Download citation
Download citation
link to html
Treatment of thio­semicarbazones prepared from sesquiterpenes with ethyl 2-bromo­acetate in the presence of sodium acetate afforded the corresponding thia­zolidin-4-ones. The structures of all the newly synthesized compounds were established by considering spectral and single-crystal X-ray diffraction data. The title compound, ethyl 2-((Z)-2-{(Z)-[(1aR,5aR,9aS)-1,1-di­chloro-1a,5,5,7-tetra­methyl-1a,2,3,4,5,5a,8,9-octa­hydro-1H-benzo[a]cyclo­propa[b][7]annulen-8-yl­idene]hydrazono}-4-oxo­thia­zolidin-3-yl)acetate, C23H31Cl2N3O3S, 5, crystallizes in the ortho­rhom­bic noncentrosymmetric space group P212121 with Z = 4. Within the mol­ecule in the crystal structure, the cyclo­hexene ring has an envelope conformation and the cyclo­heptane ring, to which it is fused, has a boat conformation. In the crystal, mol­ecules are linked by C—H...Cl hydrogen bonds forming chains propagating along the b-axis direction. The absolute configuration of the mol­ecule in the crystal could be fully confirmed from anom­a­lous dispersion effects [Flack parameter = −0.04 (2)]. Thio­semi­car­bazones 1 and 2 are efficient inhibitors for steel corrosion in 1 M H2SO4 solution, with a maximum efficiency of 92.28% at 10−3M. Furthermore, thio­semicarbazone compounds were found to be more efficient than thia­zolidin-4-one derivatives. In addition, cyclic voltammetry was used to characterize the tested mol­ecules, as well to estimate the experimental value of the energy band gap.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619005631/yo3060sup1.cif
Contains datablock global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619005631/yo3060Isup2.hkl
Contains datablock I

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup3.tif
1H NMR spectra of compound 2

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup4.tif
13C NMR (APT) spectra of compound 2

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup5.tif
1H NMR spectra of compound 3

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup6.tif
13C NMR (APT) spectra of compound 3

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup7.tif
1H NMR spectra of compound 4

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup8.tif
13C NMR (APT) spectra of compound 4

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup9.tif
1H NMR spectra of compound 5

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup10.tif
13C NMR (APT) spectra of compound 5

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup11.tif
1H NMR spectra of compound 6

tif

Tagged Image Format File (TIF) image https://doi.org/10.1107/S2053229619005631/yo3060sup12.tif
13C NMR (APT) spectra of compound 6

CCDC reference: 1911992

Computing details top

Data collection: DUO in APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Ethyl 2-{(Z)-2-{(Z)-[(1aR,5aR,9aS)-1,1-dichloro-1a,5,5,7-tetramethyl-1a,2,3,4,5,5a,8,9-octahydro-1H-benzo[a]cyclopropa[b][7]annulen-8-ylidene]hydrazono}-4-oxothiazolidin-3-yl)acetate top
Crystal data top
C23H31Cl2N3O3SDx = 1.316 Mg m3
Mr = 500.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5789 reflections
a = 10.2769 (7) Åθ = 2.0–27.5°
b = 12.2445 (7) ŵ = 0.37 mm1
c = 20.0804 (13) ÅT = 299 K
V = 2526.8 (3) Å3Block, colourless
Z = 40.34 × 0.21 × 0.11 mm
F(000) = 1056
Data collection top
Bruker DUO APEXII CCD
diffractometer
4306 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 27.5°, θmin = 2.0°
Tmin = 0.710, Tmax = 0.746h = 1313
58280 measured reflectionsk = 1515
5789 independent reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3269P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.26 e Å3
5789 reflectionsΔρmin = 0.19 e Å3
294 parametersAbsolute structure: Flack x determined using 1538 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.04 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.91689 (9)0.40874 (6)0.28176 (4)0.0521 (2)
Cl20.92163 (8)0.64247 (6)0.28263 (4)0.0456 (2)
S1'0.41368 (9)0.18868 (7)0.16736 (5)0.0572 (3)
O10.5447 (3)0.10510 (19)0.14607 (15)0.0719 (8)
O20.7293 (3)0.0766 (2)0.02640 (14)0.0716 (8)
O30.9255 (3)0.0866 (3)0.07238 (13)0.0816 (9)
N10.6044 (2)0.3561 (2)0.15782 (13)0.0447 (6)
N20.6657 (3)0.2530 (2)0.15405 (14)0.0441 (7)
N3'0.6216 (2)0.06903 (19)0.15379 (14)0.0447 (7)
C10.9428 (3)0.5258 (2)0.23193 (14)0.0334 (6)
C1A1.0446 (3)0.5220 (2)0.17788 (15)0.0341 (7)
C21.1211 (3)0.6249 (2)0.16433 (16)0.0418 (7)
H2A1.20500.61980.18630.050*
H2B1.07510.68680.18310.050*
C31.1421 (3)0.6439 (3)0.08995 (18)0.0538 (9)
H3A1.21850.60320.07610.065*
H3B1.16050.72080.08300.065*
C41.0282 (3)0.6115 (3)0.04491 (17)0.0509 (9)
H4A1.05150.63100.00040.061*
H4B1.02070.53260.04640.061*
C50.8934 (3)0.6590 (2)0.05887 (15)0.0425 (8)
C5A0.8460 (3)0.6323 (2)0.13161 (14)0.0338 (7)
H5A0.87990.69080.16000.041*
C60.7006 (3)0.6342 (3)0.13993 (15)0.0406 (7)
H60.65970.70190.13790.049*
C70.6253 (3)0.5472 (2)0.14991 (15)0.0387 (7)
C80.6826 (3)0.4371 (2)0.14911 (15)0.0357 (7)
C90.8265 (3)0.4258 (2)0.13597 (16)0.0361 (7)
H9A0.84120.41660.08860.043*
H9B0.85940.36140.15850.043*
C9A0.8990 (3)0.5258 (2)0.16040 (13)0.0300 (6)
C101.1226 (3)0.4187 (2)0.16751 (19)0.0466 (8)
H10A1.06590.35660.17030.070*
H10B1.18850.41340.20130.070*
H10C1.16300.42060.12440.070*
C110.8944 (4)0.7841 (3)0.05106 (19)0.0587 (10)
H11A0.92550.80290.00740.088*
H11B0.95070.81560.08400.088*
H11C0.80780.81190.05680.088*
C120.8010 (4)0.6128 (3)0.00546 (17)0.0591 (10)
H12A0.82940.63610.03780.089*
H12B0.71430.63890.01340.089*
H12C0.80170.53440.00750.089*
C130.4803 (3)0.5579 (3)0.1594 (2)0.0581 (10)
H13A0.43600.52060.12400.087*
H13B0.45660.63380.15890.087*
H13C0.45600.52630.20130.087*
C2'0.5817 (3)0.1767 (2)0.15774 (15)0.0414 (7)
C4'0.5249 (3)0.0091 (3)0.15382 (17)0.0501 (9)
C5'0.3940 (3)0.0420 (3)0.1651 (2)0.0565 (9)
H5'A0.35760.01640.20680.068*
H5'B0.33510.02180.12940.068*
C6'0.7568 (3)0.0426 (3)0.14311 (17)0.0479 (8)
H6'A0.77010.03480.15080.057*
H6'B0.80990.08260.17480.057*
C7'0.7990 (4)0.0707 (3)0.07342 (19)0.0493 (9)
C8'0.9852 (5)0.1165 (6)0.0093 (2)0.1041 (19)
H8'A1.00960.05120.01510.125*
H8'B0.92390.15760.01760.125*
C9'1.0974 (7)0.1811 (5)0.0221 (3)0.133 (3)
H9'A1.14090.19690.01910.199*
H9'B1.15530.14170.05100.199*
H9'C1.07180.24810.04310.199*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0539 (5)0.0422 (4)0.0601 (5)0.0043 (4)0.0065 (5)0.0198 (4)
Cl20.0503 (5)0.0425 (4)0.0441 (4)0.0020 (4)0.0012 (4)0.0076 (3)
S1'0.0366 (5)0.0501 (5)0.0849 (7)0.0068 (4)0.0104 (5)0.0062 (4)
O10.076 (2)0.0378 (13)0.102 (2)0.0106 (12)0.0121 (16)0.0047 (13)
O20.0620 (19)0.097 (2)0.0559 (17)0.0111 (16)0.0092 (16)0.0069 (14)
O30.0451 (18)0.150 (3)0.0499 (16)0.0113 (19)0.0077 (14)0.0047 (16)
N10.0343 (15)0.0404 (13)0.0595 (17)0.0021 (13)0.0024 (13)0.0069 (12)
N20.0354 (15)0.0366 (14)0.0602 (18)0.0060 (12)0.0039 (14)0.0043 (12)
N3'0.0388 (17)0.0356 (13)0.0597 (18)0.0024 (11)0.0036 (14)0.0034 (12)
C10.0333 (17)0.0264 (13)0.0404 (16)0.0001 (13)0.0001 (13)0.0027 (12)
C1A0.0274 (16)0.0292 (13)0.0456 (17)0.0018 (12)0.0017 (13)0.0024 (13)
C20.0284 (17)0.0387 (16)0.058 (2)0.0035 (13)0.0029 (15)0.0018 (14)
C30.041 (2)0.056 (2)0.065 (2)0.0024 (17)0.0117 (18)0.0132 (18)
C40.052 (2)0.053 (2)0.047 (2)0.0064 (17)0.0104 (17)0.0089 (16)
C50.049 (2)0.0374 (16)0.0415 (18)0.0039 (15)0.0017 (16)0.0042 (12)
C5A0.0336 (17)0.0287 (14)0.0391 (16)0.0035 (13)0.0022 (13)0.0010 (12)
C60.0351 (18)0.0371 (16)0.0496 (19)0.0112 (14)0.0046 (15)0.0006 (14)
C70.0298 (17)0.0434 (17)0.0429 (18)0.0051 (13)0.0020 (14)0.0071 (13)
C80.0289 (17)0.0377 (16)0.0406 (18)0.0004 (13)0.0006 (14)0.0046 (13)
C90.0288 (17)0.0292 (14)0.0501 (19)0.0032 (12)0.0006 (14)0.0034 (13)
C9A0.0245 (15)0.0264 (12)0.0392 (15)0.0025 (12)0.0007 (13)0.0014 (12)
C100.0324 (18)0.0387 (16)0.069 (2)0.0074 (14)0.0046 (17)0.0030 (15)
C110.073 (3)0.0444 (19)0.059 (2)0.003 (2)0.004 (2)0.0173 (15)
C120.069 (3)0.061 (2)0.048 (2)0.007 (2)0.0091 (19)0.0008 (17)
C130.033 (2)0.066 (2)0.075 (3)0.0113 (17)0.0009 (19)0.011 (2)
C2'0.0361 (17)0.0424 (16)0.0456 (18)0.0061 (15)0.0042 (16)0.0044 (13)
C4'0.051 (2)0.046 (2)0.054 (2)0.0124 (16)0.0059 (17)0.0001 (16)
C5'0.044 (2)0.054 (2)0.071 (2)0.0187 (17)0.0089 (19)0.0073 (17)
C6'0.040 (2)0.0479 (19)0.056 (2)0.0009 (16)0.0027 (16)0.0011 (16)
C7'0.043 (2)0.051 (2)0.053 (2)0.0010 (17)0.0023 (19)0.0078 (16)
C8'0.069 (3)0.194 (6)0.049 (3)0.023 (4)0.021 (2)0.005 (3)
C9'0.171 (7)0.148 (5)0.079 (4)0.076 (5)0.042 (4)0.027 (3)
Geometric parameters (Å, º) top
Cl1—C11.768 (3)C5A—H5A0.9800
Cl2—C11.768 (3)C6—C71.332 (4)
S1'—C2'1.744 (3)C6—H60.9300
S1'—C5'1.808 (3)C7—C81.472 (4)
O1—C4'1.203 (4)C7—C131.508 (5)
O2—C7'1.188 (4)C8—C91.509 (4)
O3—C7'1.315 (5)C9—C9A1.515 (4)
O3—C8'1.455 (5)C9—H9A0.9700
N1—C81.288 (4)C9—H9B0.9700
N1—N21.413 (3)C10—H10A0.9600
N2—C2'1.274 (4)C10—H10B0.9600
N3'—C4'1.380 (4)C10—H10C0.9600
N3'—C2'1.383 (4)C11—H11A0.9600
N3'—C6'1.442 (4)C11—H11B0.9600
C1—C9A1.505 (4)C11—H11C0.9600
C1—C1A1.508 (4)C12—H12A0.9600
C1A—C21.509 (4)C12—H12B0.9600
C1A—C101.512 (4)C12—H12C0.9600
C1A—C9A1.538 (4)C13—H13A0.9600
C2—C31.527 (5)C13—H13B0.9600
C2—H2A0.9700C13—H13C0.9600
C2—H2B0.9700C4'—C5'1.501 (5)
C3—C41.532 (5)C5'—H5'A0.9700
C3—H3A0.9700C5'—H5'B0.9700
C3—H3B0.9700C6'—C7'1.505 (5)
C4—C51.529 (5)C6'—H6'A0.9700
C4—H4A0.9700C6'—H6'B0.9700
C4—H4B0.9700C8'—C9'1.421 (7)
C5—C111.539 (4)C8'—H8'A0.9700
C5—C121.540 (5)C8'—H8'B0.9700
C5—C5A1.574 (4)C9'—H9'A0.9600
C5A—C61.504 (4)C9'—H9'B0.9600
C5A—C9A1.527 (4)C9'—H9'C0.9600
C2'—S1'—C5'91.40 (15)C1—C9A—C9117.1 (2)
C7'—O3—C8'117.9 (3)C1—C9A—C5A117.9 (2)
C8—N1—N2113.7 (2)C9—C9A—C5A113.1 (2)
C2'—N2—N1110.5 (3)C1—C9A—C1A59.40 (19)
C4'—N3'—C2'116.6 (3)C9—C9A—C1A121.9 (2)
C4'—N3'—C6'122.6 (3)C5A—C9A—C1A117.3 (2)
C2'—N3'—C6'120.5 (3)C1A—C10—H10A109.5
C9A—C1—C1A61.37 (18)C1A—C10—H10B109.5
C9A—C1—Cl1119.7 (2)H10A—C10—H10B109.5
C1A—C1—Cl1119.2 (2)C1A—C10—H10C109.5
C9A—C1—Cl2120.84 (19)H10A—C10—H10C109.5
C1A—C1—Cl2121.6 (2)H10B—C10—H10C109.5
Cl1—C1—Cl2108.09 (15)C5—C11—H11A109.5
C1—C1A—C2117.8 (2)C5—C11—H11B109.5
C1—C1A—C10119.5 (2)H11A—C11—H11B109.5
C2—C1A—C10113.4 (2)C5—C11—H11C109.5
C1—C1A—C9A59.22 (18)H11A—C11—H11C109.5
C2—C1A—C9A116.2 (2)H11B—C11—H11C109.5
C10—C1A—C9A120.6 (2)C5—C12—H12A109.5
C1A—C2—C3112.2 (3)C5—C12—H12B109.5
C1A—C2—H2A109.2H12A—C12—H12B109.5
C3—C2—H2A109.2C5—C12—H12C109.5
C1A—C2—H2B109.2H12A—C12—H12C109.5
C3—C2—H2B109.2H12B—C12—H12C109.5
H2A—C2—H2B107.9C7—C13—H13A109.5
C2—C3—C4115.5 (3)C7—C13—H13B109.5
C2—C3—H3A108.4H13A—C13—H13B109.5
C4—C3—H3A108.4C7—C13—H13C109.5
C2—C3—H3B108.4H13A—C13—H13C109.5
C4—C3—H3B108.4H13B—C13—H13C109.5
H3A—C3—H3B107.5N2—C2'—N3'119.6 (3)
C5—C4—C3119.1 (3)N2—C2'—S1'128.0 (2)
C5—C4—H4A107.6N3'—C2'—S1'112.3 (2)
C3—C4—H4A107.6O1—C4'—N3'123.8 (3)
C5—C4—H4B107.6O1—C4'—C5'125.3 (3)
C3—C4—H4B107.6N3'—C4'—C5'110.9 (3)
H4A—C4—H4B107.0C4'—C5'—S1'108.5 (2)
C4—C5—C11110.7 (3)C4'—C5'—H5'A110.0
C4—C5—C12106.9 (3)S1'—C5'—H5'A110.0
C11—C5—C12107.4 (3)C4'—C5'—H5'B110.0
C4—C5—C5A111.8 (3)S1'—C5'—H5'B110.0
C11—C5—C5A107.7 (3)H5'A—C5'—H5'B108.4
C12—C5—C5A112.3 (3)N3'—C6'—C7'111.4 (3)
C6—C5A—C9A109.0 (2)N3'—C6'—H6'A109.3
C6—C5A—C5114.0 (2)C7'—C6'—H6'A109.3
C9A—C5A—C5114.7 (2)N3'—C6'—H6'B109.3
C6—C5A—H5A106.1C7'—C6'—H6'B109.3
C9A—C5A—H5A106.1H6'A—C6'—H6'B108.0
C5—C5A—H5A106.1O2—C7'—O3125.1 (4)
C7—C6—C5A125.5 (3)O2—C7'—C6'125.4 (3)
C7—C6—H6117.2O3—C7'—C6'109.5 (3)
C5A—C6—H6117.2C9'—C8'—O3108.9 (4)
C6—C7—C8119.9 (3)C9'—C8'—H8'A109.9
C6—C7—C13121.6 (3)O3—C8'—H8'A109.9
C8—C7—C13118.5 (3)C9'—C8'—H8'B109.9
N1—C8—C7117.0 (3)O3—C8'—H8'B109.9
N1—C8—C9124.4 (3)H8'A—C8'—H8'B108.3
C7—C8—C9118.6 (3)C8'—C9'—H9'A109.5
C8—C9—C9A110.5 (2)C8'—C9'—H9'B109.5
C8—C9—H9A109.5H9'A—C9'—H9'B109.5
C9A—C9—H9A109.5C8'—C9'—H9'C109.5
C8—C9—H9B109.5H9'A—C9'—H9'C109.5
C9A—C9—H9B109.5H9'B—C9'—H9'C109.5
H9A—C9—H9B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl2i0.962.793.557 (3)137
C2—H2B···Cl1ii0.972.813.661 (3)147
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
Selected geometric parameters (Å, °) for 5 (reported here) and ac (reported previously) top
Bond lengths5a*b**c***
Cl1—C11.768 (3)1.757 (3)1.763 (6)1.769 (2)
Cl2—C11.768 (3)1.762 (3)1.766 (6)1.761 (2)
N1—C81.287 (4)—–1.283 (7)1.288 (2)
C6—C71.331 (5)1.318 (4)1.342 (8)1.326 (3)
C7—C81.472 (4)1.486 (4)1.474 (8)1.472 (2)
C8—C91.509 (4)1.511 (4)1.512 (7)1.504 (2)
Cl1—C1—Cl2108.1 (2)107.6 (2)108.2 (3)108.8 (1)
C7—C8—C9118.6 (3)114.8 (2)118.2 (4)119.6 (2)
C6—C7—C8119.9 (3)121.4 (3)120.2 (4)119.0 (2)
N1—C8—C7117.0 (3)—–116.3 (4)116.3 (2)
N1—C8—C9124.3 (3)—–125.4 (5)124.2 (2)
References: (*) Auhmani et al. (1999); (**) Benharref et al. (2016); (***) Ourhriss et al. (2005).
Comparison of main bond lengths (Å) and CN—NC torsions angles (°) in the title compound and related structures top
N1—N2C2'—N2N1—C8S1'—C2'N3'—C2'CN—NCReference
1.413 (4)1.275 (5)1.288 (4)1.744 (4)1.383 (4)-174.7 (3)This study
1.417 (3)1.269 (3)1.291 (3)1.756 (3)1.380 (3)173.8 (3)Gautam & Chaudhary (2015)
1.406 (2)1.277 (2)1.287 (2)1.769 (2)1.386 (2)179.0 (2)Hassan et al. (2017)
1.405 (3)1.274 (3)1.286 (4)1.756 (3)1.398 (3)-168.9 (2)N'ait Ousidi et al. (2017)
1.407 (2)1.281 (2)1.291 (2)1.761 (2)1.392 (2)179.4 (2)Mague et al. (2014)
1.414 (2)1.278 (2)1.278 (2)1.749 (2)1.367 (2)-177.3 (2)Ramachandran et al. (2009)
1.417 (7)1.256 (7)1.268 (8)1.759 (5)1.412 (8)-177.6 (8)Gupta & Chaudhary (2013)
1.410 (6)1.279 (7)1.279 (7)1.767 (5)1.364 (7)174.9 (7)Gautam et al. (2013)
Tafel parameters and corresponding inhibition efficiency derived from potentiodynamic polarization curves top
InhibitorEcorr (mV versus SCE)icorr (mA cm-2)η (%)
Blank-378.7305.9
1-330.3112.863.12
3-327.7129.957.53
5-369.4202.533.80
2-376.223.692.28
4-327.8187.438.73
6-311.3132.256.78
Cyclic voltammetry parameters for the different tested molecules in a solution of 0.2 M Et4NClO4/acetonitrile at 100 mV s-1. top
MoleculesEoxonsetEHOMOEredonsetELUMOΔE
10.235-5.0350.102-4.9020.133
2-0.235-4.565-0.324-4.4760.089
30.537-5.3370.235-5.0350.302
40.271-5.0710.129-4.9290.142
50.572-5.3720.226-5.0260.346
60.182-4.9820.031-4.8310.151
Molecular properties of thiosemicarbazone and thiazolidin-4-one derivatives calculated using DFT at the B3LYP/6-31G(d) basis set. top
Molecule124635
EHOMO-0.201-0.203-0.216-0.212-0.217-0.213
ELUMO-0.051-0.053-0.054-0.053-0.055-0.053
ΔE0.1500.1500.1620.1580.1610.159
η0.0750.0750.0810.0790.0800.079
ΔET-0.01875-0.018-0.020-0.0198-0.0202-0.0198
ΔN45.82145.65142.30743.29442.39343.150
Dipôle/moment7.2956.6963.7383.8343.8814.085
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds