Download citation
Download citation
link to html
The dimer of 9-anthraldehyde, namely heptacyclo[8.6.6.62,9.03,8.011,16.017,22.023,28]octacosa-3,5,7,11,13,15,17(22),18,20,23(28),24,26-dodecaene-1,9-carbaldehyde, C30H20O2, has been synthesized by refluxing an ethanol solution in the presence of M(ClO4)2 and 1,3-di­amino­propan-2-ol (M = Co2+ or Cu2+). Its structure has been determined by single-crystal X-ray diffraction, showing it to be a new polymorph, referred to as polymorph II, in the monoclinic space group P21/n. It is compared with the previously reported triclinic modification [Ehrenberg (1968). Acta Cryst. B24, 1123–1125], which is referred to as polymorph I. The asymmetric unit of polymorph II contains two half mol­ecules located on crystallographic centres, while the asymmetric unit of polymorph I includes one half mol­ecule, also located on a crystallographic centre. Time-dependent density functional theory (TD-DFT) at the RB3LYP level using the 6-31G(d,p) basis set was applied. The predicted electronic absorption spectrum is in good agreement with the experimental one. The analysis of the calculated electronic absorption spectrum of polymorph II was carried out in order to assign the observed electronic transitions and to determine their character. A natural bonding orbital (NBO) analysis was executed at the same level to evaluate charge-transfer, intra­molecular hydrogen-bonding inter­actions and hyperconjugative inter­actions. The third-order nonlinear optical (NLO) properties of the compound were appraised by the ZINDO/sum-over-states method in both static and dynamic states. The orientationally averaged (isotropic) value of γ for the compound is greater than the corresponding value of 4-nitro­aniline (pNA).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618003534/yp3151sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618003534/yp3151Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618003534/yp3151sup3.pdf
Molecular orbital diagrams and details of the hyperconjugative interactions

CCDC reference: 1577449

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Heptacyclo[8.6.6.62,9.03,8.011,16.017,22.023,28]octacosa-3,5,7,11,13,15,17(22),18,20,23(28),24,26-dodecaene-1,9-carbaldehyde top
Crystal data top
C30H20O2F(000) = 864
Mr = 412.46Dx = 1.358 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.9627 (3) ÅCell parameters from 9953 reflections
b = 9.6666 (2) Åθ = 3.9–72.4°
c = 16.6887 (4) ŵ = 0.66 mm1
β = 105.2170 (11)°T = 100 K
V = 2017.86 (8) Å3Plate, colourless
Z = 40.16 × 0.15 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3965 independent reflections
Radiation source: INCOATEC IµS micro-focus source3312 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 3.9°
ω scansh = 1616
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1111
Tmin = 0.90, Tmax = 0.98l = 1020
43545 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.1517P)2 + 0.1114P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3965 reflectionsΔρmax = 0.46 e Å3
290 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)
Special details top

Experimental. Analysis of 1283 reflections having I/σI > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to consist of two components related by a 5.3° rotation about the reciprocal axis (-0.13, -0.28, 1). The raw data were processed using the multi-component version of SAINT under control of the two-component orientation filegenerated by CELL_NOW.

X-ray intensity data were collected using ω scans on a Bruker D8 Venture diffractometer equipped with a CMOS PHOTON100 detector and monochromated Cu Kα radiation. Cell refinement and data reduction were carried out using SAINT (Bruker, 2013). The structure was solved by direct methods (SHELXT (Sheldrick, 2015a) and then refined by full-matrix least squares procedures on F2 using the SHELXL (Sheldrick, 2015b).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 1.0 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached carbon atoms. Trial refinements with both the 1-component reflection file extracted from the full data set with TWINABS and the full 2-component data file showed the former to be more satisfactory.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57456 (13)0.84984 (15)0.91465 (11)0.0223 (4)
C10.49219 (15)0.66196 (19)0.97261 (12)0.0109 (4)
C20.47261 (15)0.6688 (2)1.05888 (12)0.0116 (4)
C30.49877 (16)0.7834 (2)1.11115 (13)0.0159 (5)
H30.53020.86261.09340.019*
C40.47899 (16)0.7818 (2)1.18907 (13)0.0178 (5)
H40.49650.86021.22440.021*
C50.43348 (16)0.6655 (2)1.21536 (13)0.0159 (5)
H50.41960.66481.26850.019*
C60.40830 (15)0.5499 (2)1.16354 (13)0.0147 (4)
H60.37750.47041.18160.018*
C70.42830 (15)0.5511 (2)1.08587 (12)0.0113 (4)
C80.40415 (15)0.4284 (2)1.02735 (12)0.0114 (4)
H80.35270.36721.04600.014*
C90.34848 (15)0.4821 (2)0.94195 (12)0.0112 (4)
C100.25857 (16)0.4195 (2)0.89086 (14)0.0156 (4)
H100.22950.33920.90950.019*
C110.21087 (16)0.4734 (2)0.81277 (13)0.0173 (5)
H110.14920.43010.77840.021*
C120.25278 (16)0.5897 (2)0.78478 (13)0.0175 (5)
H120.22010.62620.73130.021*
C130.34300 (16)0.6532 (2)0.83518 (13)0.0148 (5)
H130.37180.73310.81590.018*
C140.39157 (15)0.6002 (2)0.91402 (12)0.0111 (4)
C150.50360 (17)0.8092 (2)0.94262 (13)0.0161 (4)
H150.45000.87410.94640.019*
O20.26265 (12)0.00705 (18)0.07182 (10)0.0248 (4)
C160.08065 (15)0.0233 (2)0.05773 (12)0.0104 (4)
C170.00127 (15)0.08280 (19)0.10765 (12)0.0099 (4)
C180.02704 (16)0.1773 (2)0.16270 (12)0.0122 (4)
H180.09750.17980.16940.015*
C190.05067 (16)0.2682 (2)0.20798 (13)0.0149 (4)
H190.03290.33150.24580.018*
C200.15311 (16)0.2664 (2)0.19798 (13)0.0165 (5)
H200.20570.32780.22920.020*
C210.17918 (16)0.1742 (2)0.14188 (13)0.0147 (4)
H210.24930.17390.13440.018*
C220.10261 (15)0.0827 (2)0.09692 (12)0.0109 (4)
C230.12751 (15)0.0216 (2)0.03727 (12)0.0110 (4)
H230.20690.02990.04870.013*
C240.08358 (16)0.15856 (19)0.05681 (12)0.0115 (4)
C250.14479 (16)0.2784 (2)0.06891 (12)0.0153 (4)
H250.21660.27520.06520.018*
C260.10173 (18)0.4030 (2)0.08643 (14)0.0190 (5)
H260.14440.48430.09590.023*
C270.00398 (18)0.4079 (2)0.09005 (14)0.0179 (5)
H270.03460.49360.09960.022*
C280.06557 (16)0.2875 (2)0.07979 (12)0.0136 (4)
H280.13760.29120.08310.016*
C290.02131 (16)0.16185 (19)0.06471 (12)0.0111 (4)
C300.17041 (16)0.0381 (2)0.10118 (13)0.0135 (4)
H300.15190.07490.15590.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0243 (9)0.0199 (8)0.0249 (9)0.0061 (6)0.0106 (7)0.0048 (6)
C10.0095 (9)0.0137 (10)0.0098 (10)0.0020 (7)0.0031 (7)0.0025 (7)
C20.0079 (9)0.0167 (10)0.0100 (10)0.0002 (7)0.0019 (7)0.0012 (7)
C30.0134 (10)0.0175 (10)0.0166 (11)0.0028 (8)0.0038 (8)0.0015 (8)
C40.0142 (10)0.0245 (11)0.0141 (11)0.0005 (8)0.0029 (8)0.0047 (8)
C50.0121 (10)0.0264 (11)0.0091 (10)0.0047 (8)0.0026 (7)0.0011 (8)
C60.0091 (9)0.0230 (10)0.0127 (10)0.0026 (8)0.0040 (7)0.0059 (8)
C70.0069 (9)0.0169 (10)0.0103 (10)0.0002 (7)0.0024 (7)0.0022 (7)
C80.0083 (9)0.0162 (10)0.0098 (10)0.0025 (7)0.0027 (7)0.0022 (7)
C90.0096 (9)0.0160 (9)0.0086 (10)0.0014 (7)0.0035 (7)0.0002 (7)
C100.0123 (10)0.0181 (10)0.0159 (11)0.0015 (8)0.0029 (8)0.0026 (8)
C110.0115 (10)0.0258 (11)0.0137 (11)0.0004 (8)0.0016 (8)0.0071 (8)
C120.0116 (10)0.0291 (12)0.0108 (10)0.0039 (8)0.0013 (8)0.0003 (8)
C130.0141 (10)0.0196 (10)0.0119 (11)0.0016 (7)0.0056 (8)0.0040 (7)
C140.0087 (9)0.0151 (10)0.0101 (10)0.0005 (7)0.0034 (7)0.0001 (7)
C150.0180 (10)0.0153 (10)0.0149 (11)0.0029 (8)0.0043 (8)0.0023 (8)
O20.0109 (8)0.0408 (10)0.0247 (10)0.0038 (7)0.0082 (6)0.0044 (7)
C160.0097 (9)0.0140 (9)0.0087 (10)0.0010 (7)0.0044 (7)0.0026 (7)
C170.0097 (9)0.0130 (9)0.0073 (9)0.0024 (7)0.0027 (7)0.0027 (7)
C180.0130 (9)0.0141 (9)0.0100 (10)0.0044 (7)0.0039 (7)0.0029 (7)
C190.0212 (11)0.0138 (9)0.0105 (10)0.0022 (8)0.0055 (8)0.0000 (7)
C200.0184 (11)0.0176 (10)0.0121 (11)0.0032 (8)0.0018 (8)0.0003 (8)
C210.0115 (10)0.0202 (10)0.0127 (10)0.0013 (8)0.0038 (8)0.0004 (8)
C220.0096 (9)0.0152 (10)0.0080 (10)0.0013 (7)0.0025 (7)0.0029 (7)
C230.0088 (9)0.0174 (10)0.0070 (10)0.0022 (7)0.0027 (7)0.0020 (7)
C240.0125 (10)0.0153 (10)0.0070 (9)0.0028 (7)0.0031 (7)0.0016 (7)
C250.0174 (10)0.0199 (10)0.0101 (10)0.0067 (8)0.0061 (8)0.0022 (8)
C260.0265 (12)0.0141 (10)0.0186 (12)0.0069 (8)0.0100 (9)0.0029 (8)
C270.0278 (12)0.0132 (10)0.0147 (11)0.0004 (8)0.0089 (9)0.0023 (8)
C280.0153 (10)0.0167 (10)0.0098 (10)0.0001 (8)0.0053 (7)0.0000 (7)
C290.0120 (10)0.0151 (10)0.0068 (9)0.0013 (7)0.0035 (7)0.0009 (7)
C300.0136 (10)0.0152 (9)0.0137 (10)0.0006 (7)0.0072 (8)0.0010 (7)
Geometric parameters (Å, º) top
O1—C151.201 (3)O2—C301.205 (3)
C1—C21.528 (3)C16—C301.531 (3)
C1—C151.529 (3)C16—C291.533 (3)
C1—C141.531 (3)C16—C171.535 (3)
C1—C8i1.603 (3)C16—C23ii1.602 (3)
C2—C31.395 (3)C17—C181.397 (3)
C2—C71.402 (3)C17—C221.404 (3)
C3—C41.390 (3)C18—C191.399 (3)
C3—H30.9500C18—H180.9500
C4—C51.393 (3)C19—C201.381 (3)
C4—H40.9500C19—H190.9500
C5—C61.399 (3)C20—C211.397 (3)
C5—H50.9500C20—H200.9500
C6—C71.387 (3)C21—C221.393 (3)
C6—H60.9500C21—H210.9500
C7—C81.516 (3)C22—C231.510 (3)
C8—C91.510 (3)C23—C241.510 (3)
C8—C1i1.602 (3)C23—C16ii1.602 (3)
C8—H81.0000C23—H231.0000
C9—C101.389 (3)C24—C251.388 (3)
C9—C141.404 (3)C24—C291.400 (3)
C10—C111.389 (3)C25—C261.391 (3)
C10—H100.9500C25—H250.9500
C11—C121.382 (3)C26—C271.388 (3)
C11—H110.9500C26—H260.9500
C12—C131.391 (3)C27—C281.397 (3)
C12—H120.9500C27—H270.9500
C13—C141.398 (3)C28—C291.394 (3)
C13—H130.9500C28—H280.9500
C15—H150.9500C30—H300.9500
C2—C1—C15108.81 (16)C30—C16—C29108.11 (15)
C2—C1—C14107.12 (15)C30—C16—C17106.86 (15)
C15—C1—C14107.06 (16)C29—C16—C17106.92 (15)
C2—C1—C8i111.71 (15)C30—C16—C23ii110.87 (16)
C15—C1—C8i110.76 (15)C29—C16—C23ii111.35 (16)
C14—C1—C8i111.20 (15)C17—C16—C23ii112.48 (15)
C3—C2—C7119.77 (18)C18—C17—C22119.18 (18)
C3—C2—C1123.39 (17)C18—C17—C16123.51 (17)
C7—C2—C1116.81 (17)C22—C17—C16117.31 (16)
C4—C3—C2120.15 (19)C17—C18—C19120.21 (18)
C4—C3—H3119.9C17—C18—H18119.9
C2—C3—H3119.9C19—C18—H18119.9
C3—C4—C5120.04 (19)C20—C19—C18120.37 (19)
C3—C4—H4120.0C20—C19—H19119.8
C5—C4—H4120.0C18—C19—H19119.8
C4—C5—C6119.99 (19)C19—C20—C21119.88 (19)
C4—C5—H5120.0C19—C20—H20120.1
C6—C5—H5120.0C21—C20—H20120.1
C7—C6—C5120.04 (19)C22—C21—C20120.18 (18)
C7—C6—H6120.0C22—C21—H21119.9
C5—C6—H6120.0C20—C21—H21119.9
C6—C7—C2119.99 (19)C21—C22—C17120.15 (18)
C6—C7—C8122.55 (18)C21—C22—C23122.25 (17)
C2—C7—C8117.46 (17)C17—C22—C23117.58 (17)
C9—C8—C7107.81 (16)C22—C23—C24106.54 (15)
C9—C8—C1i112.37 (16)C22—C23—C16ii112.37 (15)
C7—C8—C1i113.25 (15)C24—C23—C16ii112.62 (15)
C9—C8—H8107.7C22—C23—H23108.4
C7—C8—H8107.7C24—C23—H23108.4
C1i—C8—H8107.7C16ii—C23—H23108.4
C10—C9—C14119.56 (18)C25—C24—C29119.95 (18)
C10—C9—C8123.06 (18)C25—C24—C23121.96 (18)
C14—C9—C8117.37 (17)C29—C24—C23118.08 (16)
C11—C10—C9120.52 (19)C24—C25—C26120.52 (19)
C11—C10—H10119.7C24—C25—H25119.7
C9—C10—H10119.7C26—C25—H25119.7
C12—C11—C10120.30 (19)C27—C26—C25119.59 (19)
C12—C11—H11119.9C27—C26—H26120.2
C10—C11—H11119.9C25—C26—H26120.2
C11—C12—C13119.8 (2)C26—C27—C28120.35 (19)
C11—C12—H12120.1C26—C27—H27119.8
C13—C12—H12120.1C28—C27—H27119.8
C12—C13—C14120.46 (19)C29—C28—C27119.96 (19)
C12—C13—H13119.8C29—C28—H28120.0
C14—C13—H13119.8C27—C28—H28120.0
C13—C14—C9119.36 (18)C28—C29—C24119.51 (17)
C13—C14—C1123.78 (18)C28—C29—C16123.54 (18)
C9—C14—C1116.85 (17)C24—C29—C16116.94 (16)
O1—C15—C1125.5 (2)O2—C30—C16125.5 (2)
O1—C15—H15117.2O2—C30—H30117.3
C1—C15—H15117.2C16—C30—H30117.3
C15—C1—C2—C320.5 (3)C30—C16—C17—C1819.2 (2)
C14—C1—C2—C3135.92 (19)C29—C16—C17—C18134.81 (19)
C8i—C1—C2—C3102.1 (2)C23ii—C16—C17—C18102.7 (2)
C15—C1—C2—C7161.04 (17)C30—C16—C17—C22160.36 (17)
C14—C1—C2—C745.6 (2)C29—C16—C17—C2244.8 (2)
C8i—C1—C2—C776.4 (2)C23ii—C16—C17—C2277.8 (2)
C7—C2—C3—C41.3 (3)C22—C17—C18—C191.5 (3)
C1—C2—C3—C4179.72 (18)C16—C17—C18—C19178.04 (17)
C2—C3—C4—C50.4 (3)C17—C18—C19—C200.7 (3)
C3—C4—C5—C60.4 (3)C18—C19—C20—C210.5 (3)
C4—C5—C6—C70.2 (3)C19—C20—C21—C220.9 (3)
C5—C6—C7—C20.7 (3)C20—C21—C22—C170.1 (3)
C5—C6—C7—C8179.19 (17)C20—C21—C22—C23178.34 (18)
C3—C2—C7—C61.5 (3)C18—C17—C22—C211.1 (3)
C1—C2—C7—C6179.99 (17)C16—C17—C22—C21178.48 (17)
C3—C2—C7—C8178.45 (18)C18—C17—C22—C23179.64 (17)
C1—C2—C7—C80.1 (3)C16—C17—C22—C230.0 (3)
C6—C7—C8—C9134.24 (19)C21—C22—C23—C24132.17 (19)
C2—C7—C8—C945.8 (2)C17—C22—C23—C2446.3 (2)
C6—C7—C8—C1i100.8 (2)C21—C22—C23—C16ii104.0 (2)
C2—C7—C8—C1i79.1 (2)C17—C22—C23—C16ii77.5 (2)
C7—C8—C9—C10135.34 (19)C22—C23—C24—C25130.0 (2)
C1i—C8—C9—C1099.2 (2)C16ii—C23—C24—C25106.3 (2)
C7—C8—C9—C1445.2 (2)C22—C23—C24—C2948.4 (2)
C1i—C8—C9—C1480.3 (2)C16ii—C23—C24—C2975.3 (2)
C14—C9—C10—C110.4 (3)C29—C24—C25—C261.9 (3)
C8—C9—C10—C11179.85 (18)C23—C24—C25—C26179.69 (19)
C9—C10—C11—C120.4 (3)C24—C25—C26—C271.4 (3)
C10—C11—C12—C130.2 (3)C25—C26—C27—C282.8 (3)
C11—C12—C13—C140.0 (3)C26—C27—C28—C290.9 (3)
C12—C13—C14—C90.0 (3)C27—C28—C29—C242.4 (3)
C12—C13—C14—C1178.72 (18)C27—C28—C29—C16176.29 (19)
C10—C9—C14—C130.2 (3)C25—C24—C29—C283.8 (3)
C8—C9—C14—C13179.67 (18)C23—C24—C29—C28177.73 (18)
C10—C9—C14—C1178.60 (17)C25—C24—C29—C16174.97 (18)
C8—C9—C14—C10.9 (3)C23—C24—C29—C163.5 (3)
C2—C1—C14—C13135.05 (19)C30—C16—C29—C2821.2 (3)
C15—C1—C14—C1318.5 (3)C17—C16—C29—C28135.89 (19)
C8i—C1—C14—C13102.6 (2)C23ii—C16—C29—C28100.9 (2)
C2—C1—C14—C946.2 (2)C30—C16—C29—C24157.61 (17)
C15—C1—C14—C9162.81 (17)C17—C16—C29—C2442.9 (2)
C8i—C1—C14—C976.1 (2)C23ii—C16—C29—C2480.4 (2)
C2—C1—C15—O1130.3 (2)C29—C16—C30—O2129.5 (2)
C14—C1—C15—O1114.3 (2)C17—C16—C30—O2115.7 (2)
C8i—C1—C15—O17.1 (3)C23ii—C16—C30—O27.2 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z.
Selected geometric parameters (°, Å) in polymorph I and polymorph II top
Polymorph IPolymorph II
Molecule 1Molecule 2
C9—C121.49C1—C21.528 (3)C16—171.535 (3)
C12—C111.41C2—C71.402 (3)C17—C221.404 (3)
C12—C81.42C2—C31.395 (3)C17—C181.397 (3)
C7—C61.36C4—C51.393 (3)C19—C201.381 (3)
C9—C101.61C1—C81.602 (3)C16—C231.602 (3)
C15—C9—C10A108.2C15—C1—C8110.76 (15)C30—C16—C23110.87 (16)
C13—C9—C12109.0C14—C1—C2107.12 (15)C29—C16—C17106.92 (15)
C9—C12—C11117.7C1—C2—C7116.81 (17)C16—C17—C22117.31 (16)
C12—C11—C5118.3C2—C7—C6119.99 (19)C17—C22—C21120.15 (18)
Calculated wavelengths (λmax), oscillator strengths (f > 0.01) and main orbital transition contributions (>=20%) of absorption spectrum of the compound using TD-DFT, as well as their character and related experimental values top
Wavelength, λ (nm)fAssignment (major contributions)Character
ExperimentalTheoretical
300282.8530.0053HOMOLUMO+1 (0.99)ππ*
255249.6540.0104HOMO-1LUMO+4 (0.66)ππ*
248.7630.0063HOMOLUMO+4 (0.25)ππ*
HOMOLUMO+6 (0.31)
246.2910.0168HOMO-1LUMO (0.28)ππ*
HOMOLUMO+5 (0.26)
HOMOLUMO+6 (0.20)
236.6910.0086HOMO-5LUMO (0.45)ππ*
HOMO-4LUMO (0.40)
The second hyperpolarizabilities (<γ>) computed by ZINDO/SOS top
Photon energy (eV)0.00001.74641.7815
CompoundMoleculepNAMoleculepNAMoleculepNA
<γ> (a.u.)215981.0039692.90246197.0096184.20247566.00100827.00
α (a.u.)128.26-----
Experimental details top
Crystal data
Polymorph (II) (present study)Polymorph (I) (Ehrenberg, 1968)
Chemical formula?C30H20O2??C30H20O2?
Mr?412.46?412.46
Crystal system, space group?Monoclinic?, ?P21/n?Triclinic ,
Temperature (K)100295
a, b, c (Å)?12.9627 (3)?, ?9.6666 (2)?, ?16.6887 (4)??9.62?, ?7.86?, ?8.80?
α, β, γ (°)90, ?105.2170 (11)?, 90?59.67?, ?90?, ?65.93?
V3)?2017.86 (8)?506.74
Z?4?1
Radiation type?Cu Kα?-
µ (mm-1)?0.66?-
Crystal size (mm)?0.16? × ?0.15? × ?0.03?-
Data collection
Diffractometer?Bruker D8 VENTURE PHOTON 100 CMOS?-
Absorption correctionMulti-scan TWINABS (Sheldrick, 2009)?none
Tmin, Tmax?0.90?, ?0.98?-
No. of measured, independent and observed [?I > 2σ(I)?] reflections?43545?, ?3965?, ?3312?-
Rint?0.051?-
(sin θ/λ)max-1)0.618-
Refinement
R[F2 > 2σ(F2)], wR(F2), S?0.071?, ?0.197?, ?1.06?0.088, -, -
No. of reflections?3965?640
No. of parameters?290?64
H-atom treatment?H-atom parameters constrained??H-atom parameters constrained?
Δρmax, Δρmin (e Å-3)?0.46?, ?-0.42?-
Computer programs in the present study: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), TWINABS (Sheldrick, 2008a).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds