Download citation
Download citation
link to html
The cyanide ligand can act as a strong σ-donor and an effective π-electron acceptor that exhibits versatile bridging abilities, such as terminal, μ2-C:N, μ3-C:C:N and μ4-C:C:N:N modes. These ligands play a key role in the formation of various copper(I) cyanide systems, including one-dimensional (1D) chains, two-dimensional (2D) layers and three-dimensional (3D) frameworks. According to the literature, numerous coordination polymers based on terminal, μ2-C:N and μ3-C,C,N bridging modes have been documented so far. However, systems based on the μ4-C:C:N:N bridging mode are relatively rare. In this work, a novel cyanide-bridged 3D CuI coordination framework, namely poly[(μ2-2,2′-bi­imidazole-κ2N3:N3′)(μ4-cyanido-κ4C:C:N:N)(μ2-cyanido-κ2C:N)dicopper(I)], [Cu2(CN)2(C6H6N4)]n, (I), was synthesized hydro­thermally by reaction of environmentally friendly K3[Fe(CN)6], CuCl2·2H2O and 2,2′-bi­imidazole (H2biim). It should be noted that cyanide ligands may act as reducing agents to reduce CuII to CuI under hydrothermal conditions. Compound (I) contains diverse types of bridging ligands, such as μ4-C:C:N:N-cyanide, μ2-C:N-cyanide and μ2-bi­imidazole. Inter­estingly, the [Cu2] dimers are bridged by rare μ4-C:C:N:N-mode cyanide ligands giving rise to the first example of a 1D dimeric {[Cu24-C:C:N:N)]n+}n infinite chain. Furthermore, adjacent dimer-based chains are linked by μ2-C:N bridging cyanide ligands, generating a neutral 2D wave-like (4,4) layer structure. Finally, the 2D layers are joined together via bidentate bridging H2biim to create a 3D cuprous cyanide network. This arrangement leads to a systematic variation in dimensionality from 1D chain→2D sheet→3D framework by different types of bridging ligands. Compound (I) was further characterized by thermal analysis, solid-state UV–Vis diffuse-reflectance and photoluminescence studies. The solid-state UV–Vis diffuse-reflectance spectra show that com­pound (I) is a wide-gap semiconductor with band gaps of 3.18 eV. The photoluminescence study shows a strong blue–green photoluminescence at room temperature, which may be associated with metal-to-ligand charge transfer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619014025/yo3064sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619014025/yo3064Isup2.hkl
Contains datablock I

CCDC reference: 1959315

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL (Sheldrick, 2008) and publCIF (Westrip,2010).

Poly[(µ2-2,2'-biimidazole-κ2N3:N3')(µ4-cyanido-κ4C:C:N:N)(µ2-cyanido-κ2C:N)dicopper(I)] top
Crystal data top
[Cu2(CN)2(C6H6N4)]F(000) = 616
Mr = 313.28Dx = 2.177 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.687 (4) ÅCell parameters from 1115 reflections
b = 4.5071 (8) Åθ = 2.5–25.3°
c = 13.933 (3) ŵ = 4.43 mm1
β = 114.21 (3)°T = 293 K
V = 955.7 (4) Å3Block, red
Z = 40.18 × 0.10 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
801 reflections with I > 2σ(I)
φ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.4°, θmin = 2.7°
Tmin = 0.5, Tmax = 0.78h = 2019
1719 measured reflectionsk = 54
980 independent reflectionsl = 1715
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0579P)2 + 9.5332P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
980 reflectionsΔρmax = 1.09 e Å3
74 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N30.5098 (4)0.4906 (15)0.4665 (6)0.0371 (17)0.5
C20.50001.101 (2)0.25000.038 (2)0.5
N20.50001.101 (2)0.25000.038 (2)0.5
C10.50000.850 (2)0.25000.037 (2)0.5
N10.50000.850 (2)0.25000.037 (2)0.5
C30.5098 (4)0.4906 (15)0.4665 (6)0.0371 (17)0.5
C40.7974 (5)0.6431 (18)0.3683 (6)0.0358 (16)
H40.83410.73960.34310.043*
C50.7488 (4)0.3561 (15)0.4597 (5)0.0277 (14)
C60.7094 (5)0.6690 (18)0.3310 (6)0.0359 (16)
H60.67480.79000.27530.043*
N40.6784 (4)0.4872 (12)0.3885 (4)0.0269 (13)
N50.8224 (4)0.4459 (14)0.4511 (5)0.0356 (14)
H50.87520.39070.48990.043*
Cu10.54642 (6)0.4733 (2)0.35116 (7)0.0379 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.027 (3)0.052 (4)0.030 (3)0.000 (3)0.009 (3)0.003 (3)
C20.030 (5)0.037 (5)0.047 (6)0.0000.017 (5)0.000
N20.030 (5)0.037 (5)0.047 (6)0.0000.017 (5)0.000
C10.032 (5)0.026 (5)0.055 (6)0.0000.020 (5)0.000
N10.032 (5)0.026 (5)0.055 (6)0.0000.020 (5)0.000
C30.027 (3)0.052 (4)0.030 (3)0.000 (3)0.009 (3)0.003 (3)
C40.034 (4)0.040 (4)0.035 (4)0.005 (3)0.015 (3)0.003 (3)
C50.030 (3)0.032 (4)0.022 (3)0.002 (3)0.012 (3)0.002 (3)
C60.040 (4)0.042 (4)0.026 (3)0.006 (3)0.013 (3)0.004 (3)
N40.021 (3)0.037 (3)0.022 (3)0.000 (2)0.007 (2)0.000 (2)
N50.023 (3)0.047 (4)0.036 (3)0.002 (3)0.011 (3)0.006 (3)
Cu10.0311 (6)0.0486 (7)0.0342 (6)0.0022 (4)0.0134 (4)0.0039 (4)
Geometric parameters (Å, º) top
N3—Cu11.940 (7)C5—N51.345 (9)
C2—C11.135 (14)C5—C5iv1.463 (13)
C2—Cu1i2.121 (8)C6—N41.386 (9)
C2—Cu1ii2.121 (8)C6—H60.9300
C1—Cu1iii2.138 (8)N4—Cu12.046 (6)
C1—Cu12.138 (8)N5—H50.8600
C4—C61.347 (10)Cu1—N2v2.121 (8)
C4—N51.378 (10)Cu1—C2v2.121 (8)
C4—H40.9300Cu1—Cu1iii2.601 (2)
C5—N41.326 (9)
C1—C2—Cu1i142.19 (17)C5—N5—C4107.1 (6)
C1—C2—Cu1ii142.19 (17)C5—N5—H5126.4
Cu1i—C2—Cu1ii75.6 (3)C4—N5—H5126.4
C2—C1—Cu1iii142.53 (16)N3—Cu1—N4117.4 (3)
C2—C1—Cu1142.53 (16)N3—Cu1—N2v115.4 (2)
Cu1iii—C1—Cu174.9 (3)N4—Cu1—N2v104.78 (17)
C6—C4—N5106.7 (6)N3—Cu1—C2v115.4 (2)
C6—C4—H4126.6N4—Cu1—C2v104.78 (17)
N5—C4—H4126.6N2v—Cu1—C2v0.0 (3)
N4—C5—N5111.1 (6)N3—Cu1—C1111.2 (2)
N4—C5—C5iv127.0 (8)N4—Cu1—C1101.80 (17)
N5—C5—C5iv121.8 (8)N2v—Cu1—C1104.7 (2)
C4—C6—N4109.4 (7)C2v—Cu1—C1104.7 (2)
C4—C6—H6125.3N3—Cu1—Cu1iii130.4 (2)
N4—C6—H6125.3N4—Cu1—Cu1iii112.11 (17)
C5—N4—C6105.7 (6)N2v—Cu1—Cu1iii52.19 (17)
C5—N4—Cu1135.1 (5)C2v—Cu1—Cu1iii52.19 (17)
C6—N4—Cu1119.3 (5)C1—Cu1—Cu1iii52.53 (16)
Cu1i—C2—C1—Cu1iii180.000 (4)N5—C5—N4—Cu1179.6 (5)
Cu1ii—C2—C1—Cu1iii0.000 (9)C5iv—C5—N4—Cu10.6 (13)
Cu1i—C2—C1—Cu10.001 (9)C4—C6—N4—C50.2 (8)
Cu1ii—C2—C1—Cu1179.999 (3)C4—C6—N4—Cu1179.7 (5)
N5—C4—C6—N40.7 (9)N4—C5—N5—C40.9 (8)
N5—C5—N4—C60.5 (8)C5iv—C5—N5—C4180.0 (8)
C5iv—C5—N4—C6179.5 (9)C6—C4—N5—C51.0 (8)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1/2; (iii) x+1, y, z+1/2; (iv) x+3/2, y+1/2, z+1; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N3iv0.862.463.223 (9)148
Symmetry code: (iv) x+3/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds