Download citation
Download citation
link to html
The steric and electronic factors that influence which of the two rings of a substituted biphenyl ligand coordinates to chromium are of interest and it has been suggested that haptotropic rearrangements within these mol­ecules may be limited if the arene–arene dihedral angle is too large. Two tricarbonylchromium(0) complexes and their respective free ligands have been characterized by single-crystal X-ray diffraction. In the solid state, tricarbon­yl[(1′,2′,3′,4′,5′,6′-η)-2-fluoro-1,1′-biphen­yl]chromium(0), [Cr(C12H9F)(CO)3], (I), exists as the more stable isomer with the non­halogenated arene ring ligated to the metal center. Similarly, tricarbon­yl[(1′,2′,3′,4′,5′,6′-η)-4-fluoro-1,1′-biphen­yl]chromium(0) crys­tallizes as the more stable isomer with the phenyl ring bonded to the Cr0 center. The arene–arene dihedral angles in these complexes are 55.77 (4) and 52.4 (5)°, respectively. Structural features of these complexes are compared to those of the DFT-optimized geometries of ten tricarbon­yl[(η6-C6H5)(4-F-C6H4)]chromium model complexes. The solid-state structures of the free ligands 2-fluoro-1,1′-biphenyl and 4-fluoro-1,1′-biphenyl, both C12H9F, exhibit arene–arene dihedral angles of 54.83 (7) and 0.71 (8)°, respectively. The mol­ecules of the free ligands occupy crystallographic twofold axes and exhibit positional disorder. Weak inter­molecular C—H...F inter­actions are observed in all four structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617010774/yf3123sup1.cif
Contains datablocks cze005, czerwinski10, czerwinski13, czerwinski12, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617010774/yf3123cze005sup2.hkl
Contains datablock cze005

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617010774/yf3123czerwinski10sup3.hkl
Contains datablock czerwinski10

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617010774/yf3123czerwinski12sup4.hkl
Contains datablock czerwinski12

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617010774/yf3123czerwinski13sup5.hkl
Contains datablock czerwinski13

CCDC references: 1563759; 1563758; 1563757; 1563756

Computing details top

Data collection: SMART (Bruker, 2003) for cze005, czerwinski10; APEX3 (Bruker, 2016) for czerwinski13, czerwinski12. Cell refinement: SAINT (Bruker, 2003) for cze005, czerwinski10; SAINT-Plus (Bruker, 2016) for czerwinski13, czerwinski12. Data reduction: SAINT (Bruker, 2003) for cze005, czerwinski10; SAINT-Plus (Bruker, 2016) for czerwinski13, czerwinski12. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for cze005, czerwinski10; SHELXT (Sheldrick, 2015a) for czerwinski13, czerwinski12. Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) for cze005, czerwinski13, czerwinski12; SHELXL2016 (Sheldrick, 2015a) for czerwinski10. For all structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tricarbonyl[(1',2',3',4',5',6'-η)-2-fluoro-1,1'-biphenyl]chromium(0) (cze005) top
Crystal data top
[Cr(C12H9F)(CO)3]F(000) = 624
Mr = 308.22Dx = 1.632 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0166 (3) ÅCell parameters from 13200 reflections
b = 27.4725 (11) Åθ = 3.0–26.4°
c = 7.1101 (3) ŵ = 0.93 mm1
β = 113.738 (1)°T = 100 K
V = 1254.61 (9) Å3Plate, yellow
Z = 40.4 × 0.34 × 0.14 mm
Data collection top
Bruker SAINT CCD area detector
diffractometer
2421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.708, Tmax = 0.881k = 3434
20790 measured reflectionsl = 88
2571 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.6955P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
2571 reflectionsΔρmax = 0.39 e Å3
181 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.25461 (3)0.58849 (2)0.64906 (3)0.01547 (9)
F10.37666 (14)0.73489 (3)1.07416 (15)0.0279 (2)
O10.49510 (17)0.63961 (4)0.44226 (17)0.0293 (3)
O20.5439 (2)0.50310 (5)0.7360 (2)0.0413 (3)
O30.01617 (19)0.54368 (4)0.24436 (17)0.0300 (3)
C10.3565 (2)0.64130 (5)0.9095 (2)0.0167 (3)
C20.3366 (2)0.59475 (5)0.9828 (2)0.0190 (3)
H20.4509800.5808911.0938550.023*
C30.1477 (2)0.56839 (5)0.8924 (2)0.0222 (3)
H30.1351000.5372370.9442800.027*
C40.0201 (2)0.58829 (5)0.7269 (2)0.0227 (3)
H40.1461210.5704470.6653580.027*
C50.0027 (2)0.63495 (5)0.6505 (2)0.0208 (3)
H50.1175140.6486410.5393340.025*
C60.1848 (2)0.66086 (5)0.7399 (2)0.0180 (3)
H60.1972280.6918390.6865470.022*
C70.5553 (2)0.66864 (5)1.0082 (2)0.0170 (3)
C80.5598 (2)0.71474 (5)1.0896 (2)0.0198 (3)
C90.7405 (2)0.74085 (6)1.1899 (2)0.0235 (3)
H90.7367540.7723981.2430490.028*
C100.9282 (2)0.71984 (6)1.2113 (2)0.0236 (3)
H101.0548490.7369971.2806480.028*
C110.9313 (2)0.67377 (6)1.1317 (2)0.0227 (3)
H111.0598410.6595981.1457470.027*
C120.7465 (2)0.64847 (5)1.0315 (2)0.0202 (3)
H120.7500210.6169570.9779520.024*
C130.4037 (2)0.61937 (5)0.5220 (2)0.0196 (3)
C140.4319 (3)0.53577 (6)0.7022 (2)0.0259 (3)
C150.0890 (2)0.56070 (5)0.3997 (2)0.0207 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01797 (14)0.01454 (13)0.01487 (13)0.00037 (8)0.00763 (10)0.00078 (7)
F10.0240 (5)0.0243 (5)0.0340 (5)0.0041 (4)0.0101 (4)0.0087 (4)
O10.0245 (6)0.0416 (7)0.0245 (6)0.0076 (5)0.0128 (5)0.0009 (5)
O20.0579 (9)0.0349 (7)0.0359 (7)0.0255 (6)0.0240 (6)0.0107 (5)
O30.0370 (6)0.0274 (6)0.0234 (6)0.0101 (5)0.0098 (5)0.0077 (5)
C10.0194 (7)0.0161 (6)0.0168 (6)0.0003 (5)0.0097 (5)0.0024 (5)
C20.0258 (7)0.0187 (7)0.0146 (6)0.0000 (5)0.0103 (6)0.0013 (5)
C30.0315 (8)0.0196 (7)0.0214 (7)0.0052 (6)0.0169 (6)0.0028 (6)
C40.0216 (7)0.0266 (8)0.0239 (7)0.0072 (6)0.0133 (6)0.0073 (6)
C50.0174 (7)0.0251 (7)0.0212 (7)0.0013 (5)0.0090 (6)0.0037 (6)
C60.0199 (7)0.0158 (6)0.0201 (7)0.0017 (5)0.0100 (6)0.0011 (5)
C70.0191 (7)0.0174 (7)0.0141 (6)0.0005 (5)0.0062 (5)0.0012 (5)
C80.0205 (7)0.0199 (7)0.0187 (7)0.0028 (5)0.0074 (6)0.0001 (5)
C90.0291 (8)0.0192 (7)0.0200 (7)0.0039 (6)0.0076 (6)0.0016 (6)
C100.0222 (7)0.0270 (8)0.0173 (7)0.0069 (6)0.0034 (6)0.0023 (6)
C110.0183 (7)0.0287 (8)0.0198 (7)0.0020 (6)0.0062 (6)0.0057 (6)
C120.0227 (7)0.0197 (7)0.0182 (7)0.0028 (6)0.0084 (6)0.0022 (5)
C130.0169 (6)0.0237 (7)0.0161 (6)0.0009 (5)0.0044 (5)0.0025 (5)
C140.0363 (8)0.0246 (8)0.0197 (7)0.0056 (7)0.0142 (6)0.0024 (6)
C150.0252 (7)0.0173 (7)0.0228 (7)0.0023 (6)0.0128 (6)0.0003 (6)
Geometric parameters (Å, º) top
Cr1—C12.2311 (14)C3—H30.9500
Cr1—C22.2115 (14)C3—C41.398 (2)
Cr1—C32.2150 (14)C4—H40.9500
Cr1—C42.2087 (15)C4—C51.416 (2)
Cr1—C52.2146 (14)C5—H50.9500
Cr1—C62.2056 (14)C5—C61.403 (2)
Cr1—C131.8415 (15)C6—H60.9500
Cr1—C141.8466 (16)C7—C81.387 (2)
Cr1—C151.8487 (15)C7—C121.398 (2)
F1—C81.3622 (17)C8—C91.380 (2)
O1—C131.1552 (19)C9—H90.9500
O2—C141.153 (2)C9—C101.389 (2)
O3—C151.1521 (19)C10—H100.9500
C1—C21.409 (2)C10—C111.390 (2)
C1—C61.423 (2)C11—H110.9500
C1—C71.4882 (19)C11—C121.388 (2)
C2—H20.9500C12—H120.9500
C2—C31.417 (2)
C2—Cr1—C136.98 (5)C3—C2—H2119.7
C2—Cr1—C337.34 (5)Cr1—C3—H3129.9
C2—Cr1—C579.09 (6)C2—C3—Cr171.19 (8)
C3—Cr1—C167.04 (5)C2—C3—H3120.0
C4—Cr1—C179.29 (5)C4—C3—Cr171.33 (9)
C4—Cr1—C266.91 (6)C4—C3—C2119.91 (13)
C4—Cr1—C336.84 (6)C4—C3—H3120.0
C4—Cr1—C537.35 (6)Cr1—C4—H4129.1
C5—Cr1—C167.09 (5)C3—C4—Cr171.82 (9)
C5—Cr1—C366.85 (6)C3—C4—H4119.9
C6—Cr1—C137.40 (5)C3—C4—C5120.23 (14)
C6—Cr1—C266.94 (5)C5—C4—Cr171.55 (8)
C6—Cr1—C379.11 (5)C5—C4—H4119.9
C6—Cr1—C467.03 (5)Cr1—C5—H5130.1
C6—Cr1—C537.01 (5)C4—C5—Cr171.10 (9)
C13—Cr1—C192.99 (6)C4—C5—H5120.2
C13—Cr1—C2122.46 (6)C6—C5—Cr171.15 (8)
C13—Cr1—C3159.39 (6)C6—C5—C4119.68 (14)
C13—Cr1—C4148.14 (6)C6—C5—H5120.2
C13—Cr1—C5111.23 (6)Cr1—C6—H6128.6
C13—Cr1—C688.02 (6)C1—C6—Cr172.27 (8)
C13—Cr1—C1489.58 (7)C1—C6—H6119.6
C13—Cr1—C1588.96 (6)C5—C6—Cr171.85 (8)
C14—Cr1—C1112.08 (6)C5—C6—C1120.79 (13)
C14—Cr1—C288.78 (6)C5—C6—H6119.6
C14—Cr1—C393.25 (6)C8—C7—C1121.13 (13)
C14—Cr1—C4122.05 (7)C8—C7—C12116.92 (13)
C14—Cr1—C5159.15 (6)C12—C7—C1121.89 (12)
C14—Cr1—C6149.09 (6)F1—C8—C7118.36 (13)
C14—Cr1—C1589.08 (7)F1—C8—C9118.12 (13)
C15—Cr1—C1158.75 (6)C9—C8—C7123.50 (14)
C15—Cr1—C2148.48 (6)C8—C9—H9120.8
C15—Cr1—C3111.48 (6)C8—C9—C10118.30 (14)
C15—Cr1—C487.93 (6)C10—C9—H9120.8
C15—Cr1—C592.49 (6)C9—C10—H10119.9
C15—Cr1—C6121.67 (6)C9—C10—C11120.23 (14)
C2—C1—Cr170.76 (8)C11—C10—H10119.9
C2—C1—C6118.70 (13)C10—C11—H11120.0
C2—C1—C7119.80 (13)C12—C11—C10120.01 (14)
C6—C1—Cr170.33 (8)C12—C11—H11120.0
C6—C1—C7121.49 (12)C7—C12—H12119.5
C7—C1—Cr1130.24 (9)C11—C12—C7121.04 (14)
Cr1—C2—H2129.0C11—C12—H12119.5
C1—C2—Cr172.27 (8)O1—C13—Cr1178.60 (13)
C1—C2—H2119.7O2—C14—Cr1179.46 (17)
C1—C2—C3120.66 (14)O3—C15—Cr1179.23 (14)
C3—C2—Cr171.46 (8)
Cr1—C1—C2—C354.72 (12)C3—C4—C5—Cr154.90 (13)
Cr1—C1—C6—C555.16 (12)C3—C4—C5—C60.9 (2)
Cr1—C1—C7—C8147.56 (12)C4—C5—C6—Cr153.94 (12)
Cr1—C1—C7—C1235.26 (19)C4—C5—C6—C11.4 (2)
Cr1—C2—C3—C454.13 (12)C6—C1—C2—Cr153.30 (11)
Cr1—C3—C4—C554.77 (13)C6—C1—C2—C31.4 (2)
Cr1—C4—C5—C653.96 (12)C6—C1—C7—C857.48 (19)
Cr1—C5—C6—C155.36 (12)C6—C1—C7—C12125.33 (15)
F1—C8—C9—C10178.12 (13)C7—C1—C2—Cr1126.06 (12)
C1—C2—C3—Cr155.10 (12)C7—C1—C2—C3179.22 (13)
C1—C2—C3—C41.0 (2)C7—C1—C6—Cr1125.84 (12)
C1—C7—C8—F11.0 (2)C7—C1—C6—C5179.00 (13)
C1—C7—C8—C9177.32 (14)C7—C8—C9—C100.2 (2)
C1—C7—C12—C11177.31 (13)C8—C7—C12—C110.0 (2)
C2—C1—C6—Cr153.50 (11)C8—C9—C10—C110.4 (2)
C2—C1—C6—C51.7 (2)C9—C10—C11—C120.4 (2)
C2—C1—C7—C8123.18 (15)C10—C11—C12—C70.2 (2)
C2—C1—C7—C1254.00 (19)C12—C7—C8—F1178.32 (12)
C2—C3—C4—Cr154.06 (12)C12—C7—C8—C90.0 (2)
C2—C3—C4—C50.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.952.663.5612 (17)158
C10—H10···F1ii0.952.503.4013 (17)158
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2.
Tricarbonyl[(1',2',3',4',5',6'-η)-4-fluoro-1,1'-biphenyl]chromium(0) (czerwinski10) top
Crystal data top
[Cr(C12H9F)(CO)3]F(000) = 624
Mr = 308.22Dx = 1.590 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.0616 (5) ÅCell parameters from 9875 reflections
b = 28.3503 (19) Åθ = 3.1–71.7°
c = 7.0571 (4) ŵ = 7.48 mm1
β = 114.324 (5)°T = 120 K
V = 1287.40 (15) Å3Block, yellow
Z = 40.66 × 0.31 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 72.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.083, Tmax = 0.381k = 3433
19716 measured reflectionsl = 88
2520 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.040P)2 + 0.8185P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2520 reflectionsΔρmax = 0.30 e Å3
181 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.24469 (4)0.08560 (2)0.14453 (4)0.01430 (10)
F11.0904 (2)0.23850 (5)0.7983 (2)0.0457 (4)
O10.4870 (2)0.13494 (5)0.0586 (2)0.0305 (3)
O20.5257 (3)0.00166 (6)0.2294 (2)0.0453 (4)
O30.0315 (2)0.04327 (5)0.2657 (2)0.0306 (3)
C10.3515 (3)0.13767 (6)0.4048 (2)0.0159 (3)
C20.3381 (3)0.09256 (6)0.4825 (3)0.0191 (3)
H20.4558690.0796410.5934050.023*
C30.1510 (3)0.06625 (6)0.3973 (3)0.0231 (4)
H30.1432280.0360930.4523060.028*
C40.0218 (3)0.08472 (6)0.2324 (3)0.0250 (4)
H40.1468090.0669770.1746330.030*
C50.0115 (3)0.12983 (6)0.1507 (3)0.0222 (4)
H50.1294180.1424500.0389190.027*
C60.1743 (3)0.15576 (6)0.2360 (3)0.0182 (3)
H60.1815580.1858460.1800300.022*
C70.5471 (3)0.16526 (6)0.4991 (2)0.0165 (3)
C80.5428 (3)0.21124 (6)0.5691 (3)0.0228 (4)
H80.4136700.2253970.5478140.027*
C90.7261 (3)0.23633 (7)0.6694 (3)0.0289 (4)
H90.7244660.2675310.7178340.035*
C100.9098 (3)0.21487 (7)0.6967 (3)0.0274 (4)
C110.9208 (3)0.16984 (7)0.6270 (3)0.0257 (4)
H111.0504550.1562210.6465030.031*
C120.7369 (3)0.14524 (6)0.5279 (3)0.0206 (3)
H120.7403330.1141890.4787820.025*
C130.3950 (3)0.11531 (6)0.0192 (2)0.0190 (3)
C140.4165 (3)0.03381 (7)0.1955 (3)0.0259 (4)
C150.0753 (3)0.05941 (6)0.1081 (3)0.0207 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.02042 (17)0.01303 (16)0.01223 (16)0.00087 (9)0.00954 (12)0.00134 (9)
F10.0372 (7)0.0362 (7)0.0445 (7)0.0186 (6)0.0026 (6)0.0048 (6)
O10.0274 (7)0.0454 (8)0.0234 (7)0.0098 (6)0.0153 (6)0.0014 (6)
O20.0717 (11)0.0378 (8)0.0347 (8)0.0311 (8)0.0301 (8)0.0127 (6)
O30.0417 (8)0.0275 (7)0.0212 (7)0.0131 (6)0.0116 (6)0.0081 (5)
C10.0234 (8)0.0145 (7)0.0140 (7)0.0003 (6)0.0118 (7)0.0032 (6)
C20.0304 (9)0.0169 (8)0.0135 (8)0.0011 (7)0.0127 (7)0.0013 (6)
C30.0379 (10)0.0199 (8)0.0216 (8)0.0069 (7)0.0223 (8)0.0047 (7)
C40.0279 (10)0.0282 (9)0.0276 (10)0.0094 (7)0.0201 (8)0.0095 (7)
C50.0206 (8)0.0265 (9)0.0233 (9)0.0010 (7)0.0129 (7)0.0055 (7)
C60.0233 (8)0.0152 (7)0.0204 (8)0.0028 (6)0.0135 (7)0.0023 (6)
C70.0242 (8)0.0143 (7)0.0117 (7)0.0008 (6)0.0082 (6)0.0000 (6)
C80.0289 (9)0.0168 (8)0.0206 (8)0.0013 (7)0.0082 (7)0.0027 (7)
C90.0412 (11)0.0161 (8)0.0244 (9)0.0054 (7)0.0086 (8)0.0022 (7)
C100.0281 (10)0.0262 (9)0.0190 (9)0.0108 (8)0.0006 (7)0.0048 (7)
C110.0237 (9)0.0285 (9)0.0216 (9)0.0002 (7)0.0061 (7)0.0066 (7)
C120.0260 (9)0.0181 (8)0.0179 (8)0.0018 (7)0.0091 (7)0.0006 (6)
C130.0187 (8)0.0240 (8)0.0136 (7)0.0004 (7)0.0058 (6)0.0036 (6)
C140.0420 (11)0.0239 (9)0.0164 (8)0.0075 (8)0.0165 (8)0.0030 (7)
C150.0291 (9)0.0158 (8)0.0217 (9)0.0041 (7)0.0150 (7)0.0004 (7)
Geometric parameters (Å, º) top
Cr1—C12.2316 (15)C3—H30.9500
Cr1—C22.2061 (17)C3—C41.395 (3)
Cr1—C32.2118 (16)C4—H40.9500
Cr1—C42.2104 (18)C4—C51.417 (3)
Cr1—C52.2160 (17)C5—H50.9500
Cr1—C62.2102 (16)C5—C61.405 (2)
Cr1—C131.8417 (17)C6—H60.9500
Cr1—C141.8432 (19)C7—C81.399 (2)
Cr1—C151.8448 (18)C7—C121.391 (2)
F1—C101.355 (2)C8—H80.9500
O1—C131.152 (2)C8—C91.389 (3)
O2—C141.154 (2)C9—H90.9500
O3—C151.151 (2)C9—C101.373 (3)
C1—C21.410 (2)C10—C111.382 (3)
C1—C61.422 (2)C11—H110.9500
C1—C71.485 (2)C11—C121.383 (3)
C2—H20.9500C12—H120.9500
C2—C31.417 (3)
C2—Cr1—C137.05 (6)C3—C2—H2119.6
C2—Cr1—C337.42 (7)Cr1—C3—H3129.8
C2—Cr1—C466.90 (7)C2—C3—Cr171.07 (9)
C2—Cr1—C579.11 (7)C2—C3—H3120.1
C2—Cr1—C666.85 (6)C4—C3—Cr171.55 (10)
C3—Cr1—C167.19 (6)C4—C3—C2119.89 (16)
C3—Cr1—C566.85 (7)C4—C3—H3120.1
C4—Cr1—C179.33 (6)Cr1—C4—H4129.3
C4—Cr1—C336.79 (8)C3—C4—Cr171.66 (10)
C4—Cr1—C537.34 (7)C3—C4—H4119.9
C5—Cr1—C167.15 (6)C3—C4—C5120.29 (17)
C6—Cr1—C137.33 (6)C5—C4—Cr171.55 (10)
C6—Cr1—C379.03 (6)C5—C4—H4119.9
C6—Cr1—C466.95 (6)Cr1—C5—H5129.8
C6—Cr1—C537.01 (6)C4—C5—Cr171.12 (10)
C13—Cr1—C191.52 (7)C4—C5—H5120.2
C13—Cr1—C2120.24 (7)C6—C5—Cr171.27 (9)
C13—Cr1—C3157.48 (7)C6—C5—C4119.56 (17)
C13—Cr1—C4149.93 (7)C6—C5—H5120.2
C13—Cr1—C5112.78 (7)Cr1—C6—H6129.0
C13—Cr1—C688.41 (7)C1—C6—Cr172.15 (9)
C13—Cr1—C1489.70 (8)C1—C6—H6119.5
C13—Cr1—C1589.56 (7)C5—C6—Cr171.72 (10)
C14—Cr1—C1113.21 (7)C5—C6—C1120.98 (15)
C14—Cr1—C288.90 (7)C5—C6—H6119.5
C14—Cr1—C392.09 (7)C8—C7—C1119.86 (15)
C14—Cr1—C4120.27 (8)C12—C7—C1120.85 (14)
C14—Cr1—C5157.49 (8)C12—C7—C8119.22 (16)
C14—Cr1—C6150.36 (8)C7—C8—H8119.8
C14—Cr1—C1588.88 (8)C9—C8—C7120.42 (17)
C15—Cr1—C1157.89 (7)C9—C8—H8119.8
C15—Cr1—C2150.09 (7)C8—C9—H9120.9
C15—Cr1—C3112.91 (7)C10—C9—C8118.24 (17)
C15—Cr1—C488.78 (7)C10—C9—H9120.9
C15—Cr1—C592.13 (7)F1—C10—C9118.94 (18)
C15—Cr1—C6120.68 (7)F1—C10—C11117.83 (18)
C2—C1—Cr170.49 (9)C9—C10—C11123.23 (17)
C2—C1—C6118.43 (15)C10—C11—H11121.1
C2—C1—C7120.19 (15)C10—C11—C12117.86 (17)
C6—C1—Cr170.52 (9)C12—C11—H11121.1
C6—C1—C7121.38 (14)C7—C12—H12119.5
C7—C1—Cr1130.85 (11)C11—C12—C7121.02 (16)
Cr1—C2—H2128.8C11—C12—H12119.5
C1—C2—Cr172.46 (9)O1—C13—Cr1178.29 (16)
C1—C2—H2119.6O2—C14—Cr1179.2 (2)
C1—C2—C3120.84 (16)O3—C15—Cr1179.48 (18)
C3—C2—Cr171.51 (10)
Cr1—C1—C2—C354.82 (14)C3—C4—C5—Cr154.62 (15)
Cr1—C1—C6—C554.72 (14)C3—C4—C5—C60.4 (2)
Cr1—C1—C7—C8144.23 (14)C4—C5—C6—Cr154.18 (14)
Cr1—C1—C7—C1238.8 (2)C4—C5—C6—C10.7 (2)
Cr1—C2—C3—C454.34 (14)C6—C1—C2—Cr153.55 (13)
Cr1—C3—C4—C554.56 (15)C6—C1—C2—C31.3 (2)
Cr1—C4—C5—C654.26 (14)C6—C1—C7—C853.6 (2)
Cr1—C5—C6—C154.92 (13)C6—C1—C7—C12129.43 (17)
F1—C10—C11—C12178.40 (16)C7—C1—C2—Cr1126.63 (14)
C1—C2—C3—Cr155.26 (14)C7—C1—C2—C3178.55 (14)
C1—C2—C3—C40.9 (2)C7—C1—C6—Cr1126.65 (14)
C1—C7—C8—C9175.90 (16)C7—C1—C6—C5178.63 (14)
C1—C7—C12—C11176.06 (15)C7—C8—C9—C100.3 (3)
C2—C1—C6—Cr153.54 (13)C8—C7—C12—C110.9 (2)
C2—C1—C6—C51.2 (2)C8—C9—C10—F1178.58 (17)
C2—C1—C7—C8126.21 (17)C8—C9—C10—C110.9 (3)
C2—C1—C7—C1250.8 (2)C9—C10—C11—C121.1 (3)
C2—C3—C4—Cr154.12 (14)C10—C11—C12—C70.1 (3)
C2—C3—C4—C50.4 (3)C12—C7—C8—C91.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.952.483.122 (2)125
C8—H8···F1i0.952.463.295 (2)147
Symmetry code: (i) x1, y+1/2, z1/2.
4-Fluoro-1,1'-biphenyl (czerwinski13) top
Crystal data top
C12H9FDx = 1.328 Mg m3
Mr = 172.19Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Fdd2Cell parameters from 5876 reflections
a = 12.9824 (9) Åθ = 7.7–72.8°
b = 23.0588 (15) ŵ = 0.74 mm1
c = 5.7527 (4) ÅT = 100 K
V = 1722.1 (2) Å3Needle, colourless
Z = 80.56 × 0.14 × 0.02 mm
F(000) = 720
Data collection top
Bruker SMART APEXII
diffractometer
836 independent reflections
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 90825 reflections with I > 2σ(I)
Equatorially mounted graphite monochromatorRint = 0.028
Detector resolution: 7.9 pixels mm-1θmax = 72.8°, θmin = 7.7°
0.60° ω and 0.6° φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2828
Tmin = 0.671, Tmax = 0.754l = 77
7085 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0611P)2 + 2.1311P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.36 e Å3
836 reflectionsΔρmin = 0.16 e Å3
64 parametersAbsolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.07 (17)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.5021 (2)0.56162 (12)0.7706 (5)0.0335 (8)0.5
C10.54787 (16)0.51796 (9)0.4167 (4)0.0223 (6)
C20.57037 (17)0.55520 (10)0.6000 (4)0.0244 (6)
H20.5246920.5568680.7288480.029*0.5
C30.65725 (19)0.58986 (10)0.6001 (5)0.0277 (6)
H30.6705010.6152080.7268280.033*
C40.72528 (19)0.58731 (10)0.4129 (4)0.0280 (6)
H40.7849870.6111220.4106720.034*
C50.70540 (18)0.54998 (10)0.2306 (5)0.0277 (6)
H50.7523220.5476260.1042020.033*
C60.61707 (18)0.51579 (10)0.2308 (4)0.0247 (6)
H60.6036800.4907100.1033500.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0373 (16)0.0363 (15)0.0268 (16)0.0006 (12)0.0046 (12)0.0015 (13)
C10.0202 (10)0.0220 (11)0.0247 (14)0.0034 (9)0.0026 (9)0.0043 (9)
C20.0245 (11)0.0258 (12)0.0228 (14)0.0037 (9)0.0003 (10)0.0001 (10)
C30.0301 (13)0.0259 (11)0.0272 (13)0.0006 (9)0.0054 (11)0.0003 (10)
C40.0228 (11)0.0272 (11)0.0340 (14)0.0019 (9)0.0032 (10)0.0047 (11)
C50.0227 (11)0.0327 (12)0.0278 (13)0.0019 (9)0.0015 (10)0.0056 (11)
C60.0247 (11)0.0264 (11)0.0229 (12)0.0027 (9)0.0001 (10)0.0007 (9)
Geometric parameters (Å, º) top
F1—C21.331 (4)C3—C41.394 (4)
C1—C1i1.494 (4)C4—H40.9500
C1—C21.391 (3)C4—C51.381 (4)
C1—C61.397 (3)C5—H50.9500
C2—H20.9500C5—C61.392 (4)
C2—C31.382 (3)C6—H60.9500
C3—H30.9500
C2—C1—C1i121.13 (16)C4—C3—H3120.3
C2—C1—C6117.9 (2)C3—C4—H4120.2
C6—C1—C1i121.01 (17)C5—C4—C3119.6 (2)
F1—C2—C1119.2 (2)C5—C4—H4120.2
F1—C2—C3118.6 (2)C4—C5—H5119.8
C1—C2—H2119.0C4—C5—C6120.4 (2)
C3—C2—C1121.9 (2)C6—C5—H5119.8
C3—C2—H2119.0C1—C6—H6119.7
C2—C3—H3120.3C5—C6—C1120.7 (2)
C2—C3—C4119.5 (2)C5—C6—H6119.7
F1—C2—C3—C4174.6 (2)C2—C3—C4—C50.4 (3)
C1i—C1—C2—F14.4 (4)C3—C4—C5—C61.2 (4)
C1i—C1—C2—C3178.3 (2)C4—C5—C6—C11.0 (4)
C1i—C1—C6—C5179.1 (2)C6—C1—C2—F1174.8 (2)
C1—C2—C3—C40.6 (3)C6—C1—C2—C30.9 (3)
C2—C1—C6—C50.1 (3)
Symmetry code: (i) x+1, y+1, z.
2-Fluoro-1,1'-biphenyl (czerwinski12) top
Crystal data top
C12H9FDx = 1.339 Mg m3
Mr = 172.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 6339 reflections
a = 5.6462 (14) Åθ = 3.4–28.3°
b = 20.739 (5) ŵ = 0.09 mm1
c = 7.292 (2) ÅT = 100 K
V = 853.9 (4) Å3Needle, colourless
Z = 40.39 × 0.11 × 0.03 mm
F(000) = 360
Data collection top
Bruker APEXII Quazar
diffractometer
1055 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs899 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.029
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.0°
0.5° ω and 0.5° φ scansh = 77
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2727
Tmin = 0.706, Tmax = 0.746l = 99
19177 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.1921P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1055 reflectionsΔρmax = 0.45 e Å3
68 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.5000000.95466 (5)0.2500000.0291 (4)0.789 (2)
F20.5000000.48895 (18)0.2500000.0321 (12)0.211 (2)
C10.5000000.89062 (7)0.2500000.0218 (3)
H10.4999990.9364290.2499970.026*0.211 (2)
C20.31493 (18)0.85859 (5)0.33221 (14)0.0241 (3)
H20.1893910.8817540.3886280.029*
C30.31572 (17)0.79142 (5)0.33088 (13)0.0217 (3)
H30.1879960.7688280.3862400.026*
C40.5000000.75641 (6)0.2500000.0161 (3)
C50.5000000.68428 (7)0.2500000.0166 (3)
C60.31769 (18)0.64928 (5)0.33289 (14)0.0247 (3)
H60.1913420.6717690.3904240.030*
C70.3172 (2)0.58230 (6)0.33300 (15)0.0280 (3)
H70.1913160.5594670.3900680.034*
C80.5000000.54887 (7)0.2500000.0258 (4)
H80.4999990.5030650.2500010.031*0.789 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0344 (7)0.0153 (6)0.0376 (7)0.0000.0039 (5)0.000
F20.039 (2)0.0129 (19)0.045 (3)0.0000.006 (2)0.000
C10.0233 (7)0.0219 (7)0.0200 (7)0.0000.0026 (5)0.000
C20.0215 (6)0.0255 (6)0.0253 (5)0.0067 (4)0.0048 (4)0.0030 (4)
C30.0174 (5)0.0247 (6)0.0229 (5)0.0024 (4)0.0050 (4)0.0056 (4)
C40.0140 (6)0.0221 (7)0.0122 (6)0.0000.0016 (4)0.000
C50.0147 (6)0.0221 (7)0.0131 (6)0.0000.0012 (5)0.000
C60.0213 (5)0.0245 (6)0.0281 (6)0.0038 (4)0.0075 (4)0.0067 (4)
C70.0269 (6)0.0252 (6)0.0319 (6)0.0085 (4)0.0078 (4)0.0044 (4)
C80.0296 (8)0.0218 (7)0.0259 (7)0.0000.0002 (6)0.000
Geometric parameters (Å, º) top
F1—C11.3280 (17)C4—C51.4959 (19)
F2—C81.243 (4)C5—C61.3971 (12)
C1—H10.9500C5—C6i1.3972 (12)
C1—C21.3758 (13)C6—H60.9500
C1—C2i1.3758 (13)C6—C71.3891 (16)
C2—H20.9500C7—H70.9500
C2—C31.3931 (15)C7—C81.3829 (13)
C3—H30.9500C8—H80.9500
C3—C41.3991 (12)
F1—C1—C2118.88 (7)C6i—C5—C4121.31 (7)
F1—C1—C2i118.88 (7)C6—C5—C4121.31 (7)
C2i—C1—H1118.9C6—C5—C6i117.39 (13)
C2—C1—H1118.9C5—C6—H6119.3
C2—C1—C2i122.25 (14)C7—C6—C5121.42 (10)
C1—C2—H2120.7C7—C6—H6119.3
C1—C2—C3118.52 (10)C6—C7—H7120.0
C3—C2—H2120.7C8—C7—C6119.97 (10)
C2—C3—H3119.2C8—C7—H7120.0
C2—C3—C4121.62 (9)F2—C8—C7i120.09 (7)
C4—C3—H3119.2F2—C8—C7120.09 (7)
C3i—C4—C3117.48 (13)C7i—C8—C7119.83 (14)
C3i—C4—C5121.26 (7)C7—C8—H8120.1
C3—C4—C5121.26 (7)C7i—C8—H8120.1
F1—C1—C2—C3179.71 (6)C3i—C4—C5—C6179.12 (7)
C1—C2—C3—C40.59 (13)C3—C4—C5—C60.88 (7)
C2i—C1—C2—C30.29 (6)C4—C5—C6—C7179.96 (7)
C2—C3—C4—C3i0.30 (7)C5—C6—C7—C80.07 (14)
C2—C3—C4—C5179.70 (7)C6i—C5—C6—C70.04 (7)
C3i—C4—C5—C6i0.88 (7)C6—C7—C8—F2179.96 (7)
C3—C4—C5—C6i179.12 (7)C6—C7—C8—C7i0.04 (7)
Symmetry code: (i) x+1, y, z+1/2.
Selected geometrical parameters of complexes (I) and (II) compared to literature data top
Compound(I)(II)CSD complexes*
Cr1—CO (av) (Å)1.846 (4)1.8432 (15)1.798–1.855
Cr1—C(Ph) (Å)2.2056 (14)–2.2311 (14)2.2061 (17)–2.2316 (15)2.195–2.265
Cr1—Centroid (Å)1.7067 (6)1.7067 (7)1.707–1.728
Note: (*) Eight related complexes have been considered. Their Cambridge Structural Database (Groom et al., 2016) refcodes are COCRDP02 and MAJLAL (Guzei & Czerwinski, 2004), EMEYIE (Czerwinski et al., 2003), EXUFAF and EXUFIN (Czerwinski et al., 2011), FOZLEL (Mailvaganam et al., 1987), QIQXOF (Brydges et al., 2013) and ABISAI (Miles et al., 2016).
C—H···F and C4—H4···π interactions in the structures of (I)–(IV) top
CompoundInteractionC—H···F (Å)C···F (Å)C—H···F (°)
(I)C6—H6···F1i2.663.5612 (17)158.1
C10—H10···F1ii2.503.4013 (17)158.1
(II)C6—H6···F1iii2.483.122 (2)124.8
C8—H8···F1iii2.463.295 (2)146.8
(III)C3—H3···F1iv2.613.539 (4)165.3
C6—H6···F1v2.653.548 (4)158.6
C4—H4···π(Centroid(C1–C6)iv2.803.60142.1
(IV)C2—H2···F2vi2.673.291 (3)123.8
C7—H7···F1 (in plane)vii2.633.2529 (15)123.3
C7—H7···F1 (between layers)viii2.853.6113 (14)137.5
Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x+1, -y+3/2, z+1/2; (iii) x-1, -y+1/2, z-1/2; (iv) x+1/4, -y+5/4, z+1/4; (v) -x+1, -y+1, z-1; (vi) -x+1/2, y+1/2, z; (vii) -x+1/2, y-0.5, z; (viii) -x+1/2, -y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds