research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of anabolic steroid metabolite 4-chloro­androst-4-ene-3,17-dione

crossmark logo

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand, and bNational Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Phathumthani 12120, Thailand

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 4 August 2022; accepted 14 November 2022; online 17 November 2022)

The title compound, NorClAD, C18H23ClO2, a metabolite of an anabolic steroid norchloro­testosterone acetate (NClTA), was successfully synthesized. Its mol­ecular structure was characterized by 1H NMR and 13C NMR spectroscopy and single-crystal X-ray diffraction. The positions of the chlorine substituent, carbonyl groups and the double bond, as well as the absolute configuration of the mol­ecule, were established. A Hirshfeld surface analysis was performed.

1. Chemical context

Anabolic steroids have been reported to be used as growth-accelerating agents (Schanzer, 1996[Schänzer, W. (1996). Clin. Chem. 42, 1001-1020.]). Norchloro­testosterone acetate (NClTA), one of the synthetic anabolic steroids, is applied by athletes as a testosterone mimetic for an improvement of their performance. The use of testosterone derivatives has therefore been banned by the World Anti-Doping Agency (WADA) (Wood & Stanton, 2012[Wood, R. I. & Stanton, S. J. (2012). Horm. Behav. 61, 147-155.]). The metabolism of anabolic steroids is divided into two phases. In phase I, the functional group of anabolic steroids is converted into a more polar functional group. In phase II, the metabolite of anabolic steroids is transformed to glucuronic acid or a sulfate derivative that may easily be eliminated from the human body. Knowledge of its metabolic pathway is therefore necessary to prove the illegal administration of NClTA.

The metabolism of NClTA has been investigated successfully in invertebrates (Neomysis integer) and vertebrates (bovine) through oral and subcutaneous administration (Leyssens et al., 1994[Leyssens, L., Royackers, E., Gielen, B., Missotten, M., Schoofs, J., Czech, J., Noben, J. P., Hendriks, L. & Raus, J. (1994). J. Chromatogr. B Biomed. Sci. Appl. 654, 43-54.]; Hendriks et al., 1994[Hendriks, L., Gielen, B., Leyssens, L. & Raus, J. (1994). Vet. Rec. 134, 192-193.]; Bizec et al., 1998[Le Bizec, B., Montrade, M.-P., Monteau, F., Gaudin, I. & Andre, F. (1998). Clin. Chem. 44, 973-984.]). Mass spectrometry results indicate that one of the most abundant metabolites, found in both invertebrates and vertebrates (after subcutaneous injection), is 4-chloro­androst-4-ene-3,17-dione (NorClAD), the oxidized form of NClTA (see Fig. 1[link]). NorClAD was synthesized through hydrolysis of NClTA followed by an oxidation (Hoof et al., 2004[Van Hoof, N., De Wasch, K., Poelmans, S., Bruneel, D., Spruyt, S., Noppe, H., Janssen, C., Courtheyn, D. & De Brab, H. (2004). Chromatographia, 59, S85-S93.]). However, elucidation of its crystal and mol­ecular structures and its absolute stereochemistry were required. In this work, NorClAD was successfully synthesized in two steps according to the given scheme (Ringold et al., 1956[Ringold, H. J., Batres, E., Mancera, O. & Rosenkranz, G. (1956). J. Org. Chem. 21, 1432-1435.]), and its X-ray structure and absolute stereochemistry were determined.

[Scheme 1]
[Figure 1]
Figure 1
The structures of NClTA and NorClAD.

2. Structural commentary

The mol­ecular structure of the title compound is represented in Fig. 2[link]. The compound consists of three six-membered rings A(C1–C4/C16/C17), B(C4/C5/C13–C16), C(C5–C8/C12/C13) and one five-membered ring D (C8–C12). Cyclo­hexenone ring A adopts a half-chair conformation while cyclo­hexane rings B and C adopt chair conformations. Cyclo­penta­none ring D adopts an envelope conformation with C12 as the flap. It is evident from the bond dimensions that the chlorine atom lies at C17, C1 and C9 are involved in carbonyl groups, and that the C16—C17 bond has double-bond character. The title compound adopts an all-trans ring junction and the absolute stereochemistry of atoms C4(R), C5(S) C8(S) C12(S) and C13(R) were properly determined using Cu Kα radiation and confirmed by the Flack parameter of 0.029 (4) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, NorClAD. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

A view of the unit-cell content of the title compound is presented in Fig. 3[link]. There are several C—H⋯O and C—H⋯Cl contacts that can be considered as weak hydrogen bonds (see Table 1[link]). In order to better understand the importance of these contacts, a Hirshfeld surface (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was performed and the two-dimensional fingerprint plots were generated with Crystal Explorer 21.0 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface mapped over dnorm (see Fig. 4[link]) is scaled between −0.1622 to 1.3540 a.u. The bright-red spots indicate the positions of the respective H-atom donors and H-atom acceptors (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). Fig. 5[link] shows how these red spots correspond to short inter­molecular contacts. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, Cl⋯C/C⋯Cl, and Cl⋯O/O⋯Cl contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are presented in Fig. 6[link]ag, respectively, together with their relative contributions to the Hirshfeld surface. The most abundant inter­action is H⋯H, contributing 56.2% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density owing to the large hydrogen content of the mol­ecule. The blue region fingerprint plot of H⋯O/O⋯H inter­action represents a symmetric distribution of points (22.8% contribution, Fig. 6[link]d). While, the contribution of H⋯Cl/Cl⋯H contacts (Fig. 6[link]c) is 13.7%. Percentages of other types of contacts are given in Table 2[link]. The large number of H⋯H inter­actions indicate that van der Waals inter­actions play a major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.99 2.60 3.563 (2) 165
C10—H10A⋯O2ii 0.99 2.57 3.398 (3) 141
C18—H18B⋯O2ii 0.98 2.56 3.507 (3) 163
C10—H10B⋯O1iii 0.99 2.48 3.443 (3) 164
C4—H4⋯Cl1iv 1.00 2.88 3.8202 (18) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Percentage contributions of the most relevant atom–atom contacts to the Hirshfeld surface in the title structure

Atom-atom inter­action Percentage
H⋯H 56.2
H⋯O/O⋯H 22.8
H⋯Cl/Cl⋯H 13.7
H⋯C/C⋯H 5.6
Cl⋯O/O⋯Cl 1.6
Cl⋯C/C⋯Cl 0.2
[Figure 3]
Figure 3
The packing of the title compound viewed down the a axis.
[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound together with the hydrogen-bonding (dashed lines) between adjacent mol­ecules.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for the title compound, showing all inter­actions (a), and those delineated into H⋯H (b), H⋯Cl/Cl⋯H (c), H⋯O/O⋯H (d), H⋯C/C⋯H (e), Cl⋯C/C⋯Cl (f) and Cl⋯O/O⋯Cl (g) inter­actions.

4. Database survey

A search of Cambridge Structure Database (CSD, version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found four structures that are closely related to the title compound and which play significant roles in the biological mechanisms. For the disordered structure of cortisol (11b,17a,21-trihy­droxy-4-pregnene-3,20-dione), see CORTSL (Castellano, 1980[Castellano, E. E., Main, P. & Westbrook, E. (1980). Acta Cryst. B36, 3063-3067.]). For dexamethasone at 119 K, see DEXMET11 (Raynor et al., 2007[Raynor, J. W., Minor, W. & Chruszcz, M. (2007). Acta Cryst. E63, o2791-o2793.]). For 17β-hy­droxy-17a-methyl­androstano[3,2-c]pyrazole, stanozolol, see AVENUL (Karpinska et al., 2011[Karpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829-2838.]). For the crystal structure, Hirshfeld surface analysis, inter­action energies, and DFT studies of cholesteryl hepta­noate, see ZZZBIP01 (Akduran et al., 2021[Akduran, N., Karakurt, T. & Hökelek, T. (2021). Acta Cryst. E77, 686-691.]).

5. Synthesis and crystallization

The target compound was synthesized in two steps as shown in the scheme.

To a solution of norandrostenedione (5.00 g, 18.36 mmol) in methanol (100 mL) at 273 K were slowly added 30% H2O2 (4.5 mL, 57.55 mmol) and 6N NaOH (1.5 mL, 9.0 mmol). The mixture was then stirred at 273 K for 1 h. After that, the reaction solution was warmed up to room temperature and stirring continued for 2 h. After completion, water was added to the reaction mixture and the solvent was evaporated. The aqueous residue was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous Na2SO4 and then concentrated to dryness in vacuo to provide epoxide 1, which was used in the next step without further purification.

A solution of epoxide 1 (4.13 g) in acetone (100 mL) was treated with conc. HCl (1.5 mL) and the mixture was stirred at room temperature for 30 min. After that, water was added to the reaction mixture and it was extracted three times with di­chloro­methane. The combined organic extracts were dried over anhydrous Na2SO4 and evaporated to dryness. The solid product was recrystallized from MeOH:CH2Cl2 (3:1) at room temperature to provide 3.19 g of 4-chloro­androst-4-ene-3,17-dione (NorClAD) (56% yield).

Compound characterization: 1H NMR (400 MHz, chloro­form-d) δ 3.42 (ddd, J = 15.0, 4.1, 2.4 Hz, 1H), 2.66 (dt, J = 16.2, 4.4 Hz, 1H), 2.55–2.36 (m, 2H), 2.36–2.25 (m, 2H), 2.19–2.08 (m, 2H), 2.07–1.92 (m, 3H), 1.88 (dt, J = 9.3, 2.7 Hz, 1H), 1.65–1.49 (m, 3H), 1.39–1.30 (m, 3H), 1.20 (tdd, J = 13.3, 11.7, 4.0 Hz, 1H), 1.05 0.97 (m, 1H), 0.95 (s, 3H). 13C NMR (101 MHz, chloro­form-d) δ 220.3, 191.1, 159.6, 127.9, 50.1, 49.4, 47.7, 44.8, 39.7, 36.6, 35.8, 31.9, 31.3, 29.3, 25.7, 25.5, 21.7, 13.9.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically, with C—H = 0.98, 0.99 and 1.00 Å for methyl, methyl­ene and methine protons, respectively, and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). In addition, the absolute configuration of this compound was confirmed by the Flack parameter of 0.029 (4) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 3
Experimental details

Crystal data
Chemical formula C18H23ClO2
Mr 306.81
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.4379 (4), 12.7142 (6), 16.4790 (8)
V3) 1558.37 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.18
Crystal size (mm) 0.05 × 0.01 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.678, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 18469, 2907, 2787
Rint 0.031
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.04
No. of reflections 2907
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.18
Absolute structure Flack x determined using 1150 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.029 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Chloroandrost-4-ene-3,17-dione top
Crystal data top
C18H23ClO2Dx = 1.308 Mg m3
Mr = 306.81Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9974 reflections
a = 7.4379 (4) Åθ = 4.4–70.2°
b = 12.7142 (6) ŵ = 2.18 mm1
c = 16.4790 (8) ÅT = 100 K
V = 1558.37 (13) Å3Block, clear light colourless
Z = 40.05 × 0.01 × 0.01 mm
F(000) = 656
Data collection top
BRUKER D8 VENTURE
diffractometer
2907 independent reflections
Radiation source: X-ray tube, Micro focus tube2787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 70.1°, θmin = 4.4°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.678, Tmax = 0.753l = 2019
18469 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2052P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.17 e Å3
2907 reflectionsΔρmin = 0.18 e Å3
191 parametersAbsolute structure: Flack x determined using 1150 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.029 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53413 (6)0.00451 (3)0.67248 (3)0.02851 (13)
O10.1878 (2)0.02569 (11)0.74872 (9)0.0345 (3)
O20.3004 (2)0.70098 (13)0.43229 (10)0.0401 (4)
C10.2157 (3)0.06557 (15)0.73085 (11)0.0242 (4)
C50.2976 (2)0.36358 (14)0.60909 (11)0.0191 (3)
H50.2599970.3237920.5595820.023*
C60.1640 (2)0.45474 (14)0.62010 (12)0.0228 (4)
H6A0.1884540.4896610.6726460.027*
H6B0.0406220.4256700.6224430.027*
C170.3824 (2)0.09845 (14)0.68886 (11)0.0214 (4)
C30.0974 (2)0.24336 (14)0.69275 (11)0.0234 (4)
H3A0.0176070.3008380.7113130.028*
H3B0.0518660.2179480.6398180.028*
C70.1726 (2)0.53763 (15)0.55206 (12)0.0243 (4)
H7A0.1288790.5065250.5006360.029*
H7B0.0937920.5977740.5659090.029*
C40.2882 (2)0.28617 (13)0.68182 (11)0.0193 (3)
H40.3194840.3265670.7319380.023*
C160.4260 (2)0.19893 (13)0.67251 (11)0.0206 (3)
C130.4912 (2)0.40302 (14)0.59430 (11)0.0197 (4)
H130.5345330.4397790.6442500.024*
C90.4042 (3)0.64247 (15)0.46663 (12)0.0278 (4)
C150.6121 (3)0.23322 (15)0.64898 (13)0.0277 (4)
H15A0.6841170.1703900.6347050.033*
H15B0.6700680.2673850.6962100.033*
C20.0914 (3)0.15384 (15)0.75394 (12)0.0263 (4)
H2A0.1256800.1809340.8080970.032*
H2B0.0330610.1266180.7576010.032*
C80.3650 (2)0.57594 (14)0.54125 (11)0.0215 (4)
C180.4268 (3)0.64214 (15)0.61467 (12)0.0255 (4)
H18A0.3407630.6992090.6241100.038*
H18B0.5458130.6719450.6035450.038*
H18C0.4331720.5972960.6629510.038*
C140.6134 (2)0.30946 (15)0.57747 (12)0.0262 (4)
H14A0.7375870.3345690.5678560.031*
H14B0.5720600.2726220.5279400.031*
C120.4880 (2)0.48125 (14)0.52440 (11)0.0221 (4)
H120.4352070.4433990.4768470.027*
C100.5982 (3)0.62344 (17)0.44187 (13)0.0336 (5)
H10A0.6718890.6870040.4517950.040*
H10B0.6056810.6051680.3835650.040*
C110.6645 (3)0.53098 (16)0.49478 (13)0.0302 (4)
H11A0.7359250.4803830.4624380.036*
H11B0.7380450.5563100.5408790.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0383 (2)0.0235 (2)0.0237 (2)0.00946 (18)0.00264 (17)0.00324 (19)
O10.0444 (8)0.0246 (7)0.0345 (8)0.0055 (6)0.0073 (7)0.0060 (6)
O20.0503 (9)0.0395 (8)0.0305 (8)0.0078 (8)0.0007 (7)0.0141 (7)
C10.0307 (9)0.0246 (9)0.0173 (9)0.0043 (8)0.0020 (7)0.0001 (7)
C50.0164 (8)0.0212 (8)0.0198 (8)0.0009 (7)0.0004 (7)0.0029 (7)
C60.0190 (8)0.0252 (9)0.0241 (10)0.0023 (7)0.0021 (7)0.0019 (7)
C170.0263 (9)0.0229 (8)0.0151 (8)0.0034 (7)0.0013 (7)0.0013 (7)
C30.0189 (8)0.0237 (9)0.0275 (10)0.0015 (7)0.0027 (7)0.0004 (7)
C70.0212 (8)0.0279 (9)0.0237 (9)0.0042 (7)0.0011 (7)0.0033 (7)
C40.0176 (7)0.0199 (8)0.0203 (8)0.0011 (6)0.0008 (7)0.0025 (7)
C160.0206 (8)0.0229 (8)0.0183 (8)0.0011 (6)0.0004 (7)0.0018 (7)
C130.0171 (8)0.0208 (8)0.0212 (9)0.0008 (7)0.0026 (6)0.0022 (7)
C90.0387 (10)0.0246 (9)0.0202 (9)0.0019 (8)0.0012 (8)0.0007 (8)
C150.0186 (8)0.0259 (9)0.0386 (11)0.0029 (7)0.0001 (8)0.0025 (8)
C20.0260 (9)0.0277 (9)0.0253 (9)0.0046 (7)0.0060 (7)0.0006 (8)
C80.0241 (9)0.0224 (8)0.0179 (8)0.0016 (7)0.0004 (7)0.0008 (7)
C180.0320 (10)0.0232 (9)0.0211 (9)0.0018 (7)0.0011 (7)0.0001 (7)
C140.0192 (8)0.0261 (9)0.0332 (10)0.0025 (7)0.0069 (8)0.0001 (8)
C120.0214 (8)0.0242 (9)0.0207 (9)0.0007 (7)0.0031 (6)0.0026 (7)
C100.0411 (11)0.0313 (11)0.0285 (10)0.0027 (9)0.0117 (9)0.0048 (8)
C110.0281 (9)0.0302 (10)0.0323 (11)0.0007 (8)0.0109 (8)0.0021 (8)
Geometric parameters (Å, º) top
Cl1—C171.7493 (17)C13—C141.523 (2)
O1—C11.215 (2)C13—C121.522 (3)
O2—C91.212 (3)C9—C81.521 (3)
C1—C171.480 (3)C9—C101.519 (3)
C1—C21.503 (3)C15—H15A0.9900
C5—H51.0000C15—H15B0.9900
C5—C61.538 (2)C15—C141.526 (3)
C5—C41.552 (2)C2—H2A0.9900
C5—C131.544 (2)C2—H2B0.9900
C6—H6A0.9900C8—C181.544 (3)
C6—H6B0.9900C8—C121.538 (2)
C6—C71.540 (3)C18—H18A0.9800
C17—C161.345 (2)C18—H18B0.9800
C3—H3A0.9900C18—H18C0.9800
C3—H3B0.9900C14—H14A0.9900
C3—C41.530 (2)C14—H14B0.9900
C3—C21.521 (3)C12—H121.0000
C7—H7A0.9900C12—C111.537 (2)
C7—H7B0.9900C10—H10A0.9900
C7—C81.522 (3)C10—H10B0.9900
C4—H41.0000C10—C111.544 (3)
C4—C161.518 (2)C11—H11A0.9900
C16—C151.502 (3)C11—H11B0.9900
C13—H131.0000
O1—C1—C17121.74 (18)C16—C15—H15A109.0
O1—C1—C2123.14 (18)C16—C15—H15B109.0
C17—C1—C2115.01 (15)C16—C15—C14112.91 (15)
C6—C5—H5107.2H15A—C15—H15B107.8
C6—C5—C4110.95 (14)C14—C15—H15A109.0
C6—C5—C13112.12 (14)C14—C15—H15B109.0
C4—C5—H5107.2C1—C2—C3111.88 (15)
C13—C5—H5107.2C1—C2—H2A109.2
C13—C5—C4111.73 (14)C1—C2—H2B109.2
C5—C6—H6A108.8C3—C2—H2A109.2
C5—C6—H6B108.8C3—C2—H2B109.2
C5—C6—C7113.78 (15)H2A—C2—H2B107.9
H6A—C6—H6B107.7C7—C8—C18111.28 (15)
C7—C6—H6A108.8C7—C8—C12109.28 (15)
C7—C6—H6B108.8C9—C8—C7116.95 (16)
C1—C17—Cl1113.65 (13)C9—C8—C18105.85 (15)
C16—C17—Cl1121.62 (14)C9—C8—C12100.08 (14)
C16—C17—C1124.31 (16)C12—C8—C18113.01 (15)
H3A—C3—H3B107.9C8—C18—H18A109.5
C4—C3—H3A109.3C8—C18—H18B109.5
C4—C3—H3B109.3C8—C18—H18C109.5
C2—C3—H3A109.3H18A—C18—H18B109.5
C2—C3—H3B109.3H18A—C18—H18C109.5
C2—C3—C4111.81 (15)H18B—C18—H18C109.5
C6—C7—H7A109.6C13—C14—C15110.60 (15)
C6—C7—H7B109.6C13—C14—H14A109.5
H7A—C7—H7B108.2C13—C14—H14B109.5
C8—C7—C6110.07 (15)C15—C14—H14A109.5
C8—C7—H7A109.6C15—C14—H14B109.5
C8—C7—H7B109.6H14A—C14—H14B108.1
C5—C4—H4107.5C13—C12—C8112.60 (14)
C3—C4—C5111.00 (14)C13—C12—H12106.5
C3—C4—H4107.5C13—C12—C11119.74 (15)
C16—C4—C5110.76 (14)C8—C12—H12106.5
C16—C4—C3112.21 (14)C11—C12—C8104.11 (14)
C16—C4—H4107.5C11—C12—H12106.5
C17—C16—C4120.72 (15)C9—C10—H10A110.6
C17—C16—C15123.32 (16)C9—C10—H10B110.6
C15—C16—C4115.87 (14)C9—C10—C11105.83 (16)
C5—C13—H13108.8H10A—C10—H10B108.7
C14—C13—C5109.38 (14)C11—C10—H10A110.6
C14—C13—H13108.8C11—C10—H10B110.6
C12—C13—C5108.50 (14)C12—C11—C10102.70 (16)
C12—C13—H13108.8C12—C11—H11A111.2
C12—C13—C14112.45 (15)C12—C11—H11B111.2
O2—C9—C8126.60 (18)C10—C11—H11A111.2
O2—C9—C10125.27 (19)C10—C11—H11B111.2
C10—C9—C8108.13 (16)H11A—C11—H11B109.1
Cl1—C17—C16—C4175.86 (13)C7—C8—C12—C11166.87 (15)
Cl1—C17—C16—C157.7 (3)C4—C5—C6—C7177.20 (14)
O1—C1—C17—Cl12.6 (2)C4—C5—C13—C1459.07 (19)
O1—C1—C17—C16175.31 (19)C4—C5—C13—C12177.92 (14)
O1—C1—C2—C3150.53 (19)C4—C3—C2—C156.7 (2)
O2—C9—C8—C730.3 (3)C4—C16—C15—C1448.3 (2)
O2—C9—C8—C1894.3 (2)C16—C15—C14—C1353.9 (2)
O2—C9—C8—C12148.1 (2)C13—C5—C6—C751.5 (2)
O2—C9—C10—C11171.2 (2)C13—C5—C4—C3176.96 (14)
C1—C17—C16—C412.0 (3)C13—C5—C4—C1651.60 (19)
C1—C17—C16—C15164.43 (18)C13—C12—C11—C10165.63 (16)
C5—C6—C7—C852.9 (2)C9—C8—C12—C13174.71 (15)
C5—C4—C16—C17136.86 (17)C9—C8—C12—C1143.51 (18)
C5—C4—C16—C1546.5 (2)C9—C10—C11—C1218.2 (2)
C5—C13—C14—C1559.3 (2)C2—C1—C17—Cl1173.68 (13)
C5—C13—C12—C858.98 (19)C2—C1—C17—C161.0 (3)
C5—C13—C12—C11178.21 (16)C2—C3—C4—C5170.25 (14)
C6—C5—C4—C357.13 (18)C2—C3—C4—C1645.7 (2)
C6—C5—C4—C16177.52 (14)C8—C9—C10—C118.9 (2)
C6—C5—C13—C14175.66 (15)C8—C12—C11—C1038.77 (19)
C6—C5—C13—C1252.7 (2)C18—C8—C12—C1362.56 (19)
C6—C7—C8—C9168.92 (15)C18—C8—C12—C1168.63 (19)
C6—C7—C8—C1869.28 (19)C14—C13—C12—C8179.90 (15)
C6—C7—C8—C1256.2 (2)C14—C13—C12—C1157.1 (2)
C17—C1—C2—C333.2 (2)C12—C13—C14—C15179.92 (15)
C17—C16—C15—C14135.14 (19)C10—C9—C8—C7149.86 (17)
C3—C4—C16—C1712.2 (2)C10—C9—C8—C1885.56 (18)
C3—C4—C16—C15171.12 (16)C10—C9—C8—C1232.04 (19)
C7—C8—C12—C1361.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.603.563 (2)165
C10—H10A···O2ii0.992.573.398 (3)141
C18—H18B···O2ii0.982.563.507 (3)163
C10—H10B···O1iii0.992.483.443 (3)164
C4—H4···Cl1iv1.002.883.8202 (18)158
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y+1/2, z+3/2.
Percentage contributions of the most relevant atom–atom contacts to the Hirshfeld surface in the title structure top
Atom-atom interactionPercentage
H···H56.2
H···O/O···H22.8
H···Cl/Cl···H13.7
H···C/C···H5.6
Cl···O/O···Cl1.6
Cl···C/C···Cl0.2
 

Funding information

Financial support from Mahidol University, the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0115/2557 for PS and TT) and the Center of Excellence for Innovation in Chemistry (PERCH-CIC) are gratefully acknowledged.

References

First citationAkduran, N., Karakurt, T. & Hökelek, T. (2021). Acta Cryst. E77, 686–691.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastellano, E. E., Main, P. & Westbrook, E. (1980). Acta Cryst. B36, 3063–3067.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHendriks, L., Gielen, B., Leyssens, L. & Raus, J. (1994). Vet. Rec. 134, 192–193.  CrossRef CAS PubMed Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKarpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829–2838.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLe Bizec, B., Montrade, M.-P., Monteau, F., Gaudin, I. & Andre, F. (1998). Clin. Chem. 44, 973–984.  CrossRef CAS PubMed Google Scholar
First citationLeyssens, L., Royackers, E., Gielen, B., Missotten, M., Schoofs, J., Czech, J., Noben, J. P., Hendriks, L. & Raus, J. (1994). J. Chromatogr. B Biomed. Sci. Appl. 654, 43–54.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaynor, J. W., Minor, W. & Chruszcz, M. (2007). Acta Cryst. E63, o2791–o2793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRingold, H. J., Batres, E., Mancera, O. & Rosenkranz, G. (1956). J. Org. Chem. 21, 1432–1435.  CrossRef CAS Google Scholar
First citationSchänzer, W. (1996). Clin. Chem. 42, 1001–1020.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Hoof, N., De Wasch, K., Poelmans, S., Bruneel, D., Spruyt, S., Noppe, H., Janssen, C., Courtheyn, D. & De Brab, H. (2004). Chromatographia, 59, S85–S93.  CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWood, R. I. & Stanton, S. J. (2012). Horm. Behav. 61, 147–155.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds