Download citation
Download citation
link to html
In the thallium(I) complex, [Tl(C48H70BN6)], of tris[3-(ada­mantan-1-yl)-5-iso­propyl­pyrazol-1-yl]hydro­borate, the most hindered scorpionate ligand, the TlI ion is coordinated by three N atoms from the anionic tridentate chelating ligand [average Tl-N bond length = 2.522 (4) Å] in a distorted trigonal-pyramidal environment [average N-Tl-N angle around the TlI ion = 76.4 (1)°]. This coordination geometry is compared with that of the reported TlI complex of the super-hindered tris­(7-tert-butyl­indazol-2-yl)hydro­borate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113021677/yp3044sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113021677/yp3044Isup2.hkl
Contains datablock I

CCDC reference: 965306

Introduction top

Tris(pyrazolyl)borate ligands have given rise to a tremendous amount of chemistry with amazing diversity and have been considered as one of the most useful ligands in current coordination chemistry. Their versatility derives from the different steric and electronic effects that can be introduced by modifying the number and position of substituents in the pyrazolyl rings that allows fine-tuning of the open-coordination site and the reactivity at the metal centers. The late Professor Swiatoslaw Trofimenko first published this ligand system in 1966 (Trofimenko, 1966). In 1986, bulkier substituents were introduced in the 3-position of the pyrazolyl rings, {HB(3-Rpz)3}- (R = Ph, t-Bu; Calabrese et al., 1986; Trofimenko et al., 1987). Later, many other substituents, aliphatic or aromatic groups, in the 3- and/or 5- (and/or 4-) position(s) were inserted to explore novel coordination chemistry (Trofimenko, 1999; Pettinari, 2008) afforded by the increased steric bulk.

Experimental top

Synthesis and crystallization top

The title complex, [Tl{HB(3—Ad-5-i-Prpz)3}], (I), was prepared by metathesis from the potassium ligand salt. K[HB(3—Ad-5-i-Prpz)3] (221 mg, 0.28 mmol) in tetra­hydro­furan (10 ml) was added to TlPF6 (98.4 mg, 0.28 mmol) in tetra­hydro­furan (10 ml) and the stirred at room temperature overnight under an inert atmosphere. The solvent was then removed under reduced pressure. The resulting colorless solid was extracted into di­chloro­methane and filtered over Celite. The filtrate was concenterated and cooled to 243 K to obtain colorless crystals (yield 173.9 mg, 64%) of (I). Single crystals were obtained by slow evaporation from a saturated di­chloro­methane–heptane (1/2 v/v) solution. Elemental analyses calculated for C48H70BN6Tl: C 60.92, H 7.46, N 8.88%; found: C 60.89, H 7.36, N 8.93 %. IR (KBr disc, ν, cm-1): 2962 (s), 2901 (s), 2845 (s), 2539 (m), 1524 (m), 1456 (m), 1167 (m), 1055 (m), 783 (m). 1H NMR (CDCl3, 125 MHz): δ 1.04 [d, J = 7.0 Hz, 18H, CH(CH3)2], 1.75 (br s, 6H, Ad-δ), 1.96 (br s, 6H, Ad-β), 2.04 (br s, 3H, Ad-γ), 3.35 [sept, J = 7.0 Hz, 3H, CH(CH3)2], 5.84 [s, 3H, 4-H(pz)]. 13C NMR (CDCl3, 500 MHz): δ 23.3 [s, CH(CH3)2], 26.25 [s, CH(CH3)2], 28.9 (s, Ad-γ), 34.3 (s, Ad-α), 37.0 (s, Ad-δ), 43.4 (br s, Ad-β), 93.3 (s, pz-4C), 155.3 (s, pz-3C), 162.6 (s, pz-5C).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated idealized geometry (0.98–1.00 Å), treated as rigid groups, and constrained with Uiso(H) = 1.2 or 1.5 times Ueq of the attached non-H atom.

Results and discussion top

The steric hindrances at the metal centers by can be adjusted by using a similar strategy as seen in the synthesis of [HB{3,5-(i-Pr)2pz}3]- [namely tris­(3,5-diiso­propyl-1-pyrazolyl)hydro­borate(1-)] (Kitajima et al., 1989) which was prepared to afford binuclear peroxidocopper(II) complexes (Kitajima et al., 1992; Baldwin et al., 1992) as models for oxy-hemocyanin (Fig. 1). Expanding this ligand system, we introduced a tert-butyl group in the 3-position of the pyrazolyl ring and obtained [HB(3-t-Bu-5-i-Prpz)3]- [tris­(3-tert-butyl-5-iso­propyl­pyrazol-1-yl)hydro­borate(1-)], in order to study mononuclear superoxidocopper(II) and mononuclear hydroxidocopper(II) complexes (Fujisawa et al., 1994, 2000), such as [Cu(O2){HB(3-t-Bu-5-i-Prpz)3}] and [Cu(OH){HB(3-t-Bu-5-i-Prpz)3}]. However, over the course of this study, it was determined that there was some contamination by a dimeric [{Cu[HB(3-t-Bu-5-i-Prpz)3]}2(µ-O2)] component in solution (Chen et al., 2003). Therefore, a much bulkier ligand was prepared, viz. [HB(3—Ad-5-i-Prpz)3]- {tris­[3-(adamantan-1-yl)-5-iso­propyl-1-pyrazolyl]hydro­borate(1-)}, to combat dimer formation. Moreover, structural differences were compared between tert-butyl and adamantyl groups in the chloridocopper(II) complexes [CuCl{HB(3-t-Bu-5-i-Prpz)3}] versus [CuCl{HB(3—Ad-5-i-Prpz)3}]. Based on this comparison, we claimed this adamantyl-substituted ligand to be `the most hindered Tp ligand' (Fujisawa et al., 2004).

After we published this manuscript, Professor Trofimenko sent an e-mail message asking, `I noted your communication (Fujisawa et al., 2004) reporting `the most hindered Tp ligand'. Have you ever compared its steric hindrance with that of the super-hindered Tp ligand reported in 1996 (Rheingold et al., 1996)' My answer was `No' at that point. So he sent another message, `Would you be inter­ested to try my super-hindered ligand in your system. If so, I will be happy to send you a sample of this ligand.' Since a comparison could be valuable, I replied, `Please send it.' He kindly sent samples of both the potassium and thallium salts of Tp3Bo,7But, K(C33H40BN6B) and [Tl(C33H40BN6)], (II). Unfortunately, neither salt produced pure metathesis products with copper(II) chloride dihydrate. Instead, we obtained what appeared to be reduction decomposition. Therefore, no direct comparison of the steric hindrance could be made against our previously reported [CuCl{HB(3—Ad-5-i-Prpz)3}] (vide supra). After many years, we finally obtained single crystals of the title compound allowing a direct comparison with compound (II). In order to get the best comparison, we also prepared single crystals of (II) and collected diffraction data under the same experimental conditions as for (I). The parameters we obtained for (II) were essentially identical with those previously reported (Rheingold et al., 1996).

As shown in Fig. 2, the TlI ion has distorted trigonal–pyramidal environment. The average N—TlI—N angle between adjacent coordinated pyrazole-ring N atoms is 76.4 (1)°, while that of (II) is 79.1 (1)°. The average TlI—N distance is 2.522 (4) Å, while that of (II) is 2.6757 (6) Å. Moreover, the average B—N distance is 1.554 (6) Å, while that of (II) is 1.543 (9) Å. Thus, the coordination site of (II) is wider than that of (I). However, the distance between the TlI atom and the plane formed by atoms N11, N21, and N31 of (I) is 1.800 (2) Å, whereas the analogous distance in (II) is 1.768 (1) Å. This suggests that the metal ion is more tightly coordinated, apparently an electronic effect, in (II) than in (I). This might explain the observed difficulty in preparing copper(II) complexes with Tp3Bo,7But. This observation is supported by the calculated cone angle, derived solely from the solid-state atomic coordinates (Manz et al., 2007), with values of 262.22 (11) and 241.21 (3)° in (I) and (II), respectively. We also observe that the thallium(I) ion of (I) could be easily replaced by transition metals in contrast to (II). This different lability results from the change of the ligand framework from pyrazole to indazole. Therefore, our adamantyl-substituted Tp ligand remains as the most hindered scorpionate. The Tp3Bo,7But ligand in itself is also super-hindered, however, its potential as ligand for transition metals could be hampered by the tendency to promote tighter coordination. We are currently exploring these fruitful and bulky scorpionates that display facile control of steric and electronic configurations.

Related literature top

For related literature, see: Baldwin et al. (1992); Calabrese et al. (1986); Chen et al. (2003); Fujisawa et al. (1994, 2000, 2004); Kitajima et al. (1989, 1992); Manz et al. (2007); Pettinari (2008); Rheingold et al. (1996); Trofimenko (1966, 1999); Trofimenko et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
Schematic drawing of the scorpionate ligands discussed in this paper.

The molecular structure of [Tl{HB(3—Ad-5 - i-Prpz)3}], (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
{Tris[3-(adamantan-1-yl)-5-isopropylpyrazol-1-yl-κN2]hydroborato}thallium(I) top
Crystal data top
[Tl(C48H70BN6)]F(000) = 1944.00
Mr = 946.30Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 13331 reflections
a = 14.6558 (17) Åθ = 3.0–27.5°
b = 11.6017 (13) ŵ = 3.64 mm1
c = 27.148 (4) ÅT = 198 K
β = 103.6620 (14)°Prism, colorless
V = 4485.4 (9) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Rigaku Mercury70
diffractometer
9490 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1914
Tmin = 0.227, Tmax = 0.403k = 1215
33700 measured reflectionsl = 3335
10228 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
10228 reflections(Δ/σ)max = 0.002
505 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 1.76 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Tl(C48H70BN6)]V = 4485.4 (9) Å3
Mr = 946.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6558 (17) ŵ = 3.64 mm1
b = 11.6017 (13) ÅT = 198 K
c = 27.148 (4) Å0.35 × 0.30 × 0.25 mm
β = 103.6620 (14)°
Data collection top
Rigaku Mercury70
diffractometer
10228 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
9490 reflections with F2 > 2σ(F2)
Tmin = 0.227, Tmax = 0.403Rint = 0.022
33700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.99Δρmax = 0.90 e Å3
10228 reflectionsΔρmin = 1.76 e Å3
505 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.678187 (9)0.222734 (11)0.874465 (5)0.02179 (7)
N110.5759 (2)0.3977 (3)0.86077 (11)0.0210 (6)
N120.6029 (2)0.4931 (3)0.89066 (11)0.0195 (6)
N210.7858 (3)0.3895 (3)0.86776 (12)0.0231 (6)
N220.7783 (2)0.4939 (3)0.89098 (11)0.0202 (6)
N310.7131 (3)0.3104 (3)0.96260 (11)0.0215 (6)
N320.7256 (2)0.4271 (3)0.96903 (11)0.0200 (6)
C1300.4294 (3)0.3175 (3)0.80374 (13)0.0214 (7)
C1310.4816 (4)0.2775 (4)0.76401 (16)0.0292 (9)
C1320.4112 (3)0.2141 (3)0.83527 (16)0.0277 (9)
C1330.3344 (3)0.3669 (4)0.77607 (16)0.0306 (8)
C1340.4244 (4)0.1846 (5)0.73001 (17)0.0384 (10)
C1350.4073 (4)0.0827 (4)0.76180 (19)0.0419 (11)
C1360.3535 (4)0.1229 (4)0.80081 (18)0.0368 (10)
C1370.2594 (4)0.1744 (4)0.7731 (2)0.0425 (11)
C1380.2756 (4)0.2765 (4)0.7411 (2)0.0424 (12)
C1390.3294 (5)0.2362 (6)0.70230 (19)0.0484 (13)
C1400.4844 (3)0.4093 (3)0.83896 (13)0.0214 (7)
C1500.4515 (3)0.5131 (4)0.85443 (14)0.0250 (7)
C1600.5276 (3)0.5639 (3)0.88733 (13)0.0201 (7)
C1700.5305 (3)0.6752 (3)0.91583 (14)0.0246 (7)
C1800.5206 (4)0.6514 (4)0.96972 (16)0.0373 (10)
C1900.4551 (4)0.7584 (4)0.8878 (2)0.0407 (11)
C2300.8869 (3)0.2973 (4)0.81775 (14)0.0230 (7)
C2310.8058 (3)0.2576 (4)0.77386 (15)0.0275 (8)
C2320.9186 (3)0.1964 (4)0.85496 (14)0.0287 (8)
C2330.9703 (3)0.3303 (4)0.79540 (16)0.0332 (9)
C2340.8352 (3)0.1527 (4)0.74683 (16)0.0348 (9)
C2350.8643 (4)0.0545 (4)0.78446 (17)0.0380 (10)
C2360.9479 (4)0.0921 (4)0.82714 (18)0.0378 (10)
C2371.0296 (4)0.1283 (5)0.80477 (19)0.0436 (11)
C2381.0009 (4)0.2263 (5)0.76785 (19)0.0397 (12)
C2390.9186 (4)0.1877 (5)0.72467 (17)0.0424 (11)
C2400.8577 (3)0.3979 (3)0.84541 (13)0.0219 (7)
C2500.8967 (3)0.5090 (3)0.85372 (14)0.0255 (8)
C2600.8465 (3)0.5666 (3)0.88350 (13)0.0227 (7)
C2700.8604 (3)0.6878 (4)0.90385 (15)0.0267 (8)
C2800.8044 (5)0.7766 (4)0.8674 (2)0.0486 (14)
C2900.9650 (4)0.7201 (4)0.9169 (3)0.0531 (16)
C3300.7391 (3)0.1337 (3)1.01505 (13)0.0207 (7)
C3310.8116 (3)0.0749 (3)0.99069 (14)0.0251 (7)
C3320.6412 (3)0.0834 (3)0.99163 (15)0.0261 (8)
C3330.7647 (3)0.1027 (3)1.07242 (14)0.0280 (8)
C3340.8093 (3)0.0566 (4)0.99784 (15)0.0322 (9)
C3350.7118 (4)0.1027 (4)0.97381 (16)0.0360 (10)
C3360.6395 (3)0.0469 (4)0.99830 (17)0.0340 (9)
C3370.6651 (4)0.0755 (4)1.05563 (19)0.0426 (11)
C3380.7623 (4)0.0284 (4)1.07959 (16)0.0364 (10)
C3390.8346 (4)0.0841 (4)1.05492 (17)0.0388 (10)
C3400.7409 (3)0.2626 (3)1.00804 (14)0.0198 (7)
C3500.7709 (3)0.3479 (3)1.04490 (14)0.0249 (7)
C3600.7614 (3)0.4511 (3)1.01904 (13)0.0224 (7)
C3700.7915 (3)0.5681 (3)1.03983 (14)0.0276 (8)
C3800.8947 (4)0.5858 (4)1.04030 (19)0.0417 (11)
C3900.7747 (5)0.5837 (4)1.09298 (18)0.0475 (13)
B10.7042 (3)0.5110 (4)0.92299 (14)0.0196 (7)
H10.70960.59170.93620.0235*
H20.49180.34390.74300.0350*
H30.54380.24600.78120.0350*
H40.47180.18050.85360.0333*
H50.37690.23990.86060.0333*
H60.34450.43440.75570.0368*
H70.29980.39320.80120.0368*
H80.45940.15830.70460.0461*
H90.46810.04840.77950.0503*
H100.37050.02300.73960.0503*
H110.34230.05580.82170.0441*
H120.22170.11520.75110.0509*
H130.22410.19990.79810.0509*
H140.21400.31060.72330.0509*
H150.33990.30230.68120.0581*
H160.29220.17750.67970.0581*
H170.38940.54280.84440.0300*
H180.59320.71170.91810.0295*
H190.57150.60050.98700.0447*
H200.46000.61420.96840.0447*
H210.52390.72420.98830.0447*
H220.39290.72390.88470.0488*
H230.46490.77390.85390.0488*
H240.45900.83070.90680.0488*
H250.75060.23740.78730.0330*
H260.78740.32150.74930.0330*
H270.97220.22130.88240.0344*
H280.86650.17400.87050.0344*
H291.02350.35610.82290.0398*
H300.95220.39500.77130.0398*
H310.78150.12750.71880.0418*
H320.88210.01360.76680.0456*
H330.81080.03260.79900.0456*
H340.96760.02710.85150.0453*
H351.08320.15260.83240.0523*
H361.05000.06190.78720.0523*
H371.05530.24890.75350.0476*
H380.93810.12160.70650.0508*
H390.89980.25160.70020.0508*
H400.94740.53880.84140.0306*
H410.83800.69060.93590.0320*
H420.73740.75800.86060.0584*
H430.82480.77540.83550.0584*
H440.81510.85350.88260.0584*
H450.98930.71560.88630.0637*
H460.99980.66650.94250.0637*
H470.97260.79880.93040.0637*
H480.87510.10451.00650.0301*
H490.79750.09340.95410.0301*
H500.59450.11921.00790.0313*
H510.62330.10230.95500.0313*
H520.82820.13211.08830.0336*
H530.71950.13981.08940.0336*
H540.85610.09360.98140.0386*
H550.71080.18730.97830.0432*
H560.69600.08590.93700.0432*
H570.57550.07730.98230.0408*
H580.61830.04071.07210.0512*
H590.66430.16011.06050.0512*
H600.77840.04661.11660.0437*
H610.83510.16861.06010.0466*
H620.89800.05401.07070.0466*
H630.79320.33681.08040.0299*
H640.75370.62711.01690.0331*
H650.90340.57811.00570.0501*
H660.93270.52771.06210.0501*
H670.91440.66291.05330.0501*
H680.81050.52551.11580.0570*
H690.70760.57471.09160.0570*
H700.79530.66081.10560.0570*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.02389 (11)0.01620 (10)0.02477 (10)0.00004 (4)0.00470 (7)0.00422 (4)
N110.0244 (15)0.0165 (14)0.0216 (14)0.0007 (12)0.0040 (11)0.0042 (11)
N120.0213 (15)0.0158 (13)0.0216 (13)0.0026 (11)0.0051 (11)0.0023 (11)
N210.0250 (16)0.0159 (13)0.0307 (16)0.0024 (12)0.0112 (13)0.0089 (12)
N220.0232 (15)0.0132 (13)0.0246 (14)0.0003 (11)0.0063 (11)0.0042 (11)
N310.0249 (16)0.0120 (13)0.0273 (15)0.0004 (12)0.0056 (12)0.0055 (12)
N320.0227 (15)0.0133 (13)0.0229 (14)0.0002 (11)0.0031 (11)0.0039 (11)
C1300.0217 (17)0.0196 (16)0.0230 (16)0.0034 (13)0.0056 (13)0.0009 (13)
C1310.026 (2)0.034 (3)0.029 (2)0.0051 (15)0.0099 (17)0.0069 (14)
C1320.029 (3)0.0242 (19)0.032 (2)0.0054 (14)0.0113 (17)0.0022 (14)
C1330.0240 (19)0.0241 (18)0.040 (2)0.0025 (15)0.0011 (16)0.0025 (16)
C1340.041 (3)0.043 (3)0.032 (2)0.005 (2)0.0088 (18)0.0184 (19)
C1350.043 (3)0.028 (2)0.051 (3)0.0009 (19)0.004 (2)0.0147 (19)
C1360.039 (3)0.0240 (19)0.048 (3)0.0133 (17)0.0122 (19)0.0039 (18)
C1370.029 (3)0.039 (3)0.059 (3)0.0166 (19)0.008 (2)0.015 (3)
C1380.028 (3)0.039 (3)0.049 (3)0.0003 (17)0.014 (2)0.0126 (19)
C1390.046 (4)0.060 (4)0.031 (3)0.011 (3)0.007 (2)0.007 (3)
C1400.0200 (17)0.0189 (16)0.0257 (16)0.0031 (13)0.0066 (13)0.0001 (13)
C1500.0175 (17)0.0247 (17)0.0324 (19)0.0020 (14)0.0051 (14)0.0029 (14)
C1600.0211 (17)0.0172 (15)0.0229 (16)0.0014 (13)0.0069 (13)0.0019 (13)
C1700.0230 (18)0.0171 (16)0.0343 (19)0.0010 (13)0.0082 (14)0.0053 (14)
C1800.050 (3)0.030 (2)0.035 (2)0.0019 (19)0.0156 (19)0.0081 (17)
C1900.042 (3)0.026 (2)0.052 (3)0.015 (2)0.007 (3)0.006 (2)
C2300.0193 (17)0.0288 (17)0.0211 (16)0.0020 (15)0.0050 (14)0.0037 (14)
C2310.0229 (19)0.0350 (19)0.0241 (18)0.0019 (16)0.0042 (15)0.0059 (16)
C2320.025 (2)0.036 (2)0.0222 (17)0.0067 (17)0.0014 (14)0.0007 (16)
C2330.024 (2)0.042 (3)0.036 (2)0.0014 (17)0.0128 (16)0.0050 (18)
C2340.027 (2)0.045 (3)0.032 (2)0.0031 (18)0.0047 (16)0.0159 (18)
C2350.038 (3)0.031 (2)0.046 (3)0.0041 (18)0.0123 (19)0.0134 (18)
C2360.035 (3)0.033 (3)0.045 (3)0.0111 (18)0.0084 (19)0.0036 (18)
C2370.031 (3)0.050 (3)0.050 (3)0.016 (2)0.010 (2)0.013 (3)
C2380.026 (3)0.058 (4)0.039 (3)0.0055 (18)0.015 (2)0.0129 (19)
C2390.039 (3)0.060 (3)0.031 (2)0.007 (3)0.0144 (19)0.012 (3)
C2400.0177 (16)0.0243 (17)0.0222 (16)0.0008 (13)0.0019 (13)0.0020 (13)
C2500.0246 (18)0.0211 (17)0.0324 (19)0.0027 (14)0.0098 (15)0.0011 (14)
C2600.0197 (17)0.0220 (17)0.0255 (17)0.0032 (13)0.0031 (13)0.0005 (14)
C2700.0276 (19)0.0207 (17)0.0314 (18)0.0063 (15)0.0064 (15)0.0029 (15)
C2800.067 (4)0.025 (3)0.043 (3)0.0055 (19)0.008 (3)0.0023 (17)
C2900.033 (3)0.034 (3)0.091 (5)0.0116 (18)0.012 (3)0.021 (3)
C3300.0250 (18)0.0141 (15)0.0225 (16)0.0006 (13)0.0044 (13)0.0024 (12)
C3310.0250 (18)0.0200 (17)0.0302 (18)0.0048 (14)0.0065 (14)0.0010 (14)
C3320.0247 (19)0.0202 (17)0.0334 (19)0.0016 (14)0.0067 (15)0.0011 (14)
C3330.040 (3)0.0199 (17)0.0234 (17)0.0046 (15)0.0063 (15)0.0005 (14)
C3340.041 (3)0.0202 (18)0.036 (2)0.0094 (16)0.0095 (18)0.0013 (15)
C3350.057 (3)0.0140 (17)0.035 (2)0.0010 (17)0.0070 (19)0.0054 (15)
C3360.036 (3)0.0230 (19)0.042 (3)0.0062 (16)0.0080 (18)0.0015 (16)
C3370.058 (3)0.027 (2)0.047 (3)0.003 (2)0.019 (3)0.0104 (19)
C3380.055 (3)0.027 (2)0.0267 (19)0.0072 (19)0.0086 (19)0.0091 (16)
C3390.053 (3)0.0206 (19)0.039 (3)0.0145 (18)0.003 (2)0.0055 (16)
C3400.0227 (18)0.0154 (15)0.0224 (17)0.0019 (13)0.0074 (14)0.0004 (13)
C3500.030 (2)0.0184 (16)0.0229 (16)0.0013 (14)0.0012 (14)0.0017 (14)
C3600.0283 (19)0.0161 (16)0.0213 (16)0.0010 (14)0.0027 (14)0.0031 (13)
C3700.038 (3)0.0169 (16)0.0239 (17)0.0012 (15)0.0011 (15)0.0062 (14)
C3800.040 (3)0.023 (2)0.057 (3)0.0047 (18)0.000 (2)0.0080 (19)
C3900.082 (4)0.028 (3)0.035 (3)0.009 (3)0.019 (3)0.0148 (18)
B10.0191 (18)0.0160 (16)0.0227 (17)0.0014 (14)0.0032 (14)0.0029 (14)
Geometric parameters (Å, º) top
Tl1—N112.498 (3)C131—H30.990
Tl1—N212.530 (4)C132—H40.990
Tl1—N312.538 (3)C132—H50.990
N11—N121.375 (4)C133—H60.990
N11—C1401.339 (5)C133—H70.990
N12—C1601.361 (5)C134—H81.000
N12—B11.550 (5)C135—H90.990
N21—N221.383 (5)C135—H100.990
N21—C2401.338 (6)C136—H111.000
N22—C2601.359 (5)C137—H120.990
N22—B11.556 (6)C137—H130.990
N31—N321.372 (4)C138—H141.000
N31—C3401.326 (5)C139—H150.990
N32—C3601.364 (5)C139—H160.990
N32—B11.556 (5)C150—H170.950
C130—C1311.534 (7)C170—H181.000
C130—C1321.533 (6)C180—H190.980
C130—C1331.529 (5)C180—H200.980
C130—C1401.529 (5)C180—H210.980
C131—C1341.533 (6)C190—H220.980
C132—C1361.528 (6)C190—H230.980
C133—C1381.535 (6)C190—H240.980
C134—C1351.519 (7)C231—H250.990
C134—C1391.539 (8)C231—H260.990
C135—C1361.535 (8)C232—H270.990
C136—C1371.528 (7)C232—H280.990
C137—C1381.519 (8)C233—H290.990
C138—C1391.531 (9)C233—H300.990
C140—C1501.399 (6)C234—H311.000
C150—C1601.385 (5)C235—H320.990
C160—C1701.501 (5)C235—H330.990
C170—C1801.529 (6)C236—H341.000
C170—C1901.528 (6)C237—H350.990
C230—C2311.541 (5)C237—H360.990
C230—C2321.544 (6)C238—H371.000
C230—C2331.537 (7)C239—H380.990
C230—C2401.504 (6)C239—H390.990
C231—C2341.535 (7)C250—H400.950
C232—C2361.540 (7)C270—H411.000
C233—C2381.541 (7)C280—H420.980
C234—C2351.523 (7)C280—H430.980
C234—C2391.540 (8)C280—H440.980
C235—C2361.537 (6)C290—H450.980
C236—C2371.524 (8)C290—H460.980
C237—C2381.509 (7)C290—H470.980
C238—C2391.537 (7)C331—H480.990
C240—C2501.406 (5)C331—H490.990
C250—C2601.386 (6)C332—H500.990
C260—C2701.506 (6)C332—H510.990
C270—C2801.527 (7)C333—H520.990
C270—C2901.536 (7)C333—H530.990
C330—C3311.537 (6)C334—H541.000
C330—C3321.540 (5)C335—H550.990
C330—C3331.556 (5)C335—H560.990
C330—C3401.509 (5)C336—H571.000
C331—C3341.539 (6)C337—H580.990
C332—C3361.524 (6)C337—H590.990
C333—C3381.534 (6)C338—H601.000
C334—C3351.521 (6)C339—H610.990
C334—C3391.539 (6)C339—H620.990
C335—C3361.522 (7)C350—H630.950
C336—C3371.548 (7)C370—H641.000
C337—C3381.521 (7)C380—H650.980
C338—C3391.525 (8)C380—H660.980
C340—C3501.402 (5)C380—H670.980
C350—C3601.378 (5)C390—H680.980
C360—C3701.495 (5)C390—H690.980
C370—C3801.524 (7)C390—H700.980
C370—C3901.531 (7)B1—H11.000
C131—H20.990
N11—Tl1—N2174.36 (10)C136—C137—H13109.676
N11—Tl1—N3178.17 (10)C138—C137—H12109.675
N21—Tl1—N3176.78 (11)C138—C137—H13109.675
Tl1—N11—N12119.2 (2)H12—C137—H13108.173
Tl1—N11—C140130.6 (3)C133—C138—H14109.870
N12—N11—C140107.3 (3)C137—C138—H14109.868
N11—N12—C160109.4 (3)C139—C138—H14109.857
N11—N12—B1123.0 (3)C134—C139—H15109.746
C160—N12—B1127.6 (3)C134—C139—H16109.744
Tl1—N21—N22121.3 (3)C138—C139—H15109.755
Tl1—N21—C240131.3 (3)C138—C139—H16109.753
N22—N21—C240107.4 (3)H15—C139—H16108.226
N21—N22—C260109.6 (4)C140—C150—H17126.975
N21—N22—B1120.5 (3)C160—C150—H17126.964
C260—N22—B1129.8 (3)C160—C170—H18108.077
Tl1—N31—N32120.4 (2)C180—C170—H18108.076
Tl1—N31—C340131.2 (3)C190—C170—H18108.074
N32—N31—C340107.0 (3)C170—C180—H19109.474
N31—N32—C360109.7 (3)C170—C180—H20109.468
N31—N32—B1121.3 (3)C170—C180—H21109.466
C360—N32—B1129.0 (3)H19—C180—H20109.471
C131—C130—C132109.7 (3)H19—C180—H21109.478
C131—C130—C133108.4 (3)H20—C180—H21109.469
C131—C130—C140111.9 (4)C170—C190—H22109.475
C132—C130—C133108.0 (4)C170—C190—H23109.466
C132—C130—C140109.4 (3)C170—C190—H24109.473
C133—C130—C140109.3 (3)H22—C190—H23109.469
C130—C131—C134110.1 (4)H22—C190—H24109.476
C130—C132—C136110.1 (4)H23—C190—H24109.468
C130—C133—C138111.1 (4)C230—C231—H25109.498
C131—C134—C135110.2 (4)C230—C231—H26109.496
C131—C134—C139108.9 (4)C234—C231—H25109.503
C135—C134—C139109.2 (5)C234—C231—H26109.499
C134—C135—C136109.6 (4)H25—C231—H26108.073
C132—C136—C135109.4 (4)C230—C232—H27109.543
C132—C136—C137109.6 (4)C230—C232—H28109.547
C135—C136—C137109.3 (4)C236—C232—H27109.546
C136—C137—C138109.9 (4)C236—C232—H28109.547
C133—C138—C137108.7 (4)H27—C232—H28108.117
C133—C138—C139109.2 (5)C230—C233—H29109.608
C137—C138—C139109.4 (4)C230—C233—H30109.606
C134—C139—C138109.6 (4)C238—C233—H29109.606
N11—C140—C130122.1 (3)C238—C233—H30109.609
N11—C140—C150109.6 (3)H29—C233—H30108.131
C130—C140—C150128.3 (3)C231—C234—H31109.626
C140—C150—C160106.1 (3)C235—C234—H31109.635
N12—C160—C150107.7 (3)C239—C234—H31109.630
N12—C160—C170124.1 (3)C234—C235—H32109.674
C150—C160—C170128.2 (4)C234—C235—H33109.682
C160—C170—C180109.9 (3)C236—C235—H32109.687
C160—C170—C190110.9 (3)C236—C235—H33109.697
C180—C170—C190111.7 (4)H32—C235—H33108.179
C231—C230—C232109.7 (4)C232—C236—H34109.817
C231—C230—C233108.0 (4)C235—C236—H34109.831
C231—C230—C240111.1 (4)C237—C236—H34109.834
C232—C230—C233107.6 (4)C236—C237—H35109.547
C232—C230—C240109.8 (4)C236—C237—H36109.536
C233—C230—C240110.5 (4)C238—C237—H35109.542
C230—C231—C234110.7 (4)C238—C237—H36109.533
C230—C232—C236110.5 (4)H35—C237—H36108.089
C230—C233—C238110.2 (4)C233—C238—H37109.473
C231—C234—C235109.8 (4)C237—C238—H37109.472
C231—C234—C239108.4 (4)C239—C238—H37109.480
C235—C234—C239109.7 (4)C234—C239—H38109.805
C234—C235—C236109.9 (4)C234—C239—H39109.807
C232—C236—C235109.1 (4)C238—C239—H38109.792
C232—C236—C237108.4 (4)C238—C239—H39109.800
C235—C236—C237109.8 (4)H38—C239—H39108.255
C236—C237—C238110.6 (4)C240—C250—H40126.748
C233—C238—C237109.6 (5)C260—C250—H40126.743
C233—C238—C239109.4 (4)C260—C270—H41107.791
C237—C238—C239109.4 (4)C280—C270—H41107.793
C234—C239—C238109.4 (4)C290—C270—H41107.798
N21—C240—C230121.1 (4)C270—C280—H42109.465
N21—C240—C250109.2 (4)C270—C280—H43109.469
C230—C240—C250129.7 (4)C270—C280—H44109.470
C240—C250—C260106.5 (4)H42—C280—H43109.478
N22—C260—C250107.3 (4)H42—C280—H44109.470
N22—C260—C270124.4 (4)H43—C280—H44109.476
C250—C260—C270128.3 (4)C270—C290—H45109.479
C260—C270—C280112.8 (4)C270—C290—H46109.471
C260—C270—C290110.7 (4)C270—C290—H47109.469
C280—C270—C290109.8 (5)H45—C290—H46109.467
C331—C330—C332109.0 (3)H45—C290—H47109.477
C331—C330—C333107.5 (3)H46—C290—H47109.466
C331—C330—C340110.6 (4)C330—C331—H48109.593
C332—C330—C333107.8 (4)C330—C331—H49109.589
C332—C330—C340111.5 (3)C334—C331—H48109.583
C333—C330—C340110.4 (3)C334—C331—H49109.586
C330—C331—C334110.3 (4)H48—C331—H49108.122
C330—C332—C336111.5 (3)C330—C332—H50109.335
C330—C333—C338110.4 (3)C330—C332—H51109.316
C331—C334—C335109.9 (4)C336—C332—H50109.331
C331—C334—C339109.0 (3)C336—C332—H51109.319
C335—C334—C339109.7 (4)H50—C332—H51107.973
C334—C335—C336110.1 (4)C330—C333—H52109.566
C332—C336—C335109.7 (4)C330—C333—H53109.560
C332—C336—C337109.0 (4)C338—C333—H52109.556
C335—C336—C337108.6 (4)C338—C333—H53109.560
C336—C337—C338109.4 (5)H52—C333—H53108.114
C333—C338—C337110.4 (4)C331—C334—H54109.383
C333—C338—C339109.0 (4)C335—C334—H54109.382
C337—C338—C339109.7 (4)C339—C334—H54109.368
C334—C339—C338109.0 (4)C334—C335—H55109.641
N31—C340—C330121.4 (3)C334—C335—H56109.635
N31—C340—C350110.2 (3)C336—C335—H55109.647
C330—C340—C350128.4 (4)C336—C335—H56109.651
C340—C350—C360105.8 (3)H55—C335—H56108.160
N32—C360—C350107.4 (3)C332—C336—H57109.812
N32—C360—C370124.8 (3)C335—C336—H57109.810
C350—C360—C370127.6 (3)C337—C336—H57109.830
C360—C370—C380109.2 (4)C336—C337—H58109.781
C360—C370—C390111.4 (4)C336—C337—H59109.791
C380—C370—C390110.9 (4)C338—C337—H58109.783
N12—B1—N22111.6 (3)C338—C337—H59109.791
N12—B1—N32110.8 (3)H58—C337—H59108.232
N22—B1—N32109.5 (3)C333—C338—H60109.224
C130—C131—H2109.649C337—C338—H60109.216
C130—C131—H3109.662C339—C338—H60109.227
C134—C131—H2109.643C334—C339—H61109.869
C134—C131—H3109.645C334—C339—H62109.872
H2—C131—H3108.156C338—C339—H61109.880
C130—C132—H4109.642C338—C339—H62109.882
C130—C132—H5109.643H61—C339—H62108.291
C136—C132—H4109.634C340—C350—H63127.095
C136—C132—H5109.635C360—C350—H63127.095
H4—C132—H5108.154C360—C370—H64108.439
C130—C133—H6109.409C380—C370—H64108.444
C130—C133—H7109.419C390—C370—H64108.420
C138—C133—H6109.406C370—C380—H65109.460
C138—C133—H7109.406C370—C380—H66109.478
H6—C133—H7108.022C370—C380—H67109.476
C131—C134—H8109.507H65—C380—H66109.470
C135—C134—H8109.505H65—C380—H67109.468
C139—C134—H8109.500H66—C380—H67109.477
C134—C135—H9109.747C370—C390—H68109.465
C134—C135—H10109.750C370—C390—H69109.478
C136—C135—H9109.759C370—C390—H70109.478
C136—C135—H10109.751H68—C390—H69109.467
H9—C135—H10108.213H68—C390—H70109.460
C132—C136—H11109.500H69—C390—H70109.479
C135—C136—H11109.502N12—B1—H1108.239
C137—C136—H11109.499N22—B1—H1108.253
C136—C137—H12109.674N32—B1—H1108.239
N11—Tl1—N21—N2241.75 (18)C137—C138—C139—C13459.7 (5)
N11—Tl1—N21—C240140.7 (3)N11—C140—C150—C1600.6 (4)
N21—Tl1—N11—N1250.1 (2)C130—C140—C150—C160178.2 (4)
N21—Tl1—N11—C140151.6 (3)C140—C150—C160—N120.6 (4)
N11—Tl1—N31—N3242.6 (2)C140—C150—C160—C170178.4 (4)
N11—Tl1—N31—C340152.8 (3)N12—C160—C170—C18082.3 (5)
N31—Tl1—N11—N1229.3 (2)N12—C160—C170—C190153.7 (4)
N31—Tl1—N11—C140129.0 (3)C150—C160—C170—C18096.7 (5)
N21—Tl1—N31—N3233.9 (2)C150—C160—C170—C19027.3 (6)
N21—Tl1—N31—C340130.7 (3)C231—C230—C232—C23657.2 (5)
N31—Tl1—N21—N2239.46 (19)C232—C230—C231—C23456.8 (5)
N31—Tl1—N21—C240138.1 (3)C231—C230—C233—C23859.2 (4)
Tl1—N11—N12—C160162.79 (17)C233—C230—C231—C23460.3 (4)
Tl1—N11—N12—B116.2 (4)C231—C230—C240—N2159.7 (5)
Tl1—N11—C140—C13018.4 (5)C231—C230—C240—C250121.8 (4)
Tl1—N11—C140—C150160.5 (2)C240—C230—C231—C234178.3 (3)
N12—N11—C140—C130178.6 (3)C232—C230—C233—C23859.2 (4)
N12—N11—C140—C1500.3 (4)C233—C230—C232—C23660.2 (4)
C140—N11—N12—C1600.1 (4)C232—C230—C240—N2161.8 (4)
C140—N11—N12—B1179.1 (3)C232—C230—C240—C250116.7 (4)
N11—N12—C160—C1500.5 (4)C240—C230—C232—C236179.5 (3)
N11—N12—C160—C170178.7 (3)C233—C230—C240—N21179.6 (3)
N11—N12—B1—N2250.9 (4)C233—C230—C240—C2501.9 (5)
N11—N12—B1—N3271.5 (4)C240—C230—C233—C238179.1 (3)
C160—N12—B1—N22130.3 (4)C230—C231—C234—C23558.7 (5)
C160—N12—B1—N32107.3 (4)C230—C231—C234—C23961.2 (4)
B1—N12—C160—C150179.4 (3)C230—C232—C236—C23559.0 (5)
B1—N12—C160—C1700.3 (6)C230—C232—C236—C23760.6 (4)
Tl1—N21—N22—C260177.31 (14)C230—C233—C238—C23759.8 (4)
Tl1—N21—N22—B11.2 (4)C230—C233—C238—C23960.1 (5)
Tl1—N21—C240—C2300.4 (5)C231—C234—C235—C23660.4 (5)
Tl1—N21—C240—C250178.38 (17)C231—C234—C239—C23860.4 (5)
N22—N21—C240—C230178.2 (3)C235—C234—C239—C23859.5 (5)
N22—N21—C240—C2500.6 (4)C239—C234—C235—C23658.7 (5)
C240—N21—N22—C2600.8 (4)C234—C235—C236—C23260.5 (5)
C240—N21—N22—B1176.8 (3)C234—C235—C236—C23758.1 (5)
N21—N22—C260—C2501.8 (4)C232—C236—C237—C23860.1 (5)
N21—N22—C260—C270179.4 (3)C235—C236—C237—C23859.1 (5)
N21—N22—B1—N1260.6 (4)C236—C237—C238—C23360.0 (5)
N21—N22—B1—N3262.6 (4)C236—C237—C238—C23960.0 (5)
C260—N22—B1—N12124.2 (4)C233—C238—C239—C23460.2 (5)
C260—N22—B1—N32112.6 (4)C237—C238—C239—C23459.9 (6)
B1—N22—C260—C250177.4 (3)N21—C240—C250—C2601.7 (4)
B1—N22—C260—C2703.8 (5)C230—C240—C250—C260177.0 (3)
Tl1—N31—N32—C360167.99 (17)C240—C250—C260—N222.1 (4)
Tl1—N31—N32—B19.4 (4)C240—C250—C260—C270179.1 (3)
Tl1—N31—C340—C33012.3 (6)N22—C260—C270—C28089.7 (4)
Tl1—N31—C340—C350166.9 (2)N22—C260—C270—C290146.8 (3)
N32—N31—C340—C330178.5 (3)C250—C260—C270—C28088.9 (5)
N32—N31—C340—C3500.7 (5)C250—C260—C270—C29034.6 (5)
C340—N31—N32—C3600.0 (4)C331—C330—C332—C33657.2 (4)
C340—N31—N32—B1177.3 (3)C332—C330—C331—C33457.0 (4)
N31—N32—C360—C3500.7 (4)C331—C330—C333—C33859.7 (4)
N31—N32—C360—C370174.8 (3)C333—C330—C331—C33459.6 (4)
N31—N32—B1—N1254.0 (5)C331—C330—C340—N3167.5 (5)
N31—N32—B1—N2269.7 (4)C331—C330—C340—C350111.6 (4)
C360—N32—B1—N12129.3 (4)C340—C330—C331—C334179.9 (3)
C360—N32—B1—N22107.1 (4)C332—C330—C333—C33857.7 (4)
B1—N32—C360—C350177.7 (3)C333—C330—C332—C33659.1 (4)
B1—N32—C360—C3702.3 (6)C332—C330—C340—N3153.9 (5)
C131—C130—C132—C13658.7 (4)C332—C330—C340—C350127.0 (4)
C132—C130—C131—C13457.7 (4)C340—C330—C332—C336179.5 (3)
C131—C130—C133—C13859.1 (4)C333—C330—C340—N31173.7 (4)
C133—C130—C131—C13460.0 (4)C333—C330—C340—C3507.2 (6)
C131—C130—C140—N1147.4 (5)C340—C330—C333—C338179.6 (3)
C131—C130—C140—C150133.9 (4)C330—C331—C334—C33559.1 (4)
C140—C130—C131—C134179.4 (3)C330—C331—C334—C33961.2 (4)
C132—C130—C133—C13859.7 (4)C330—C332—C336—C33558.4 (4)
C133—C130—C132—C13659.3 (4)C330—C332—C336—C33760.5 (5)
C132—C130—C140—N1174.4 (5)C330—C333—C338—C33759.4 (5)
C132—C130—C140—C150104.2 (4)C330—C333—C338—C33961.2 (4)
C140—C130—C132—C136178.2 (3)C331—C334—C335—C33659.7 (4)
C133—C130—C140—N11167.5 (4)C331—C334—C339—C33861.1 (5)
C133—C130—C140—C15013.8 (5)C335—C334—C339—C33859.4 (4)
C140—C130—C133—C138178.6 (3)C339—C334—C335—C33660.2 (4)
C130—C131—C134—C13558.6 (5)C334—C335—C336—C33259.1 (4)
C130—C131—C134—C13961.1 (4)C334—C335—C336—C33760.0 (4)
C130—C132—C136—C13559.7 (4)C332—C336—C337—C33859.4 (5)
C130—C132—C136—C13760.2 (5)C335—C336—C337—C33860.2 (4)
C130—C133—C138—C13760.0 (5)C336—C337—C338—C33359.4 (5)
C130—C133—C138—C13959.2 (5)C336—C337—C338—C33960.7 (5)
C131—C134—C135—C13659.6 (5)C333—C338—C339—C33461.1 (4)
C131—C134—C139—C13860.4 (6)C337—C338—C339—C33460.0 (5)
C135—C134—C139—C13860.0 (5)N31—C340—C350—C3601.1 (5)
C139—C134—C135—C13660.0 (5)C330—C340—C350—C360178.0 (4)
C134—C135—C136—C13260.0 (5)C340—C350—C360—N321.1 (5)
C134—C135—C136—C13760.0 (5)C340—C350—C360—C370174.2 (4)
C132—C136—C137—C13860.0 (5)N32—C360—C370—C38089.8 (4)
C135—C136—C137—C13859.9 (5)N32—C360—C370—C390147.4 (4)
C136—C137—C138—C13359.2 (5)C350—C360—C370—C38084.8 (5)
C136—C137—C138—C13959.9 (5)C350—C360—C370—C39038.0 (6)
C133—C138—C139—C13459.1 (5)

Experimental details

Crystal data
Chemical formula[Tl(C48H70BN6)]
Mr946.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)198
a, b, c (Å)14.6558 (17), 11.6017 (13), 27.148 (4)
β (°) 103.6620 (14)
V3)4485.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerRigaku Mercury70
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.227, 0.403
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
33700, 10228, 9490
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.124, 0.99
No. of reflections10228
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 1.76

Computer programs: CrystalClear (Rigaku, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Selected geometric parameters (Å, º) top
Tl1—N112.498 (3)N12—B11.550 (5)
Tl1—N212.530 (4)N22—B11.556 (6)
Tl1—N312.538 (3)N32—B11.556 (5)
N11—Tl1—N2174.36 (10)N12—B1—N22111.6 (3)
N11—Tl1—N3178.17 (10)N12—B1—N32110.8 (3)
N21—Tl1—N3176.78 (11)N22—B1—N32109.5 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds