Download citation
Download citation
link to html
A novel three-dimensional CdII complex, poly[aqua­{[mu]2-1,4-bis­[2-(pyridin-4-yl)ethenyl]benzene-[kappa]2N:N'}[[mu]4-2,2'-(1,4-phenyl­ene)di­acetato-[kappa]4O,O':O'',O''']cadmium(II)], [Cd(C10H8O4)(C20H16N2)(H2O)]n, has been prepared by hydro­thermal assembly of Cd(NO3)2·4H2O, 1,4-bis­[2-(pyridin-4-yl)ethenyl]benzene (1,4-bpeb) and 2,2'-(1,4-phenyl­ene)di­acetic acid (1,4-H2pda). Each CdII centre is located on a twofold axis in a distorted penta­gonal bipyramidal coordination environment formed by one O atom from a water mol­ecule, which lies on the same twofold axis, four O atoms from two different 1,4-pda ligands and two N atoms from two different 1,4-bpeb ligands. The CdII centres are bridged by the 1,4-bpeb and 1,4-pda ligands, which lie across centres of inversion. The three-dimensional net can be regarded as a diamondoid network by treating the CdII atoms as nodes and the 1,4-bpeb and 1,4-pda ligands as linkers. The single net leaves voids that are filled by mutual inter­penetration of four independent equivalent frameworks in a fivefold inter­penetrating architecture.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113027182/yp3048sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113027182/yp3048Isup2.hkl
Contains datablock I

CCDC reference: 964523

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Poly[aqua{µ2-1,4-bis[2-(pyridin-4-yl)ethenyl]benzene-κ2N:N'}[µ4-2,2'-(1,4-phenylene)diacetato-κ4O,O':O'',O''']cadmium(II)] top
Crystal data top
[Cd(C10H8O4)(C20H16N2)(H2O)]F(000) = 1232
Mr = 606.94Dx = 1.572 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6132 reflections
a = 18.537 (4) Åθ = 3.0–27.5°
b = 16.886 (3) ŵ = 0.90 mm1
c = 8.3534 (17) ÅT = 223 K
β = 101.26 (3)°Block, yellow
V = 2564.4 (9) Å30.20 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2937 independent reflections
Radiation source: fine-focus sealed tube2641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2417
Tmin = 0.841, Tmax = 0.877k = 2021
11458 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2937 reflectionsΔρmax = 1.19 e Å3
174 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.371789 (12)0.25000.02882 (11)
N10.12006 (11)0.38606 (11)0.0941 (2)0.0344 (4)
O10.04623 (11)0.26880 (10)0.1026 (2)0.0438 (4)
O20.04436 (11)0.38739 (10)0.0024 (2)0.0413 (4)
O30.00000.51095 (14)0.25000.0431 (6)
H1W0.01510.54240.32890.065*
C10.17741 (14)0.34306 (15)0.1179 (3)0.0383 (5)
H10.16980.30460.20100.046*
C20.24752 (14)0.35233 (15)0.0264 (3)0.0388 (5)
H20.28610.32050.04820.047*
C30.26146 (13)0.40866 (14)0.0984 (3)0.0348 (5)
C40.20107 (14)0.45446 (14)0.1198 (3)0.0395 (6)
H40.20710.49420.20020.047*
C50.13303 (14)0.44152 (14)0.0238 (3)0.0378 (5)
H50.09350.47300.04130.045*
C60.33442 (14)0.41656 (15)0.2006 (3)0.0384 (5)
H60.36650.37310.20570.046*
C70.35898 (14)0.48043 (15)0.2871 (3)0.0380 (5)
H70.32690.52400.27880.046*
C80.43147 (13)0.48958 (14)0.3944 (3)0.0342 (5)
C90.45649 (14)0.56443 (14)0.4483 (3)0.0371 (5)
H90.42670.60870.41410.045*
C100.47621 (14)0.42438 (14)0.4496 (3)0.0374 (5)
H100.46040.37290.41700.045*
C110.20096 (14)0.18840 (15)0.0389 (3)0.0409 (6)
H110.16790.14590.06440.049*
C120.17611 (13)0.26537 (15)0.0695 (3)0.0359 (5)
C130.22592 (15)0.32652 (15)0.0292 (3)0.0426 (6)
H130.20990.37910.04830.051*
C140.09549 (14)0.28267 (17)0.1395 (3)0.0430 (6)
H14A0.07070.23400.18450.052*
H14B0.09170.32150.22790.052*
C150.05847 (12)0.31506 (14)0.0051 (3)0.0325 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02084 (15)0.02927 (16)0.03468 (16)0.0000.00127 (9)0.000
N10.0245 (11)0.0354 (10)0.0402 (10)0.0001 (8)0.0010 (8)0.0020 (8)
O10.0516 (12)0.0328 (9)0.0510 (10)0.0015 (8)0.0198 (8)0.0004 (7)
O20.0469 (11)0.0355 (9)0.0410 (9)0.0082 (8)0.0069 (8)0.0027 (7)
O30.0539 (17)0.0311 (12)0.0397 (12)0.0000.0025 (11)0.000
C10.0313 (14)0.0361 (12)0.0438 (13)0.0012 (10)0.0020 (10)0.0029 (10)
C20.0260 (13)0.0395 (13)0.0486 (14)0.0043 (10)0.0014 (10)0.0018 (10)
C30.0251 (12)0.0355 (12)0.0408 (12)0.0042 (10)0.0013 (9)0.0030 (9)
C40.0320 (14)0.0390 (13)0.0443 (13)0.0005 (10)0.0000 (10)0.0059 (10)
C50.0279 (13)0.0381 (13)0.0449 (13)0.0040 (10)0.0012 (10)0.0012 (10)
C60.0240 (13)0.0440 (14)0.0447 (13)0.0002 (10)0.0011 (10)0.0016 (10)
C70.0288 (13)0.0390 (13)0.0444 (13)0.0013 (10)0.0028 (10)0.0013 (10)
C80.0259 (13)0.0377 (13)0.0374 (11)0.0027 (10)0.0024 (9)0.0012 (9)
C90.0300 (13)0.0329 (12)0.0456 (13)0.0015 (10)0.0006 (10)0.0006 (9)
C100.0307 (14)0.0330 (12)0.0460 (13)0.0049 (10)0.0012 (10)0.0033 (9)
C110.0355 (14)0.0407 (13)0.0465 (13)0.0005 (11)0.0082 (11)0.0047 (10)
C120.0298 (13)0.0481 (14)0.0303 (11)0.0074 (10)0.0075 (9)0.0014 (9)
C130.0410 (15)0.0361 (13)0.0507 (14)0.0090 (11)0.0091 (11)0.0013 (10)
C140.0332 (14)0.0570 (16)0.0380 (13)0.0088 (12)0.0046 (10)0.0055 (11)
C150.0193 (11)0.0391 (13)0.0364 (12)0.0022 (9)0.0013 (9)0.0029 (9)
Geometric parameters (Å, º) top
Cd1—O32.350 (2)C5—H50.9400
Cd1—N1i2.361 (2)C6—C71.328 (3)
Cd1—N12.361 (2)C6—H60.9400
Cd1—O12.3845 (17)C7—C81.471 (3)
Cd1—O1i2.3845 (17)C7—H70.9400
Cd1—O2i2.4221 (18)C8—C91.390 (3)
Cd1—O22.4221 (18)C8—C101.401 (3)
Cd1—C152.745 (2)C9—C10ii1.380 (3)
Cd1—C15i2.745 (2)C9—H90.9400
N1—C11.334 (3)C10—C9ii1.380 (3)
N1—C51.346 (3)C10—H100.9400
O1—C151.246 (3)C11—C121.386 (3)
O2—C151.250 (3)C11—C13iii1.387 (4)
O3—H1W0.8499C11—H110.9400
C1—C21.382 (3)C12—C131.382 (4)
C1—H10.9400C12—C141.523 (3)
C2—C31.397 (3)C13—C11iii1.387 (4)
C2—H20.9400C13—H130.9400
C3—C41.401 (3)C14—C151.526 (3)
C3—C61.458 (3)C14—H14A0.9800
C4—C51.374 (3)C14—H14B0.9800
C4—H40.9400
O3—Cd1—N1i84.15 (5)C3—C2—H2119.8
O3—Cd1—N184.14 (5)C2—C3—C4115.8 (2)
N1i—Cd1—N1168.29 (9)C2—C3—C6121.0 (2)
O3—Cd1—O1136.83 (4)C4—C3—C6123.2 (2)
N1i—Cd1—O187.94 (7)C5—C4—C3120.2 (2)
N1—Cd1—O1100.65 (7)C5—C4—H4119.9
O3—Cd1—O1i136.83 (4)C3—C4—H4119.9
N1i—Cd1—O1i100.64 (7)N1—C5—C4123.4 (2)
N1—Cd1—O1i87.94 (7)N1—C5—H5118.3
O1—Cd1—O1i86.35 (8)C4—C5—H5118.3
O3—Cd1—O2i83.75 (4)C7—C6—C3125.0 (2)
N1i—Cd1—O2i87.28 (7)C7—C6—H6117.5
N1—Cd1—O2i91.45 (7)C3—C6—H6117.5
O1—Cd1—O2i138.24 (6)C6—C7—C8126.3 (2)
O1i—Cd1—O2i54.03 (6)C6—C7—H7116.8
O3—Cd1—O283.76 (4)C8—C7—H7116.8
N1i—Cd1—O291.45 (7)C9—C8—C10118.0 (2)
N1—Cd1—O287.28 (7)C9—C8—C7120.0 (2)
O1—Cd1—O254.03 (6)C10—C8—C7122.0 (2)
O1i—Cd1—O2138.24 (6)C10ii—C9—C8121.9 (2)
O2i—Cd1—O2167.51 (8)C10ii—C9—H9119.0
O3—Cd1—C15110.42 (5)C8—C9—H9119.0
N1i—Cd1—C1589.50 (7)C9ii—C10—C8120.1 (2)
N1—Cd1—C1594.59 (7)C9ii—C10—H10120.0
O1—Cd1—C1526.95 (6)C8—C10—H10120.0
O1i—Cd1—C15112.49 (7)C12—C11—C13iii120.6 (2)
O2i—Cd1—C15165.07 (7)C12—C11—H11119.7
O2—Cd1—C1527.09 (6)C13iii—C11—H11119.7
O3—Cd1—C15i110.42 (5)C13—C12—C11118.3 (2)
N1i—Cd1—C15i94.59 (7)C13—C12—C14120.6 (2)
N1—Cd1—C15i89.50 (7)C11—C12—C14121.1 (2)
O1—Cd1—C15i112.49 (7)C12—C13—C11iii121.1 (2)
O1i—Cd1—C15i26.95 (6)C12—C13—H13119.4
O2i—Cd1—C15i27.09 (6)C11iii—C13—H13119.4
O2—Cd1—C15i165.07 (7)C12—C14—C15109.57 (19)
C15—Cd1—C15i139.16 (10)C12—C14—H14A109.8
C1—N1—C5117.0 (2)C15—C14—H14A109.8
C1—N1—Cd1123.71 (16)C12—C14—H14B109.8
C5—N1—Cd1119.27 (16)C15—C14—H14B109.8
C15—O1—Cd192.89 (14)H14A—C14—H14B108.2
C15—O2—Cd191.02 (13)O1—C15—O2122.1 (2)
Cd1—O3—H1W128.6O1—C15—C14118.6 (2)
N1—C1—C2123.1 (2)O2—C15—C14119.3 (2)
N1—C1—H1118.4O1—C15—Cd160.16 (12)
C2—C1—H1118.4O2—C15—Cd161.90 (12)
C1—C2—C3120.4 (2)C14—C15—Cd1176.42 (16)
C1—C2—H2119.8
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds