Download citation
Download citation
link to html
Pyrimidine-2-thione (HSpym) reacts with lead(II) thio­cyanate and lead(II) bromide in N,N-di­methyl­formamide (DMF) to form poly[(μ-iso­thio­cyanato-κ2N:S)(μ4-pyrimidine-2-thiol­ato-κ6N1,S:S:S:S,N3)lead(II)], [Pb(C4H3N2S)(NCS)]n or [Pb(Spym)(NCS)]n, (I), and the polymeric one-dimensional (1D) com­pound catena-poly[[μ4-bromido-di-μ-bromido-(μ-pyrimidine-2-thiol­ato-κ3N1,S:S)(μ-pyrimidine-2-thione-κ3N1,S:S)dilead(II)] N,N-di­methyl­formamide monosolvate], {[Pb2Br3(C4H3N2S)(C4H4N2S)]·C3H7NO}n or {[Pb2Br3(Spym)(HSpym)]·DMF}n, (IIa), respectively. Poly[μ4-bromido-di-μ3-bromido-(μ-pyrimidine-2-thiol­ato-κ3N1,S:S)(μ-pyrimidine-2-thione-κ3N1,S:S)dilead(II)], [Pb2Br3(C4H3N2S)(C4H4N2S)]n or [Pb2Br3(Spym)(HSpym)]n, (IIb), could be obtained as a mixture with (IIa) when using a lesser amount of solvent. In the crystal structures of the pseudohalide/halide PbII stable com­pounds, coordination of anionic and neutral HSpym has been observed. Both Spym (in the thiol­ate tautomeric form) and NCS ligands were responsible for the two-dimensional (2D) arrangement in (I). The Br ligands establish the 1D polymeric arrangement in (IIa). Eight-coordinated metal centres have been observed in both com­pounds, when considering the Pb...S and Pb...Br inter­actions. Both com­pounds were characterized by FT–IR and diffuse reflectance spectroscopies, as well as by powder X-ray diffraction. Compound (IIa) and its desolvated version (IIb) represent the first structurally characterized PbII com­pounds containing neutral HSpym and anionic Spym ligands. After a prolonged time in solution, (IIa) is converted to another com­pound due to com­plete deprotonation of HSpym. The structural characterization of (I) and (II) suggests HSpym as a good candidate for the removal of PbII ions from solutions containing thio­cyanate or bromide ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621006379/yp3215sup1.cif
Contains datablocks I, IIa, IIb, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621006379/yp3215Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621006379/yp3215IIasup3.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621006379/yp3215IIbsup4.hkl
Contains datablock IIb

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621006379/yp3215sup5.pdf
Additional figures and spectra

CCDC references: 2090929; 2090928; 2090927

Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: SHELXTL (Bruker, 2016) and WinGX (Farrugia, 2012).

Poly[(µ-isothiocyanato-κ2N:S)(µ4-pyrimidine-2-thiolato-κ6N1,S:S:S:S,N3)lead(II)] (I) top
Crystal data top
[Pb(C4H3N2S)(NCS)]Dx = 3.188 Mg m3
Mr = 376.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 9783 reflections
a = 9.5993 (4) Åθ = 3.2–28.3°
b = 8.5887 (3) ŵ = 21.97 mm1
c = 9.5137 (4) ÅT = 299 K
V = 784.36 (5) Å3Block, yellow
Z = 40.20 × 0.10 × 0.05 mm
F(000) = 672
Data collection top
Bruker D8 venture Photon 100
diffractometer
942 reflections with I > 2σ(I)
Radiation source: microfocus x ray tubeRint = 0.025
φ and ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.485, Tmax = 0.746k = 1111
49451 measured reflectionsl = 1212
1027 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0091P)2 + 0.6117P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.024(Δ/σ)max = 0.001
S = 1.22Δρmax = 0.75 e Å3
1027 reflectionsΔρmin = 0.51 e Å3
59 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0118 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.43045 (2)0.00123 (2)0.7500000.02053 (6)
S10.51385 (6)0.2500000.5000000.02462 (14)
S20.20787 (9)0.48583 (7)0.7500000.03332 (17)
N10.26661 (15)0.14748 (17)0.58303 (16)0.0223 (3)
N20.2242 (3)0.1624 (3)0.7500000.0320 (5)
C10.3337 (2)0.2500000.5000000.0182 (4)
C20.12738 (18)0.1448 (2)0.5779 (2)0.0263 (4)
H20.0799540.0690930.6288960.032*
C30.0519 (3)0.2500000.5000000.0274 (5)
H30.0450170.2500000.4999980.033*
C40.2191 (2)0.2977 (3)0.7500000.0220 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01770 (8)0.01859 (7)0.02529 (8)0.00003 (3)0.0000.000
S10.0164 (3)0.0267 (3)0.0307 (3)0.0000.0000.0012 (3)
S20.0336 (4)0.0215 (3)0.0449 (4)0.0038 (3)0.0000.000
N10.0211 (7)0.0260 (7)0.0196 (7)0.0016 (6)0.0009 (6)0.0046 (6)
N20.0249 (12)0.0250 (11)0.0459 (14)0.0039 (9)0.0000.000
C10.0202 (10)0.0200 (10)0.0143 (10)0.0000.0000.0021 (9)
C20.0225 (8)0.0343 (9)0.0221 (9)0.0056 (7)0.0013 (7)0.0049 (8)
C30.0174 (10)0.0403 (15)0.0243 (13)0.0000.0000.0016 (12)
C40.0154 (11)0.0281 (12)0.0225 (11)0.0030 (9)0.0000.000
Geometric parameters (Å, º) top
Pb1—N22.428 (2)N1—C21.338 (2)
Pb1—N12.5641 (14)N1—C11.3470 (18)
Pb1—N1i2.5641 (14)N2—C41.164 (3)
S1—C11.729 (2)C2—C31.375 (2)
S2—C41.619 (3)
N2—Pb1—N177.49 (5)N1ii—C1—N1122.8 (2)
N2—Pb1—N1i77.49 (5)N1ii—C1—S1118.58 (11)
N1—Pb1—N1i76.56 (7)N1—C1—S1118.57 (11)
C2—N1—C1117.90 (16)N1—C2—C3122.33 (18)
C2—N1—Pb1128.82 (12)C2—C3—C2ii116.4 (2)
C1—N1—Pb1112.96 (12)N2—C4—S2178.6 (3)
C4—N2—Pb1127.8 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1/2, z+1.
catena-Poly[[µ4-bromido-di-µ-bromido-(µ-pyrimidine-2-thiolato-κ3N1,S:S)(µ-pyrimidine-2-thione-κ3N1,S:S)dilead(II)] N,N-dimethylformamide monosolvate] (IIa) top
Crystal data top
[Pb2Br3(C4H3N2S)(C4H4N2S)]·C3H7NOF(000) = 848
Mr = 950.50Dx = 3.061 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 4.3103 (1) ÅCell parameters from 9863 reflections
b = 24.7913 (8) Åθ = 2.3–28.2°
c = 9.6633 (3) ŵ = 22.33 mm1
β = 93.092 (1)°T = 299 K
V = 1031.10 (5) Å3Block, colorless
Z = 20.12 × 0.05 × 0.04 mm
Data collection top
Bruker D8 Venture Photon 100
diffractometer
2378 reflections with I > 2σ(I)
Radiation source: microfocus X ray tubeRint = 0.022
φ and ω scansθmax = 28.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 55
Tmin = 0.426, Tmax = 0.694k = 3233
16000 measured reflectionsl = 1212
2594 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0314P)2 + 8.1717P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.001
S = 1.06Δρmax = 4.43 e Å3
2594 reflectionsΔρmin = 3.05 e Å3
118 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.52608 (6)0.34038 (2)0.69870 (3)0.04743 (12)
Br10.03304 (15)0.38057 (3)0.50914 (7)0.04499 (18)
Br20.0708 (2)0.2500000.79391 (11)0.0427 (2)
S10.1696 (4)0.38934 (6)0.91620 (18)0.0414 (4)
N10.4971 (11)0.4453 (2)0.7439 (5)0.0345 (10)
N20.1989 (12)0.4967 (2)0.8926 (5)0.0346 (10)
H2A0.0754470.4982900.9594890.041*0.5
C10.2962 (13)0.4484 (2)0.8466 (6)0.0325 (11)
C20.5897 (14)0.4906 (3)0.6864 (7)0.0386 (13)
H20.7254880.4884430.6150500.046*
C30.4936 (15)0.5411 (3)0.7278 (7)0.0423 (14)
H30.5601280.5725690.6859950.051*
C40.2961 (15)0.5422 (2)0.8333 (7)0.0393 (13)
H40.2269030.5752980.8649480.047*
O11.491 (3)0.2500000.4910 (12)0.098 (4)
N31.431 (4)0.2500000.2555 (13)0.081 (4)
C101.438 (11)0.2320 (15)0.385 (3)0.174 (11)0.5
H101.3888220.1955470.3910200.208*0.5
C111.477 (13)0.3052 (17)0.227 (4)0.174 (11)0.5
H11A1.2843530.3210080.2012780.261*0.5
H11B1.5465850.3230630.3074360.261*0.5
H11C1.6299090.3092180.1515500.261*0.5
C121.368 (13)0.2141 (16)0.139 (4)0.174 (11)0.5
H12A1.4830530.2262870.0569860.261*0.5
H12B1.4297550.1780190.1603500.261*0.5
H12C1.1498110.2147090.1233640.261*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03462 (16)0.04494 (17)0.0638 (2)0.00670 (10)0.01260 (11)0.01840 (12)
Br10.0351 (3)0.0588 (4)0.0415 (3)0.0009 (3)0.0066 (2)0.0111 (3)
Br20.0366 (4)0.0285 (4)0.0633 (6)0.0000.0065 (4)0.000
S10.0504 (9)0.0314 (7)0.0435 (9)0.0005 (6)0.0142 (7)0.0060 (6)
N10.033 (2)0.034 (3)0.037 (3)0.000 (2)0.0056 (19)0.002 (2)
N20.037 (3)0.032 (2)0.035 (3)0.000 (2)0.004 (2)0.0029 (19)
C10.032 (3)0.032 (3)0.034 (3)0.001 (2)0.002 (2)0.002 (2)
C20.034 (3)0.044 (3)0.038 (3)0.003 (3)0.005 (2)0.004 (3)
C30.041 (3)0.039 (3)0.047 (4)0.005 (3)0.006 (3)0.011 (3)
C40.041 (3)0.029 (3)0.047 (4)0.001 (2)0.002 (3)0.004 (2)
O10.090 (8)0.139 (11)0.066 (6)0.0000.015 (6)0.000
N30.138 (12)0.048 (6)0.056 (6)0.0000.003 (7)0.000
C100.29 (3)0.15 (2)0.097 (14)0.06 (2)0.069 (17)0.002 (12)
C110.29 (3)0.15 (2)0.097 (14)0.06 (2)0.069 (17)0.002 (12)
C120.29 (3)0.15 (2)0.097 (14)0.06 (2)0.069 (17)0.002 (12)
Geometric parameters (Å, º) top
Pb1—N12.641 (5)C3—H30.9300
Pb1—Br12.9059 (7)C4—H40.9300
Pb1—S12.9325 (17)O1—C101.15 (3)
Pb1—Br1i3.0911 (7)N3—C101.33 (3)
Pb1—Br23.1485 (7)N3—C111.41 (4)
S1—C11.713 (6)N3—C121.47 (3)
N1—C21.325 (8)C10—H100.9300
N1—C11.354 (8)C11—H11A0.9600
N2—C41.343 (8)C11—H11B0.9600
N2—C11.352 (8)C11—H11C0.9600
N2—H2A0.8600C12—H12A0.9600
C2—C31.385 (10)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.363 (10)
N1—Pb1—Br174.16 (11)C4—C3—C2116.2 (6)
N1—Pb1—S156.13 (11)C4—C3—H3121.9
Br1—Pb1—S185.20 (4)C2—C3—H3121.9
N1—Pb1—Br1i79.73 (11)N2—C4—C3121.6 (6)
Br1—Pb1—Br1i91.847 (19)N2—C4—H4119.2
S1—Pb1—Br1i134.89 (4)C3—C4—H4119.2
N1—Pb1—Br2128.07 (11)C10—N3—C11120 (2)
Br1—Pb1—Br288.97 (2)C10—N3—C12122 (2)
S1—Pb1—Br274.11 (3)C11—N3—C12118 (2)
Br1i—Pb1—Br2150.96 (2)O1—C10—N3136 (3)
Pb1—Br1—Pb1ii91.846 (19)O1—C10—H10111.8
Pb1iii—Br2—Pb190.74 (3)N3—C10—H10111.8
C1—S1—Pb183.2 (2)N3—C11—H11A109.5
C2—N1—C1118.5 (5)N3—C11—H11B109.5
C2—N1—Pb1138.5 (4)H11A—C11—H11B109.5
C1—N1—Pb1102.4 (4)N3—C11—H11C109.5
C4—N2—C1119.6 (5)H11A—C11—H11C109.5
C4—N2—H2A120.2H11B—C11—H11C109.5
C1—N2—H2A120.2N3—C12—H12A109.5
N2—C1—N1120.9 (5)N3—C12—H12B109.5
N2—C1—S1121.1 (4)H12A—C12—H12B109.5
N1—C1—S1117.9 (4)N3—C12—H12C109.5
N1—C2—C3123.0 (6)H12A—C12—H12C109.5
N1—C2—H2118.5H12B—C12—H12C109.5
C3—C2—H2118.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N2iv0.861.912.767 (10)179
Symmetry code: (iv) x, y+1, z+2.
Poly[µ4-bromido-di-µ3-bromido-(µ-pyrimidine-2-thiolato-κ3N1,S:S)(µ-pyrimidine-2-thione-κ3N1,S:S)dilead(II)] (IIb) top
Crystal data top
[Pb2Br3(C4H3N2S)(C4H4N2S)]F(000) = 1536
Mr = 877.41Dx = 3.730 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.547 (5) ÅCell parameters from 9986 reflections
b = 4.2514 (3) Åθ = 2.4–30.5°
c = 21.894 (7) ŵ = 29.46 mm1
β = 106.966 (16)°T = 295 K
V = 1562.2 (7) Å3Block, light-yellow
Z = 40.39 × 0.07 × 0.03 mm
Data collection top
Bruker D8 Venture Photon 100
diffractometer
2242 reflections with I > 2σ(I)
Radiation source: microfocus X ray tubeRint = 0.023
φ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2124
Tmin = 0.289, Tmax = 0.746k = 66
17601 measured reflectionsl = 3130
2343 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.0125P)2 + 2.3053P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.029(Δ/σ)max = 0.004
S = 1.06Δρmax = 0.57 e Å3
2343 reflectionsΔρmin = 0.80 e Å3
88 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00245 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.62109 (2)0.67145 (2)0.71531 (2)0.02909 (4)
C10.50924 (12)0.3324 (4)0.58705 (9)0.0230 (4)
N10.48277 (10)0.5502 (4)0.62046 (8)0.0263 (3)
Br10.77897 (2)0.71661 (5)0.68325 (2)0.02801 (5)
Br20.5000001.14010 (6)0.7500000.02689 (6)
C20.40592 (14)0.6273 (5)0.60070 (11)0.0314 (4)
H20.3864460.7709110.6245010.038*
N20.46221 (11)0.2108 (4)0.53175 (8)0.0266 (3)
H2A0.4813550.0801020.5100900.032*0.5
S10.60707 (3)0.21178 (12)0.61544 (2)0.02555 (10)
C40.38519 (14)0.2967 (5)0.51106 (11)0.0322 (4)
H40.3527740.2168080.4727210.039*
C30.35392 (13)0.5011 (6)0.54591 (11)0.0355 (5)
H30.3000760.5527730.5332880.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02909 (5)0.02830 (5)0.02880 (5)0.00298 (3)0.00672 (3)0.00450 (3)
C10.0257 (9)0.0220 (9)0.0206 (8)0.0036 (7)0.0055 (7)0.0020 (6)
N10.0294 (8)0.0240 (8)0.0244 (7)0.0006 (7)0.0063 (6)0.0016 (6)
Br10.02035 (9)0.03036 (10)0.03246 (10)0.00128 (7)0.00636 (7)0.00230 (8)
Br20.02367 (13)0.02740 (13)0.03302 (14)0.0000.01362 (10)0.000
C20.0331 (11)0.0293 (10)0.0329 (10)0.0062 (8)0.0114 (8)0.0033 (8)
N20.0276 (8)0.0285 (8)0.0216 (7)0.0034 (6)0.0038 (6)0.0007 (6)
S10.0232 (2)0.0290 (2)0.0235 (2)0.00089 (17)0.00521 (17)0.00290 (17)
C40.0283 (10)0.0353 (11)0.0281 (10)0.0036 (8)0.0005 (8)0.0026 (8)
C30.0259 (10)0.0392 (12)0.0384 (11)0.0039 (9)0.0049 (8)0.0054 (10)
Geometric parameters (Å, º) top
Pb1—N12.7437 (18)N1—C21.331 (3)
Pb1—S12.8892 (7)C2—C31.386 (3)
Pb1—Br13.0560 (8)C2—H20.9300
Pb1—Br1i3.0779 (6)N2—C41.344 (3)
Pb1—Br23.1627 (5)N2—H2A0.8600
C1—N11.344 (3)C4—C31.372 (4)
C1—N21.353 (2)C4—H40.9300
C1—S11.724 (2)C3—H30.9300
N1—Pb1—S155.87 (4)Pb1—Br1—Pb1ii103.743 (18)
N1—Pb1—Br1119.93 (4)Pb1iii—Br2—Pb1101.906 (16)
S1—Pb1—Br175.601 (17)N1—C2—C3122.3 (2)
N1—Pb1—Br1i128.32 (4)N1—C2—H2118.8
S1—Pb1—Br1i91.48 (2)C3—C2—H2118.8
Br1—Pb1—Br1i80.871 (18)C4—N2—C1119.23 (19)
N1—Pb1—Br278.01 (4)C4—N2—H2A120.4
S1—Pb1—Br2133.874 (15)C1—N2—H2A120.4
Br1—Pb1—Br2137.151 (10)C1—S1—Pb185.84 (7)
Br1i—Pb1—Br2120.250 (17)N2—C4—C3120.7 (2)
N1—C1—N2122.19 (19)N2—C4—H4119.7
N1—C1—S1118.33 (14)C3—C4—H4119.7
N2—C1—S1119.46 (15)C4—C3—C2117.2 (2)
C2—N1—C1118.09 (18)C4—C3—H3121.4
C2—N1—Pb1142.01 (15)C2—C3—H3121.4
C1—N1—Pb199.87 (12)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N2iv0.861.972.825 (4)173
Symmetry code: (iv) x+1, y, z+1.
Selected geometric parameters (Å, °) of (I) top
Pb1—N22.428 (2)Pb1···S2v3.4737 (9)
Pb1—N12.5641 (14)S1—C11.729 (2)
Pb1—S13.2959 (2)S2—C41.619 (3)
Pb1—S1iii3.2556 (2)N2—C41.164 (3)
N2—Pb1—N177.49 (5)C4—N2—Pb1127.8 (2)
N1—Pb1—N1i76.56 (7)N2—C4—S2178.6 (3)
C1—N1—Pb1112.96 (12)
Symmetry codes: (i) x, y, -z+3/2; (iii) -x+1, -y, -z+1; (v) -x+1, y+1/2, -z+3/2.
Selected geometric parameters (Å, °) of (IIa) top
Pb1—N12.641 (5)Pb1—O13.006 (7)
Pb1—S12.9325 (17)Pb1···Br2i3.339 (7)
Pb1—Br12.9059 (7)Pb1···S1i3.599 (7)
Pb1—Br1i3.0911 (7)S1—C11.713 (3)
Pb1—Br23.1485 (7)
N1—Pb1—Br174.16 (11)N1—Pb1—Br2128.07 (11)
N1—Pb1—S156.13 (11)Br1—Pb1—Br288.97 (2)
Br1—Pb1—S185.20 (4)S1—Pb1—Br274.11 (3)
N1—Pb1—Br1i79.73 (11)Br1i—Pb1—Br2150.96 (2)
Br1—Pb1—Br1i91.847 (19)C1—N1—Pb1102.4 (4)
S1—Pb1—Br1i134.89 (4)C1—S1—Pb183.2 (2)
Symmetry codes: (i) x+1, y, z.
Selected geometric parameters (Å, °) of (IIb) top
Pb1—N12.7437 (18)Pb1···Br1ii3.3326 (5)
Pb1—S12.8892 (7)Pb1···Br2iii3.3371 (4)
Pb1—Br13.0560 (8)Pb1···S1iv3.1313 (5)
Pb1—Br1i3.0779 (6)S1—C11.724 (2)
Pb1—Br23.1627 (5)
N1—Pb1—S155.87 (4)N1—Pb1—Br278.01 (4)
N1—Pb1—Br1119.93 (4)S1—Pb1—Br2133.874 (15)
S1—Pb1—Br175.601 (17)Br1—Pb1—Br2137.151 (10)
N1—Pb1—Br1i128.32 (4)Br1i—Pb1—Br2120.250 (17)
S1—Pb1—Br1i91.48 (2)C1—S1—Pb185.84 (7)
Br1—Pb1—Br1i80.871 (18)C1—N1—Pb199.87 (12)
Symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) -x+3/2, y+1/2, -z+3/2; (iii) x, y-1, z; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds