). ACS Omega, 7, 35656-35667.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369-372.],c[Azzam, R. A., Elgemeie, G. H., Gad, N. M. & Jones, P. G. (2022c). IUCrData, 7, x220412.],d[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022d). Antibiotics, 11, 1799.]; Wu et al., 2011[Wu, W., Wu, W., Ji, S., Guo, H. & Zhao, J. (2011). Dalton Trans. 40, 5953-5963.]). We have previously prepared 3-(benzo[d]oxazol, -imidazole, -thia­zol-2-yl)-2H-chromen-2-imine and their corresponding coumarin analogues 3-(benzo[d]oxazol-, -imidazol, -thia­zol-2-yl)-2H-chromen-2-one, through the reaction of salicyl­aldehyde with 2-cyano­methyl-benzoxazole, -benzimidazole, and -benzo­thia­zole, respectively (Elgemeie, 1989[Elgemeie, G. H. (1989). Chem. Ind. 19, 653-654.]). Some derivatives of these ring systems, known commercially as coumarin-6, coumarin-7 and coumarin-30, have been used as laser dyes in medical applications (Das et al., 2021[Das, A., Das, S., Biswas, A. & Chattopadhyay, N. (2021). J. Phys. Chem. B, 125, 13482-13493.]; Satpati et al., 2009[Satpati, A. K., Kumbhakar, M., Nath, S. & Pal, H. (2009). Photochem. Photobiol. 85, 119-129.]). Recently, we have synthesized some coumarin derivatives that exhibit fluorescence properties (Elgemeie & Elghandour, 1990[Elgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230-1232.]; Elgemeie et al., 2000a[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265-272.],b[Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363-268.]; Elgemeie et al., 2015[Elgemeie, G. H., Ahmed, K. A., ahmed, E. A., helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87-93.]) as part of our research inter­est in exploiting new coumarin and benzo­thia­zole deriv­atives for biological and photochemical materials (Azzam et al., 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820-1822.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041-1043.], 2020a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023-30036.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.],c[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640-1655.],d[Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020d). J. Mol. Struct. 1201, 127194.]; Metwally et al., 2021a[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615-617.],b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054-1057.]). Here, we describe a one-pot reaction of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide (1) with 5-bromo-salicylaldehde (2) and 4-p-toluidine (5) (Fig. 1[link]). The mass spectrum of the product was, however, inconsistent with the proposed structure, 3-(benzo[d]thia­zol-2-yl)-6-bromo-1-p-tolyl­quinolin-2(1H)-one (6). Therefore, the X-ray crystal structure was determined, showing the exclusive presence of N-[3-(benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-yl­idene]-4-methyl­benz­en­a­mine (7), an isomer of 6, as the sole product in the solid state; this was unexpected because the C=O moiety of the coumarin framework is usually chemically robust. The formation of 7 presumably involves the initial formation of the adduct 3 followed by elimination of benzohydrazide; the inter­mediate 4 then reacts with p-toluidine to give the final product 7 by elimination of water.

[Scheme 1]
[Figure 1]
Figure 1
The synthesis of compound 7.

2. Structural commentary

The mol­ecule of 7 is shown in Fig. 2[link]. The structure determ­ination makes clear that the unexpected product is a chromene derivative with an exocyclic imino function rather than a quinoline with an exocyclic oxo function. Bond lengths and angles may be regarded as normal, except that the C9=N9—C17 angle is very wide at 125.28 (8)°; selected values are given in Table 1[link]. The benzo­thia­zole and chromene ring systems are almost coplanar, with an inter­planar angle of 7.59 (2)°; associated with this is a short intra­molecular contact S1⋯N9 2.7570 (8) Å. The toluene ring system is appreciably rotated out of the chromene plane, with an inter­planar angle of 40.38 (2)°.

Table 1
Selected geometric parameters (Å, °)

S1—C7A 1.7340 (9) C9—O1 1.3819 (11)
S1—C2 1.7512 (9) O1—C10 1.3751 (12)
C2—N3 1.3094 (12) N9—C17 1.4127 (12)
C2—C8 1.4705 (12) C13—Br1 1.8969 (10)
C9—N9 1.2708 (12)    
       
C7A—S1—C2 88.85 (4) C3A—C7A—S1 109.69 (7)
N3—C2—S1 115.73 (7) C10—O1—C9 121.82 (7)
C2—N3—C3A 110.78 (8) C9—N9—C17 125.28 (8)
N3—C3A—C7A 114.92 (8)    
[Figure 2]
Figure 2
The mol­ecule of compound 7 in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

There are few short contacts between mol­ecules; two borderline `weak' hydrogen bonds are listed in Table 2[link]. A tenable packing analysis attributes a central role to the ring systems; individual rings are denoted here as A (thia­zole), B (benzo ring of benzo­thia­zole), C (pyran ring of chromene), D (benzo ring of chromene) and E (tol­yl). The mol­ecules lie with rings AD almost parallel to (1[\overline{1}]0) (Fig. 3[link]), and there are weak stacking effects AD [inter­centroid distance 3.5910 (5) Å, offset 1.12 Å; operator 1 − x, 1 − y, 1 − z], CC [3.6184 (5) Å, 1.35 Å; 2 − x, 1 − y, 1 − z] and CD [3.6308 (5) Å, 1.27 Å; 2 − x, 1 − y, 1 − z] (Fig. 4[link]). Two possible C—H⋯π inter­actions are represented by the contacts H21⋯Cg(B) [Cg = centroid; H⋯Cg 2.89 Å, C—H⋯Cg 122°; −1 + x, −1 + y, z] and H6⋯Cg(E) [H⋯Cg 2.87 Å, C—H⋯Cg 124°; x, 1 + y, z]; the angles are narrow, but the inter­actions do not necessarily involve the ring centroids. The contacts H7⋯Br1 and H6⋯Cg(E) lie within the parent layer; H22⋯N3 is formed to a neighbouring layer and H21⋯Cg(B) to the next layer but one.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Br1i 0.95 3.11 3.7721 (10) 128
C22—H22⋯N3ii 0.95 2.63 3.5716 (13) 169
Symmetry codes: (i) [x-1, y-1, z-1]; (ii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Layer structure of compound 7 (without hydrogen atoms) showing the asymmetric unit (indicated by the label O1) and further translation-related mol­ecules viewed perpendicular to the plane (1[\overline{1}]0). A second layer is related to the first by inversion.
[Figure 4]
Figure 4
Stacking of ring systems in the structure of 7 (without hydrogen atoms). The view direction is parallel to the c axis. The label O1 indicates the mol­ecule of the chosen asymmetric unit.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

We recently reported the structure of the mixed coumarin/benzo[d]thia­zole derivative 3-(benzo[d]thia­zol-2-yl)-2H-chromen-2-one [3-(1,3-benzo­thia­zol-2-yl)-2H-1-benzo­pyran-2-one] (Abdallah et al., 2022[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.]). The structure of the 4-oxo isomer had already been published by Lohar et al. (2018[Lohar, S., Dhara, K., Roy, P., Sinha Babu, S. P. & Chattopadhyay, P. (2018). ACS Omega, 3, 10145-10153.]). Two more related structures were published by others at the same time (Singh et al., 2022[Singh, R., Chen, D.-G., Wang, C.-H., Wu, C.-C., Hsu, C.-H., Wu, C.-H., Lai, T.-Y., Chou, P. & Chen, C. (2022). J. Mater. Chem. B, 10, 6228-6236.]). The current structure, however, bears an imine (=NAr) rather than an oxo substituent at atom C2 of the chromene (and thus is strictly not a coumarin). Only one other such structure was found in the database; its substituent at the imine nitro­gen atom is pyridin-2-ethyl (refcode ITEVAF; Ahamed & Ghosh, 2011[Ahamed, B. N. & Ghosh, P. (2011). Dalton Trans. 40, 6411-6419.]) and its C=N—C angle is much narrower than in 7 at 118.5 (7)°. A further search was therefore performed for structures with an =NAr group at the 2-position of a chromene ring system. This gave 18 hits with a considerable spread of C=N—C angles, namely 120.5–127.9°, mean value 123.4 (24)°. Nine of these structures appeared in the same publication (Shishkina et al., 2019[Shishkina, S. V., Konovalova, I. S., Kovalenko, S. M., Trostianko, P. V., Geleverya, A. O., Nikolayeva, L. L. & Bunyatyan, N. D. (2019). Acta Cryst. B75, 887-902.]), and, like 7, none of them had an inter­planar angle close to the calculated gas-phase optimum of 0°.

5. Synthesis and crystallization

5-Bromo-salicyl­aldehyde 2 (2.01 g, 0.01 mol), p-toluidine 5 (1.07 g, 0.01 mol) and solid ammonium acetate (0.77 g, 0.01 mol) were added to a solution of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide 1 (3.11 g, 0.01 mol) in ethanol (25 mL). The reaction mixture was refluxed for 3 h, and the solid thus formed was collected by filtration and recrystallized from ethanol.

Yellow crystals (seen under the microscope to be orange/yellow dichroic); yield: 94% (4.21 g); m.p. 501–503 K; IR (KBr, cm−1): ν 3052, (CH-aromatic), 2918, 2852 (CH3), 1554 (C=N), 1591, 1476 (C=C). 1H NMR (400 MHz, DMSO-d6) δ: 2.51 (s, 3H, CH3), 7.16–8.28 (m, 11H, 2 C6H4, C6H3), 8.73 (s, 1H, CH-pyran). 13C NMR (100 MHz, DMSO-d6) δ: 21.2 (CH3), 116.5, 118.0, 121.7, 122.5 (2), 123.1, 123.9, 125.8, 127.0, 129.9 (2), 132.0, 134.1, 134.5, 135.1, 137.6, 141.7, 145.6, 152.0, 152.1 (aromatic carbons, pyran ring), 160.5 (C=N). Analysis: calculated for C23H15BrN2OS (447.35): C 61.75, H 3.38, N 6.26, S 7.17%. Found: C 61.86, H 3.50, N 6.06, S 6.99%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The methyl group was included as an idealized rigid group allowed to rotate but not tip (C—H 0.98 Å, H—C—H 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions, with C—H 0.95 Å. The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for methyl H atoms and 1.2 × Ueq for other hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula C23H15BrN2OS
Mr 447.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.34138 (10), 10.6720 (2), 12.9247 (2)
α, β, γ (°) 104.5034 (16), 90.2462 (12), 103.9961 (14)
V3) 948.97 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.29
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.902, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 126966, 12477, 11717
Rint 0.030
(sin θ/λ)max−1) 0.928
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.086, 1.27
No. of reflections 12477
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −0.64
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.69a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.69a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.69a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015a).

N-[3-(Benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-ylidene]-4-methylbenzenamine top
Crystal data top
C23H15BrN2OSZ = 2
Mr = 447.34F(000) = 452
Triclinic, P1Dx = 1.566 Mg m3
a = 7.34138 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6720 (2) ÅCell parameters from 55045 reflections
c = 12.9247 (2) Åθ = 2.3–41.0°
α = 104.5034 (16)°µ = 2.29 mm1
β = 90.2462 (12)°T = 100 K
γ = 103.9961 (14)°Block, yellow-orange dichroic
V = 948.97 (3) Å30.20 × 0.15 × 0.12 mm
Data collection top
XtaLAB Synergy
diffractometer
12477 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source11717 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 41.3°, θmin = 2.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1919
Tmin = 0.902, Tmax = 1.000l = 2323
126966 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.3775P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.003
12477 reflectionsΔρmax = 1.00 e Å3
254 parametersΔρmin = 0.64 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Short intramolecular contact:

2.7570 (0.0008) S1 - N9

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.9114 (0.0010) x + 0.6551 (0.0043) y + 0.9221 (0.0052) z = 5.0880 (0.0023)

* 0.0005 (0.0007) C17 * -0.0080 (0.0007) C18 * 0.0078 (0.0007) C19 * -0.0001 (0.0007) C20 * -0.0074 (0.0007) C21 * 0.0071 (0.0007) C22 -0.1433 (0.0014) N9 0.0078 (0.0018) C23

Rms deviation of fitted atoms = 0.0062

6.7905 (0.0005) x - 4.3737 (0.0026) y - 3.5046 (0.0028) z = 1.1567 (0.0016)

Angle to previous plane (with approximate esd) = 40.378 ( 0.018 )

* -0.0112 (0.0007) C8 * -0.0356 (0.0007) C9 * 0.0189 (0.0007) O1 * 0.0164 (0.0008) C10 * 0.0078 (0.0008) C11 * -0.0097 (0.0008) C12 * -0.0229 (0.0008) C13 * -0.0003 (0.0008) C14 * 0.0198 (0.0008) C15 * 0.0168 (0.0007) C16 -0.1250 (0.0009) Br1 -0.0945 (0.0011) N9

Rms deviation of fitted atoms = 0.0184

6.6853 (0.0007) x - 5.5698 (0.0018) y - 2.4072 (0.0037) z = 1.1618 (0.0013)

Angle to previous plane (with approximate esd) = 7.587 ( 0.024 )

* -0.0246 (0.0005) S1 * -0.0299 (0.0006) C2 * 0.0114 (0.0007) N3 * 0.0329 (0.0008) C3A * 0.0037 (0.0008) C4 * -0.0325 (0.0008) C5 * -0.0172 (0.0009) C6 * 0.0192 (0.0008) C7 * 0.0370 (0.0008) C7A

Rms deviation of fitted atoms = 0.0254

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45005 (3)0.22816 (2)0.24952 (2)0.01102 (4)
C20.53265 (12)0.27006 (9)0.38418 (7)0.00988 (12)
N30.47875 (11)0.17627 (8)0.43436 (6)0.01092 (11)
C3A0.36335 (12)0.06293 (9)0.36717 (7)0.01059 (12)
C40.27384 (14)0.05271 (10)0.39829 (8)0.01396 (14)
H40.2944430.0594700.4690830.017*
C50.15488 (14)0.15658 (10)0.32326 (9)0.01606 (16)
H50.0915950.2348050.3433680.019*
C60.12611 (14)0.14821 (10)0.21763 (9)0.01639 (16)
H60.0449370.2212940.1674570.020*
C70.21439 (14)0.03497 (10)0.18570 (8)0.01469 (15)
H70.1950920.0295430.1143860.018*
C7A0.33289 (12)0.07121 (9)0.26171 (7)0.01109 (13)
C80.65444 (12)0.40075 (9)0.44104 (7)0.01000 (12)
C90.69589 (12)0.51144 (9)0.39019 (7)0.01044 (12)
O10.81113 (10)0.63197 (7)0.44747 (6)0.01236 (11)
N90.62892 (12)0.49654 (8)0.29581 (7)0.01224 (12)
C100.87706 (12)0.65155 (9)0.55151 (7)0.01079 (12)
C110.98434 (13)0.77861 (9)0.60325 (8)0.01284 (14)
H111.0109230.8475510.5670200.015*
C121.05226 (13)0.80324 (10)0.70912 (8)0.01385 (14)
H121.1262450.8893270.7458640.017*
C131.01084 (13)0.70054 (10)0.76081 (8)0.01306 (14)
Br11.09469 (2)0.73707 (2)0.90683 (2)0.01723 (3)
C140.90564 (13)0.57339 (9)0.70921 (8)0.01269 (13)
H140.8803130.5045330.7455310.015*
C150.83692 (12)0.54769 (9)0.60237 (7)0.01077 (12)
C160.72340 (12)0.41962 (9)0.54312 (7)0.01106 (13)
H160.6962410.3472670.5757080.013*
C170.64703 (13)0.59939 (9)0.24293 (7)0.01134 (13)
C180.66395 (14)0.56395 (10)0.13211 (8)0.01423 (14)
H180.6744360.4765060.0975660.017*
C190.66550 (15)0.65591 (10)0.07226 (8)0.01490 (15)
H190.6802120.6310730.0025180.018*
C200.64577 (13)0.78423 (10)0.12042 (8)0.01351 (14)
C210.62680 (14)0.81793 (10)0.23071 (8)0.01380 (14)
H210.6118720.9043900.2646560.017*
C220.62919 (13)0.72820 (9)0.29233 (8)0.01265 (13)
H220.6187550.7542530.3674930.015*
C230.64635 (18)0.88259 (12)0.05472 (10)0.02078 (19)
H23A0.6135390.9619900.0989770.031*
H23B0.5540140.8411250.0067380.031*
H23C0.7718640.9086680.0291480.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01261 (8)0.01125 (8)0.00922 (8)0.00140 (6)0.00060 (6)0.00424 (6)
C20.0102 (3)0.0100 (3)0.0097 (3)0.0025 (2)0.0010 (2)0.0031 (2)
N30.0119 (3)0.0103 (3)0.0107 (3)0.0012 (2)0.0001 (2)0.0044 (2)
C3A0.0103 (3)0.0104 (3)0.0113 (3)0.0019 (2)0.0004 (2)0.0040 (2)
C40.0142 (3)0.0127 (3)0.0152 (4)0.0007 (3)0.0004 (3)0.0067 (3)
C50.0144 (3)0.0132 (3)0.0200 (4)0.0004 (3)0.0013 (3)0.0070 (3)
C60.0151 (4)0.0131 (3)0.0185 (4)0.0005 (3)0.0031 (3)0.0036 (3)
C70.0155 (3)0.0136 (3)0.0131 (4)0.0007 (3)0.0021 (3)0.0029 (3)
C7A0.0113 (3)0.0111 (3)0.0107 (3)0.0021 (2)0.0004 (2)0.0034 (2)
C80.0101 (3)0.0096 (3)0.0107 (3)0.0023 (2)0.0011 (2)0.0036 (2)
C90.0104 (3)0.0096 (3)0.0116 (3)0.0018 (2)0.0014 (2)0.0038 (2)
O10.0136 (3)0.0105 (2)0.0122 (3)0.0001 (2)0.0009 (2)0.0043 (2)
N90.0145 (3)0.0111 (3)0.0116 (3)0.0022 (2)0.0009 (2)0.0049 (2)
C100.0100 (3)0.0104 (3)0.0120 (3)0.0023 (2)0.0009 (2)0.0032 (2)
C110.0122 (3)0.0100 (3)0.0154 (4)0.0011 (2)0.0009 (3)0.0033 (3)
C120.0127 (3)0.0117 (3)0.0155 (4)0.0020 (3)0.0002 (3)0.0015 (3)
C130.0126 (3)0.0138 (3)0.0116 (3)0.0029 (3)0.0006 (3)0.0016 (3)
Br10.01926 (5)0.01788 (5)0.01143 (4)0.00218 (3)0.00160 (3)0.00057 (3)
C140.0132 (3)0.0125 (3)0.0119 (3)0.0027 (3)0.0004 (3)0.0028 (3)
C150.0101 (3)0.0103 (3)0.0118 (3)0.0023 (2)0.0004 (2)0.0029 (2)
C160.0113 (3)0.0104 (3)0.0116 (3)0.0022 (2)0.0004 (2)0.0036 (2)
C170.0124 (3)0.0111 (3)0.0106 (3)0.0015 (2)0.0002 (2)0.0043 (2)
C180.0184 (4)0.0125 (3)0.0108 (3)0.0021 (3)0.0001 (3)0.0029 (3)
C190.0184 (4)0.0156 (4)0.0099 (3)0.0017 (3)0.0000 (3)0.0043 (3)
C200.0142 (3)0.0147 (3)0.0127 (4)0.0020 (3)0.0002 (3)0.0068 (3)
C210.0161 (3)0.0131 (3)0.0140 (4)0.0046 (3)0.0025 (3)0.0060 (3)
C220.0153 (3)0.0127 (3)0.0112 (3)0.0040 (3)0.0025 (3)0.0048 (3)
C230.0267 (5)0.0210 (4)0.0186 (5)0.0057 (4)0.0018 (4)0.0125 (4)
Geometric parameters (Å, º) top
S1—C7A1.7340 (9)C15—C161.4382 (13)
S1—C21.7512 (9)C17—C181.4010 (13)
C2—N31.3094 (12)C17—C221.4010 (13)
C2—C81.4705 (12)C18—C191.3915 (14)
N3—C3A1.3809 (12)C19—C201.3977 (15)
C3A—C41.4055 (13)C20—C211.3964 (14)
C3A—C7A1.4082 (13)C20—C231.5057 (14)
C4—C51.3849 (14)C21—C221.3934 (13)
C5—C61.4085 (15)C4—H40.9500
C6—C71.3872 (14)C5—H50.9500
C7—C7A1.4015 (13)C6—H60.9500
C8—C161.3600 (13)C7—H70.9500
C8—C91.4616 (12)C11—H110.9500
C9—N91.2708 (12)C12—H120.9500
C9—O11.3819 (11)C14—H140.9500
O1—C101.3751 (12)C16—H160.9500
N9—C171.4127 (12)C18—H180.9500
C10—C111.3896 (13)C19—H190.9500
C10—C151.3985 (13)C21—H210.9500
C11—C121.3931 (14)C22—H220.9500
C12—C131.3954 (14)C23—H23A0.9800
C13—C141.3849 (13)C23—H23B0.9800
C13—Br11.8969 (10)C23—H23C0.9800
C14—C151.4049 (13)
C7A—S1—C288.85 (4)C22—C17—N9123.92 (8)
N3—C2—C8120.14 (8)C19—C18—C17120.48 (9)
N3—C2—S1115.73 (7)C18—C19—C20121.05 (9)
C8—C2—S1124.12 (6)C21—C20—C19117.95 (9)
C2—N3—C3A110.78 (8)C21—C20—C23121.46 (9)
N3—C3A—C4124.80 (8)C19—C20—C23120.58 (9)
N3—C3A—C7A114.92 (8)C22—C21—C20121.80 (9)
C4—C3A—C7A120.23 (8)C21—C22—C17119.69 (9)
C5—C4—C3A118.40 (9)C5—C4—H4120.8
C4—C5—C6121.12 (9)C3A—C4—H4120.8
C7—C6—C5121.06 (9)C4—C5—H5119.4
C6—C7—C7A118.06 (9)C6—C5—H5119.4
C7—C7A—C3A121.11 (8)C7—C6—H6119.5
C7—C7A—S1129.11 (7)C5—C6—H6119.5
C3A—C7A—S1109.69 (7)C6—C7—H7121.0
C16—C8—C9119.94 (8)C7A—C7—H7121.0
C16—C8—C2119.48 (8)C10—C11—H11120.5
C9—C8—C2120.55 (8)C12—C11—H11120.5
N9—C9—O1121.20 (8)C11—C12—H12120.2
N9—C9—C8120.80 (8)C13—C12—H12120.2
O1—C9—C8118.00 (8)C13—C14—H14120.5
C10—O1—C9121.82 (7)C15—C14—H14120.5
C9—N9—C17125.28 (8)C8—C16—H16119.6
O1—C10—C11117.00 (8)C15—C16—H16119.6
O1—C10—C15121.11 (8)C19—C18—H18119.8
C11—C10—C15121.89 (9)C17—C18—H18119.8
C10—C11—C12118.90 (9)C18—C19—H19119.5
C11—C12—C13119.52 (9)C20—C19—H19119.5
C14—C13—C12121.77 (9)C22—C21—H21119.1
C14—C13—Br1119.00 (7)C20—C21—H21119.1
C12—C13—Br1119.21 (7)C21—C22—H22120.2
C13—C14—C15119.05 (9)C17—C22—H22120.2
C10—C15—C14118.86 (8)C20—C23—H23A109.5
C10—C15—C16118.19 (8)C20—C23—H23B109.5
C14—C15—C16122.95 (8)H23A—C23—H23B109.5
C8—C16—C15120.85 (8)C20—C23—H23C109.5
C18—C17—C22119.00 (8)H23A—C23—H23C109.5
C18—C17—N9116.72 (8)H23B—C23—H23C109.5
C7A—S1—C2—N30.05 (7)C9—O1—C10—C11176.93 (8)
C7A—S1—C2—C8179.77 (8)C9—O1—C10—C152.96 (13)
C8—C2—N3—C3A179.03 (8)O1—C10—C11—C12179.31 (8)
S1—C2—N3—C3A0.79 (10)C15—C10—C11—C120.57 (14)
C2—N3—C3A—C4176.34 (9)C10—C11—C12—C130.22 (14)
C2—N3—C3A—C7A1.36 (11)C11—C12—C13—C140.92 (15)
N3—C3A—C4—C5177.03 (9)C11—C12—C13—Br1177.29 (7)
C7A—C3A—C4—C50.56 (14)C12—C13—C14—C150.80 (14)
C3A—C4—C5—C61.09 (16)Br1—C13—C14—C15177.41 (7)
C4—C5—C6—C70.75 (17)O1—C10—C15—C14179.19 (8)
C5—C6—C7—C7A0.15 (16)C11—C10—C15—C140.68 (13)
C6—C7—C7A—C3A0.68 (15)O1—C10—C15—C160.42 (13)
C6—C7—C7A—S1175.47 (8)C11—C10—C15—C16179.46 (8)
N3—C3A—C7A—C7178.14 (9)C13—C14—C15—C100.00 (13)
C4—C3A—C7A—C70.33 (14)C13—C14—C15—C16178.71 (9)
N3—C3A—C7A—S11.32 (10)C9—C8—C16—C150.14 (13)
C4—C3A—C7A—S1176.50 (7)C2—C8—C16—C15177.59 (8)
C2—S1—C7A—C7177.19 (10)C10—C15—C16—C81.08 (13)
C2—S1—C7A—C3A0.69 (7)C14—C15—C16—C8177.64 (9)
N3—C2—C8—C165.52 (13)C9—N9—C17—C18145.41 (10)
S1—C2—C8—C16174.66 (7)C9—N9—C17—C2241.55 (14)
N3—C2—C8—C9172.19 (8)C22—C17—C18—C190.84 (14)
S1—C2—C8—C97.62 (12)N9—C17—C18—C19174.24 (9)
C16—C8—C9—N9178.29 (9)C17—C18—C19—C201.56 (15)
C2—C8—C9—N90.59 (13)C18—C19—C20—C210.79 (15)
C16—C8—C9—O12.26 (13)C18—C19—C20—C23179.58 (10)
C2—C8—C9—O1179.97 (8)C19—C20—C21—C220.68 (15)
N9—C9—O1—C10176.74 (8)C23—C20—C21—C22178.95 (10)
C8—C9—O1—C103.82 (12)C20—C21—C22—C171.37 (15)
O1—C9—N9—C176.20 (14)C18—C17—C22—C210.59 (14)
C8—C9—N9—C17174.37 (8)N9—C17—C22—C21172.29 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1i0.953.113.7721 (10)128
C22—H22···N3ii0.952.633.5716 (13)169
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332.  Google Scholar
First citationAhamed, B. N. & Ghosh, P. (2011). Dalton Trans. 40, 6411–6419.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022d). Antibiotics, 11, 1799.  Web of Science CrossRef PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369–372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Gad, N. M. & Jones, P. G. (2022c). IUCrData, 7, x220412.  Google Scholar
First citationAzzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020d). J. Mol. Struct. 1201, 127194.  Web of Science CSD CrossRef Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Gad, N. M. & Elgemeie, G. H. (2022a). ACS Omega, 7, 35656–35667.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDas, A., Das, S., Biswas, A. & Chattopadhyay, N. (2021). J. Phys. Chem. B, 125, 13482–13493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H. (1989). Chem. Ind. 19, 653–654.  Google Scholar
First citationElgemeie, G. H., Ahmed, K. A., ahmed, E. A., helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87–93.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230–1232.  CrossRef CAS Web of Science Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLohar, S., Dhara, K., Roy, P., Sinha Babu, S. P. & Chattopadhyay, P. (2018). ACS Omega, 3, 10145–10153.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLu, F., Hu, R., Wang, S., Guo, X. & Yang, G. (2017). RSC Adv. 7, 4196–4202.  Web of Science CrossRef CAS Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.  Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615–617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054–1057.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSatpati, A. K., Kumbhakar, M., Nath, S. & Pal, H. (2009). Photochem. Photobiol. 85, 119–129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Konovalova, I. S., Kovalenko, S. M., Trostianko, P. V., Geleverya, A. O., Nikolayeva, L. L. & Bunyatyan, N. D. (2019). Acta Cryst. B75, 887–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSingh, R., Chen, D.-G., Wang, C.-H., Wu, C.-C., Hsu, C.-H., Wu, C.-H., Lai, T.-Y., Chou, P. & Chen, C. (2022). J. Mater. Chem. B, 10, 6228–6236.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.  Web of Science CrossRef CAS Google Scholar
First citationWu, W., Wu, W., Ji, S., Guo, H. & Zhao, J. (2011). Dalton Trans. 40, 5953–5963.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds