Download citation
Download citation
link to html
Two alkaline earth-tetra­zole compounds, namely catena-poly[[[tri­aqua­magnesium(II)]-[mu]-5,5'-(aza­nedi­yl)di­tetra­zolato-[kappa]3N1,N1':N5] hemi{bis­[[mu]-5,5'-(aza­nedi­yl)di­tetra­zolato-[kappa]3N1,N1':N2]bis­[tri­aqua­magnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis­[5-(pyrazin-2-yl)tetra­zolate] hexa­aqua­magnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydro­thermal conditions. Compound (I) is a mixed dimer-polymer based on magnesium ion centres and can be regarded as the first example of a magnesium-tetra­zolate polymer in the crystalline form. The structure shows a complex three-dimensional hydrogen-bonded network that involves magnesium-tetra­zolate dimers, solvent water mol­ecules and one-dimensional magnesium-tetra­zolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N-H...N hydrogen bonds, which form R22(7) rings, thus reinforcing the propagation of the polymer chain along the a axis. The crystal structure of magnesium tetra­zole salt (II) reveals a mixed ribbon of hydrogen-bonded rings, of types R22(7), R22(9) and R24(10), running along the c axis, which are linked by R24(16) rings, generating a 4,8-c flu net.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615002727/yf3078sup1.cif
Contains datablocks polymeric_forms, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002727/yf3078Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615002727/yf3078IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615002727/yf3078sup4.pdf
IR spectra for (I) and (II)

CCDC references: 1048271; 1048270

Introduction top

The particularity of the tetra­zole ligand is the ability to adopt different types of coordination modes with metal ions, i.e. to produce novel one-, two- or three-dimensional coordination compounds (Zhao et al., 2008). Additionally, it can form tetra­zole-based energetic salts because of its negative ionization state (Hammerl et al., 2002; Fischer et al., 2013). The bis­(tetra­zol-5-yl)amine (H2BTA) ligand used in the present study provides a wide variety of coordination modes because it has eight tetra­zole N-donor atoms and four possible different forms depending on its ionization state: (i) as the neutral ligand H2BTA, (ii) as the deprotonated HBTA- ligand, (iii) as the doubly deprotonated BTA2- ligand or (iv) as the triply deprotonated BTA-3 ligand (Rodríguez-Diéguez et al., 2012). The second ligand used in this study, namely 5-(pyrazin-2-yl)-5H-tetra­zole, also adopts different coordination modes due to the presence of both pyrazine and tetra­zole ring N atoms.

Metal comlexes of these two ligands are known for their fascinating structures, which is why we have focused our research inter­ests on the synthesis of compounds of this type in an attempt to obtain structures with new network topologies (Bensegueni et al., 2014). In this paper, we report the syntheses, crystal structures and network studies of a novel salt and a polymer containing tetra­zole ligands and magnesium alkaline earth ions. The BTA2- ligand in catena-Poly[[[tri­aqua­magnesium(II)]-µ-5,5'-(aza­nediyl)di­tetra­zolato-κ3N1,N1':N5] {hemi[bis­(µ-5,5'-(aza­nediyl)di­tetra­zolato-κ3N1,N1':N2)bis­[tri­aqua­magnesium(II)]]} monohydrate], (I), acts as a µ2-1,1:2 chelating–bridging tridentate ligand and forms both one-dimensional chains and dimers, generating a very complex hydrogen-bonding network, while the ligand in the salt bis­[5-(pyrazin-2-yl)tetra­zolate] hexa­aqua­magnesium(II), (II), is present in the mono-ionized state and is neutralized by an o­cta­hedral hexa­aqua­magnesium(II) dication.

Experimental top

Synthesis and crystallization top

Compound (I) was prepared by the reaction of an equimolar solution of H2BTA, synthesized according to the literature method of Zhao et al. (2008), and magnesium nitrate hexahydrate in an aqueous solution under hydro­thermal conditions. The mixture was sealed in a 25 ml Teflon-lined stainless steel autoclave and heated at 453 K for 3 d. Colourless crystals were obtained with some white powder after slow evaporation of the solution at room temperature over a period of one month.

The crystallization of compound (II) was achievd by slow evaporation in dry air of an aqueous solution obtained by an in situ hydro­thermal heating of 5-(pyrazin-2-yl)-5H-tetra­zole and magnesium nitrate hexahydrate in a 1:1 molar ratio at 453 K. After several days, colourless crystals were formed.

IR spectroscopy measurement top

Fourier transform IR (FT–IR) spectra were measured as KBr pellets in the range 400–4000 cm-1 on a Perkin–Elmer FT–IR spectrophotometer Spectrum 1000 IR. The FT–IR spectra of the two title compounds reveal the absence of a cyano peak in the 2200–2080 cm-1 region of the spectrum, which is present in the IR spectrum of the nitrile ligand. The wide peak at 3400 ~ 3500 cm-1 may be attributed to the coordination of water molecules to the magnesium centre in (I) and (II), as well as to the possible presence of uncoordinated water molecules for (II).

The spectra show the characteristic absorption peaks of the main functional groups for the two title compounds, namely for compound (I) at 522 (m), 664 (m), 749.30 (s), 805.72 (s), 860.02 (m), 905.88 (m), 1086.41 (w), 1154.67 (m) and 1179.34 cm-1 (m), corresponding to stretching, bending and rocking tetra­zole frequencies. The stretching bonds frequencies at 1282.02 (m), 1318 (m), 1336.31 (m) and 1384.28 cm-1 (s), correspond to the ring N—C—N, those about 1508.14 cm-1 (s) to the ring C—N, and that at 1035.84 cm-1 (m) to the ring NN. These bonds are also found for compound (II), i.e. 527.90 (m), 686.98 (s), 795.44 (s), 852.12 (s), 934.57 (m), 1021.78 (s), 1035.32 (s), 1044.85 (s), 1072.55 (s), 1096.06 (m), 1148.78 (s), 1174.20 (m), 1218.44 (m), 1285.93 (m), 1398.78 (s), 1537.20 (m), 1574.15 (m) and 1616.14 cm-1 (m). An additional frequency at 1693.62 cm-1 (s) is observed and is probably caused by the N—H secondary amine group bending vibration.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. In (I), all H-atom parameters are refined, while in (II), H atoms were treated by a mixture of independent and constrained refinement, with C—H = 0.93 Å and Uiso(H) values of 1.2Ueq(C,O).

Results and discussion top

Description of the crystal structure of (I) top

Compound (I) is a hydrated mixed dimer–polymer based on an organic dianionic 5,5'-(aza­nediyl)di­tetra­zolate (BTA2-) ligand and magnesium cation centres. It crystallizes in the orthorhombic system and the asymmetric unit contains four molecular units in each unit cell, the [Mg(BTA)(H2O)3] monomer generating a magnesium–tetra­zolate one-dimensional polymeric chain, one half of an [Mg2(BTA)2(H2O)6] dimer (located around a twofold axis) and two halves of a water molecule (also located on a twofold axis) (see Scheme). Thus, the crystal structure consists of two different isomers based on the hydrated magnesium–tetra­zolate components. One isomer has a polymeric form and the second one located on a twofold crystal axis in its dimeric form (Fig. 1). An isotypic structure based on zinc metal centre, chelating the same ligand and furnishes a zigzag one-dimensional polymeric chain, has been described previously (Liu et al., 2007).

The doubly deprotonated BTA2- ligands in (I), where the amino group is linked directly to two tetra­zole rings, are coordinated to the magnesium ions forming bothe a one-dimensional polymeric chain and dimers and act in a µ2-1,1:2 chelating–bridging tridentate coordination mode (Rodríguez-Diéguez et al., 2012). There are also 11 water molecules, six of which are coordinated to two Mg atoms in the dimer, three others are coordinated to the magnesium centre in the chain and two are solvent molecules which link the dimers and polymer chains via hydrogen bonds (Fig. 1). Similar to other binuclear complexes with the same ligand (Lin et al. 2008; Lu et al., 2008; Liu et al., 2008), a stable six-membered Mg(N–N)2Mg chelate ring generated by the twofold axis gives rise to a dimer, formed by tetra­zolate atoms N9 and N8 in cis positions of the same plane of BTA2- and two MgII centres. The mean deviation from the plane of this hexagon is about 0.136 Å and the Mg···Mg distance is 4.193 (2) Å.

The MgII atom in the dimer bonds the three N atoms from two BTA2- ligands, to one water ligand lying in the equatorial plane and to two other water ligands in apical positions (Fig. 1), with Mg—O and Mg—N distances are in the ranges 2.053 (2)–2.089 (3) and 2.156 (2)–2.219 (2) Å, respectively. The charge balance and details of the coordination geometry around the MgII atom are shown in the Scheme.

The C—N bonds in the BTA2- ligand are shorter than the length of a C—N single bond but significantly longer than the length of a CN double bond (see Supporting information), indicating that multiple-bond character is present. A similar tendency is observed for N—N bonds providing a delocalized π-aromatic system. Further, the N—C—N and N—N—N angles (and the geometry in general) in the tetra­zolate rings are close to and in good agreement with those found in other structures with the same ligand (Liu et al., 2007, 2008). In the three-dimensional network, the polymer chains and dimers are linked along all three crystallographic directions by strong and moderate O—H···O and O—H···N hydrogen bonds. The N—H···N hydrogen bonds act as inter-dimer and intra-polymer hydrogen bonds, reinforcing the intrinsic cohesion in the polymer chains and the stacking of the dimers. These inter­actions are summarized in Table 2.

The polymeric chains in (I) run along the a axis and two chains are linked via two solvent water molecules along the b axis by strong O2w—H2w···N8A and O1—H12···O1w inter-polymer hydrogen bonds. An intra-polymer N5A—H5A···N3A(-1/2+x, 1/2-y, -z) hydrogen bond gives rise to rings with an S(7) graph-set motif (Etter, 1990) and reinforces the stability of the polymeric chains (Fig. 2). These layers of chains alternate with layers of dimers stacking along the c axis and both are held together via a number of polymer–dimer O—H···N hydrogen bonds (Table 2). The two entities (polymer and dimer) are also linked by N—H···N hydrogen bonds (Fig. 3).

Description of the crystal structure of (II) top

The asymmetric unit in the structure of (II) is formed by two entities, viz. a 5,5'-(aza­nediyl)di­tetra­zolate anion in the mono-ionized state, where the tetra­zole ring has a negative charge (see Scheme 2), and half of a hexa­aqua­magnesium(II) dication (Fig. 4). The Mg atom occupies a special position on an inversion centre and has an o­cta­hedral coordination environment formed by six water molecules. This geometry has often been observed in other compounds containing an Mg centre (Feng et al., 2010; Yang, Chen et al., 2011; Yang, Feng et al., 2011). The O—Mg—O angles in 5-(pyridinium-3-yl)tetra­zol-1-ide hexa­aqua­magnesium dichloride (Dai & Chen, 2011) are in good agreement with those found in (II), whereas the Mg—O bond lengths range from 2.0526 (14) to 2.0965 (16)Å and from 2.0496 (13) to 2.1231 (16) Å for the two compounds, respectively. The angles in the monoanion of (II) cover the range 104.40 (16)–125.38 (17)° and the distances vary from 1.325 (2) to 1.482 (3) Å; these values are similar to those found in other structures with the same ligand (Li et al., 2007; Tao et al., 2008; Bensegueni et al., 2014). The C—N and N—N bonds in (II) indicate a delocalized π-aromatic system in the tetra­zole rings, similar to that found in compound (I).

A rotation of 19.5° between the planes of the tetra­zole and pyrazine rings is close to the values in catena-[[η3-2-(1H-tetra­zol-5-yl)pyrazine](η2-chloro)­mercury(II)] (15.10°; Qiu et al., 2010) and in catena-[bis­(η5-sulfato)­bis­[η4-5-(pyrazin-2-yl)tetra­zolato]bis­(η3-hydroxo)tetra­cadmium(II)] (24.13°; Li et al., 2007). [Should the η above be µ (5 times)?]

In the supra­molecular aggregation of (II), the monoanions and dications are linked to each other by an extensive network of hydrogen bonds. The tetra­zolate anion is linked to the [Mg(H2O)6]2+ dication by O—H···N hydrogen bonds involving the N atoms of both the tetra­zole and pyrazine heterocycles. All hydrogen bonds present in this structure are two centred (Jeffrey & Saenger, 1991) and the strongest involves atom O2 (O2—H21W···N4B??; Table 3). The crystal structure of this compound is built by combination of anion–cation hydrogen bonds giving rise to an alternated succession of rings with the graph-set motifs R22(9), R44(10) and R22(9) (Bernstein, 1991), generating ribbons of hydrogen-bonding units running along the c direction. These ribbons are linked by atoms O1 and O2 of coordinated water molecules (Fig. 5). The junction between these ribbons is ensured atom O3, and form R44(16) rings, thus producing an extensive three-dimensional hydrogen-bonding network (Fig. 6).

Study of the networks of the two title compounds top

The framework in compound (I) is formed essentially by a complex hydrogen-bonding network. It may be described as a combination of strong and moderate hydrogen bonds formed essentially by O—H···O and O—H···N inter-dimer and inter-polymer hydrogen bonds. The net is too complicated for any meaningful rationalization, so it should just be considered as a three-dimensional hydrogen-bonded net. In contrast, the three-dimensional framework of salt (II) can be rationalized as a binodal net, with the topological type 4,8-c flu if we consider 5,5'-(aza­nediyl)di­tetra­zolate as the 4-c node and [Mg(H2O)6]2+ the 8-c node (Fig. 7). The same topological network type has been found previously (Zhong et al., 2008; Crystal & Anthony, 2007; Gao et al., 2005).

Conclusions top

This paper is focused on the study of the structures and hydrogen-bonding networks of alkaline earth tetra­zolates in salt and mixed dimer–polymer forms, using graph-set analysis and a topology network study. It was found that compound (I) is composed of one-dimensional linear polymer chains and tetra­zole dimers inter­connected by a complex hydrogen-bonding network and the combination of these hydrogen bonds give rise to rings with an S(7) graph-set motif, reinforcing the polymeric chain propagation. The chains are linked by water–polymer hydrogen bonds running parallel to (110) and water–dimer and polymer–dimer hydrogen bonds link polymers and dimers along the c direction.

In the case of compound (II), [Mg(H2O)6]+2 dications and 5,5'-(aza­nediyl)di­tetra­zolate monoanions are linked by strong and moderate O—H···N hydrogen bonds and form mixed ribbons of rings [R22(9), R22(9) and R44(10)] running along the c axis. The ribbons are linked by R44(16) hydrogen-bond motifs resulting in an extensive three-dimensional hydrogen-bonding network. The net can be rationalized to be a binodal, with the topological type 4,8-c flu net.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008) for (I); COLLECT (Hooft, 1998) for (II). Cell refinement: CrysAlis PRO (Oxford Diffraction, 2008) for (I); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (II). Data reduction: WinGX (Farrugia, 2012) for (I); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (II). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) for (I); ORTEP-3 for Windoes (Farrugia, 2012) for (II). For both compounds, software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level. Atoms marked with an asterisk (*), a hash (#) and a double hash (##) are at the symmetry positions (-x+1, -y, z), (x-1/2, -y+1/2, -z) and (x+1/2, -y+1/2, -z), respectively.
[Figure 2] Fig. 2. The cohesion of the polymeric tetrazole chains by solvent water molecules in compound (I). Atom O2wii is directly above of O1wii and the hydrogen bonds are above and below the plane of the paper. [Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) -x-1, y, z.]
[Figure 3] Fig. 3. The polymeric dimer hydrogen-bonding network in compound (I). [Symmetry codes: (i) -x+1/2, y+1/2, -z; (ii) x-1/2, -y+1/2, -z; (iii) -x+1/2, y+1/2, -z+1; (iv) x-1/2, -y+1/2, -z+1; (v) x-1, y, z; (vi) -x, -y+1, z; (vii) -x+1, -y+1, z.]
[Figure 4] Fig. 4. The molecular structure of compound (II), with displacement ellipsoids drawn at the 50% probability level. The atoms marked with an asterisk (*) are at the symmetry positions (-x+2, -y, -z).
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the ribbon of rings running along the c direction. [Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y, -z; (iii) x, y, z+1; (iv) -x+1, -y, -z+1; (v) x-1, y, z; (vi) -x+2, -y+1, -z-1.]
[Figure 6] Fig. 6. The three-dimensional hydrogen bonding network in the structure (II), showing R24(16) rings.
[Figure 7] Fig. 7. The 4,8-connected flu net topology of compound (II).
(I) top
Crystal data top
[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2OZ = 4
Mr = 476.97F(000) = 984
Orthorhombic, P21212Dx = 1.783 Mg m3
Hall symbol: P 2 2abMo Kα radiation, λ = 0.71073 Å
a = 10.193 (3) ŵ = 0.22 mm1
b = 23.924 (2) ÅT = 100 K
c = 7.284 (3) ÅPrism, colorless
V = 1776.3 (9) Å30.3 × 0.2 × 0.1 mm
Data collection top
Agilent SuperNova CCD
diffractometer
4774 independent reflections
Radiation source: micro-source4077 reflections with I > 2σ(I)
Multi-layer monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
?
h = 1412
Tmin = 0.949, Tmax = 0.978k = 3327
11710 measured reflectionsl = 710
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0246P)2 + 1.0331P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4774 reflectionsΔρmax = 0.32 e Å3
345 parametersΔρmin = 0.32 e Å3
18 restraintsAbsolute structure: Flack (1983), 2211 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2OV = 1776.3 (9) Å3
Mr = 476.97Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 10.193 (3) ŵ = 0.22 mm1
b = 23.924 (2) ÅT = 100 K
c = 7.284 (3) Å0.3 × 0.2 × 0.1 mm
Data collection top
Agilent SuperNova CCD
diffractometer
4774 independent reflections
Absorption correction: multi-scan
?
4077 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.978Rint = 0.026
11710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.082Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.32 e Å3
4774 reflectionsAbsolute structure: Flack (1983), 2211 Friedel pairs
345 parametersAbsolute structure parameter: 0.2 (2)
18 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50115 (7)0.33721 (3)0.02635 (11)0.01327 (16)
O10.60271 (17)0.41205 (8)0.0317 (3)0.0241 (4)
O20.49109 (18)0.34510 (7)0.2600 (2)0.0188 (4)
O30.53430 (19)0.32912 (9)0.2999 (3)0.0235 (4)
N1A0.18005 (17)0.21526 (8)0.0248 (3)0.0161 (4)
N2A0.28684 (19)0.18243 (9)0.0575 (4)0.0233 (5)
N3A0.39155 (19)0.21302 (9)0.0647 (3)0.0239 (5)
N4A0.36058 (18)0.26780 (8)0.0351 (3)0.0167 (4)
N5A0.15612 (18)0.31376 (8)0.0190 (4)0.0228 (5)
N6A0.10960 (19)0.40934 (9)0.0424 (4)0.0228 (5)
N7A0.1858 (2)0.45318 (9)0.0927 (3)0.0228 (5)
N8A0.3079 (2)0.43770 (9)0.1063 (3)0.0206 (5)
N9A0.31781 (18)0.38264 (8)0.0622 (3)0.0167 (4)
C1A0.2302 (2)0.26725 (9)0.0127 (3)0.0140 (5)
C2A0.1946 (2)0.36724 (10)0.0268 (4)0.0155 (5)
Mg20.36180 (7)0.06491 (3)0.47667 (12)0.01347 (17)
O40.3591 (2)0.05454 (8)0.7615 (3)0.0219 (4)
O50.16181 (16)0.07350 (8)0.4703 (3)0.0256 (4)
O60.3704 (2)0.07773 (8)0.1950 (3)0.0247 (4)
N10.38571 (18)0.15305 (8)0.5283 (3)0.0174 (4)
N20.2826 (2)0.18799 (9)0.5576 (3)0.0230 (5)
N30.3233 (2)0.23947 (9)0.5636 (3)0.0246 (5)
N40.4560 (2)0.24092 (8)0.5390 (3)0.0232 (5)
N50.61595 (19)0.16979 (8)0.4865 (3)0.0231 (5)
N60.7749 (2)0.10230 (9)0.4039 (3)0.0188 (5)
N70.7755 (2)0.04602 (9)0.3911 (3)0.0198 (5)
N80.66009 (18)0.02641 (8)0.4340 (3)0.0155 (4)
N90.57751 (18)0.06955 (8)0.4760 (3)0.0146 (4)
C10.4894 (2)0.18680 (9)0.5171 (3)0.0151 (5)
C20.6524 (2)0.11508 (9)0.4560 (4)0.0151 (5)
O1W0.50000.50000.1771 (4)0.0264 (6)
O2W0.50000.50000.3335 (4)0.0251 (6)
H1W0.442 (3)0.4914 (14)0.251 (4)0.037 (10)*
H2W0.451 (3)0.4814 (13)0.261 (4)0.045 (11)*
H5A0.0746 (17)0.3114 (11)0.042 (4)0.022 (7)*
H420.352 (3)0.0217 (8)0.814 (4)0.032 (9)*
H310.498 (3)0.3021 (10)0.353 (4)0.027 (8)*
H220.499 (3)0.3145 (9)0.310 (4)0.031 (9)*
H120.579 (3)0.4397 (11)0.037 (4)0.045 (10)*
H510.111 (3)0.0499 (12)0.526 (5)0.061 (12)*
H210.419 (2)0.3609 (12)0.305 (4)0.036 (9)*
H620.443 (3)0.0713 (16)0.142 (5)0.064 (13)*
H110.670 (3)0.4210 (15)0.092 (5)0.054 (12)*
H410.421 (3)0.0699 (12)0.817 (5)0.060 (13)*
H320.611 (2)0.3349 (15)0.342 (5)0.058 (12)*
H50.673 (2)0.1932 (10)0.457 (4)0.028 (8)*
H520.115 (3)0.0953 (11)0.411 (4)0.037 (10)*
H610.338 (3)0.1054 (10)0.150 (5)0.042 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0091 (3)0.0129 (4)0.0177 (4)0.0006 (3)0.0011 (3)0.0000 (3)
O10.0192 (9)0.0163 (9)0.0368 (11)0.0049 (7)0.0035 (9)0.0005 (9)
O20.0182 (9)0.0166 (9)0.0216 (9)0.0058 (8)0.0038 (8)0.0017 (8)
O30.0180 (10)0.0305 (11)0.0220 (10)0.0071 (9)0.0040 (8)0.0058 (8)
N1A0.0100 (8)0.0132 (10)0.0251 (11)0.0012 (7)0.0006 (9)0.0028 (9)
N2A0.0101 (9)0.0150 (10)0.0450 (14)0.0004 (8)0.0013 (10)0.0054 (11)
N3A0.0124 (9)0.0149 (11)0.0445 (15)0.0013 (8)0.0019 (10)0.0029 (11)
N4A0.0107 (8)0.0120 (9)0.0273 (11)0.0003 (8)0.0012 (9)0.0014 (9)
N5A0.0083 (9)0.0124 (10)0.0478 (14)0.0011 (8)0.0090 (10)0.0022 (10)
N6A0.0134 (9)0.0172 (11)0.0379 (13)0.0026 (8)0.0012 (10)0.0029 (11)
N7A0.0170 (10)0.0169 (11)0.0345 (13)0.0034 (9)0.0013 (9)0.0060 (10)
N8A0.0187 (10)0.0132 (11)0.0300 (12)0.0010 (9)0.0019 (9)0.0066 (10)
N9A0.0119 (9)0.0147 (10)0.0234 (11)0.0002 (8)0.0009 (8)0.0034 (9)
C1A0.0112 (10)0.0136 (11)0.0172 (12)0.0012 (9)0.0005 (9)0.0004 (10)
C2A0.0124 (10)0.0142 (11)0.0199 (12)0.0015 (9)0.0018 (10)0.0003 (10)
Mg20.0116 (3)0.0095 (4)0.0193 (4)0.0001 (3)0.0007 (3)0.0005 (3)
O40.0283 (11)0.0162 (9)0.0211 (9)0.0064 (9)0.0008 (8)0.0031 (8)
O50.0155 (8)0.0184 (9)0.0429 (12)0.0013 (8)0.0019 (9)0.0019 (10)
O60.0286 (11)0.0239 (11)0.0216 (10)0.0066 (10)0.0009 (9)0.0051 (8)
N10.0147 (9)0.0116 (9)0.0260 (11)0.0005 (8)0.0039 (9)0.0008 (9)
N20.0161 (10)0.0148 (11)0.0379 (13)0.0032 (9)0.0046 (10)0.0027 (10)
N30.0198 (10)0.0135 (10)0.0405 (14)0.0030 (9)0.0055 (10)0.0025 (10)
N40.0180 (10)0.0118 (10)0.0397 (13)0.0003 (8)0.0057 (10)0.0015 (10)
N50.0127 (9)0.0101 (10)0.0466 (15)0.0039 (8)0.0083 (10)0.0017 (10)
N60.0140 (10)0.0138 (10)0.0288 (12)0.0009 (8)0.0043 (9)0.0015 (9)
N70.0164 (10)0.0127 (10)0.0304 (12)0.0010 (9)0.0039 (9)0.0014 (9)
N80.0139 (9)0.0119 (9)0.0206 (11)0.0021 (8)0.0009 (8)0.0006 (8)
N90.0116 (8)0.0122 (9)0.0198 (10)0.0011 (8)0.0016 (8)0.0010 (9)
C10.0166 (10)0.0106 (10)0.0181 (11)0.0007 (9)0.0035 (10)0.0001 (9)
C20.0119 (10)0.0130 (11)0.0202 (11)0.0002 (9)0.0006 (10)0.0005 (10)
O1W0.0230 (15)0.0257 (15)0.0304 (15)0.0039 (14)0.0000.000
O2W0.0210 (14)0.0260 (15)0.0284 (14)0.0056 (13)0.0000.000
Geometric parameters (Å, º) top
Mg1—O32.030 (2)Mg2—O62.076 (3)
Mg1—O12.0686 (19)Mg2—O42.090 (3)
Mg1—O22.096 (2)Mg2—N12.156 (2)
Mg1—N9A2.178 (2)Mg2—N92.202 (2)
Mg1—N4A2.194 (2)Mg2—N8iii2.218 (2)
Mg1—N1Ai2.245 (2)O4—H420.877 (17)
O1—H120.865 (18)O4—H410.838 (18)
O1—H110.842 (19)O5—H510.865 (17)
O2—H220.823 (17)O5—H520.827 (17)
O2—H210.888 (18)O6—H620.853 (19)
O3—H310.840 (17)O6—H610.808 (18)
O3—H320.849 (18)N1—C11.332 (3)
N1A—C1A1.347 (3)N1—N21.360 (3)
N1A—N2A1.363 (3)N2—N31.301 (3)
N1A—Mg1ii2.245 (2)N3—N41.364 (3)
N2A—N3A1.295 (3)N4—C11.348 (3)
N3A—N4A1.365 (3)N5—C11.371 (3)
N4A—C1A1.339 (3)N5—C21.379 (3)
N5A—C1A1.364 (3)N5—H50.837 (17)
N5A—C2A1.379 (3)N6—C21.340 (3)
N5A—H5A0.849 (17)N6—N71.349 (3)
N6A—C2A1.333 (3)N7—N81.305 (3)
N6A—N7A1.355 (3)N8—N91.367 (3)
N7A—N8A1.303 (3)N8—Mg2iii2.218 (2)
N8A—N9A1.360 (3)N9—C21.338 (3)
N1A—C1A1.347 (3)O1W—H1W0.827 (17)
N1A—N2A1.363 (3)O2W—H2W0.854 (18)
O3—Mg1—O188.89 (9)O5—Mg2—O690.27 (9)
O3—Mg1—O2173.21 (9)O5—Mg2—O491.22 (9)
O1—Mg1—O288.02 (8)O6—Mg2—O4177.63 (9)
O3—Mg1—N9A94.16 (9)O5—Mg2—N191.05 (8)
O1—Mg1—N9A89.72 (8)O6—Mg2—N191.33 (9)
O2—Mg1—N9A91.86 (8)O4—Mg2—N186.81 (8)
O3—Mg1—N4A90.46 (8)O5—Mg2—N9171.23 (8)
O1—Mg1—N4A168.90 (8)O6—Mg2—N987.04 (9)
O2—Mg1—N4A93.73 (8)O4—Mg2—N991.21 (9)
N9A—Mg1—N4A79.27 (8)N1—Mg2—N980.68 (7)
O3—Mg1—N1Ai88.54 (9)O5—Mg2—N8iii89.74 (8)
O1—Mg1—N1Ai94.63 (8)O6—Mg2—N8iii90.66 (8)
O2—Mg1—N1Ai85.69 (8)O4—Mg2—N8iii91.19 (8)
N9A—Mg1—N1Ai174.93 (8)N1—Mg2—N8iii177.86 (9)
N4A—Mg1—N1Ai96.43 (8)N9—Mg2—N8iii98.62 (7)
Mg1—O1—H12121 (2)Mg2—O4—H42122.7 (19)
Mg1—O1—H11129 (3)Mg2—O4—H41115 (3)
H12—O1—H11110 (3)H42—O4—H41104 (2)
Mg1—O2—H22111 (2)Mg2—O5—H51121 (2)
Mg1—O2—H21117 (2)Mg2—O5—H52130 (2)
H22—O2—H21107 (3)H51—O5—H52109 (2)
Mg1—O3—H31117 (2)Mg2—O6—H62117 (3)
Mg1—O3—H32119 (3)Mg2—O6—H61120 (3)
H31—O3—H32111 (3)H62—O6—H61109 (4)
C1A—N1A—N2A103.90 (18)C1—N1—N2104.49 (18)
C1A—N1A—Mg1ii144.43 (15)C1—N1—Mg2132.20 (15)
N2A—N1A—Mg1ii110.81 (14)N2—N1—Mg2122.76 (15)
N3A—N2A—N1A109.85 (19)N3—N2—N1109.91 (19)
N2A—N3A—N4A110.21 (18)N2—N3—N4109.64 (19)
C1A—N4A—N3A103.85 (18)C1—N4—N3103.96 (19)
C1A—N4A—Mg1130.69 (16)C1—N5—C2124.15 (19)
N3A—N4A—Mg1125.45 (14)C1—N5—H5120.0 (19)
C1A—N5A—C2A123.92 (19)C2—N5—H5114 (2)
C1A—N5A—H5A121.3 (19)C2—N6—N7104.58 (19)
C2A—N5A—H5A112.9 (19)N8—N7—N6109.75 (19)
C2A—N6A—N7A103.62 (19)N7—N8—N9109.72 (18)
N8A—N7A—N6A110.4 (2)N7—N8—Mg2iii118.59 (15)
N7A—N8A—N9A109.17 (19)N9—N8—Mg2iii130.60 (15)
C2A—N9A—N8A104.09 (19)C2—N9—N8103.84 (18)
C2A—N9A—Mg1130.30 (17)C2—N9—Mg2127.66 (16)
N8A—N9A—Mg1125.14 (15)N8—N9—Mg2125.27 (15)
N4A—C1A—N1A112.19 (19)N1—C1—N4112.0 (2)
N4A—C1A—N5A124.2 (2)N1—C1—N5125.2 (2)
N1A—C1A—N5A123.62 (19)N4—C1—N5122.8 (2)
N6A—C2A—N9A112.7 (2)N9—C2—N6112.1 (2)
N6A—C2A—N5A122.5 (2)N9—C2—N5127.0 (2)
N9A—C2A—N5A124.8 (2)N6—C2—N5120.9 (2)
C1A—N1A—N2A—N3A0.3 (3)O5—Mg2—N1—C1164.7 (2)
Mg1ii—N1A—N2A—N3A172.36 (18)O6—Mg2—N1—C174.4 (2)
N1A—N2A—N3A—N4A0.7 (3)O4—Mg2—N1—C1104.1 (2)
N2A—N3A—N4A—C1A0.9 (3)N9—Mg2—N1—C112.4 (2)
N2A—N3A—N4A—Mg1178.56 (17)O5—Mg2—N1—N25.4 (2)
O3—Mg1—N4A—C1A111.6 (2)O6—Mg2—N1—N295.7 (2)
O1—Mg1—N4A—C1A25.0 (6)O4—Mg2—N1—N285.7 (2)
O2—Mg1—N4A—C1A73.8 (2)N9—Mg2—N1—N2177.5 (2)
N9A—Mg1—N4A—C1A17.4 (2)C1—N1—N2—N30.1 (3)
N1Ai—Mg1—N4A—C1A159.9 (2)Mg2—N1—N2—N3172.58 (18)
O3—Mg1—N4A—N3A69.2 (2)N1—N2—N3—N40.2 (3)
O1—Mg1—N4A—N3A155.8 (4)N2—N3—N4—C10.4 (3)
O2—Mg1—N4A—N3A105.5 (2)C2—N6—N7—N80.3 (3)
N9A—Mg1—N4A—N3A163.3 (2)N6—N7—N8—N90.4 (3)
N1Ai—Mg1—N4A—N3A19.4 (2)N6—N7—N8—Mg2iii168.87 (15)
C2A—N6A—N7A—N8A0.2 (3)N7—N8—N9—C20.4 (3)
N6A—N7A—N8A—N9A1.0 (3)Mg2iii—N8—N9—C2167.20 (18)
N7A—N8A—N9A—C2A1.4 (3)N7—N8—N9—Mg2160.51 (17)
N7A—N8A—N9A—Mg1171.49 (16)Mg2iii—N8—N9—Mg231.9 (3)
O3—Mg1—N9A—C2A111.0 (2)O6—Mg2—N9—C273.8 (2)
O1—Mg1—N9A—C2A160.1 (2)O4—Mg2—N9—C2104.6 (2)
O2—Mg1—N9A—C2A72.1 (2)N1—Mg2—N9—C218.1 (2)
N4A—Mg1—N9A—C2A21.4 (2)N8iii—Mg2—N9—C2164.0 (2)
O3—Mg1—N9A—N8A78.1 (2)O6—Mg2—N9—N882.6 (2)
O1—Mg1—N9A—N8A10.8 (2)O4—Mg2—N9—N899.05 (19)
O2—Mg1—N9A—N8A98.8 (2)N1—Mg2—N9—N8174.4 (2)
N3A—N4A—C1A—N1A0.7 (3)N8iii—Mg2—N9—N87.66 (18)
Mg1—N4A—C1A—N1A178.68 (17)N2—N1—C1—N40.4 (3)
N3A—N4A—C1A—N5A179.4 (2)Mg2—N1—C1—N4171.81 (18)
Mg1—N4A—C1A—N5A1.2 (4)N2—N1—C1—N5179.5 (2)
N2A—N1A—C1A—N4A0.3 (3)Mg2—N1—C1—N58.0 (4)
Mg1ii—N1A—C1A—N4A166.9 (2)N3—N4—C1—N10.5 (3)
N2A—N1A—C1A—N5A179.8 (3)N3—N4—C1—N5179.4 (2)
Mg1ii—N1A—C1A—N5A13.0 (5)C2—N5—C1—N12.7 (4)
C2A—N5A—C1A—N4A22.4 (4)C2—N5—C1—N4177.1 (3)
C2A—N5A—C1A—N1A157.7 (2)N8—N9—C2—N60.2 (3)
N7A—N6A—C2A—N9A0.7 (3)Mg2—N9—C2—N6160.06 (18)
N7A—N6A—C2A—N5A178.6 (2)N8—N9—C2—N5178.4 (2)
N8A—N9A—C2A—N6A1.3 (3)Mg2—N9—C2—N521.4 (4)
Mg1—N9A—C2A—N6A171.06 (18)N7—N6—C2—N90.0 (3)
N8A—N9A—C2A—N5A178.0 (2)N7—N6—C2—N5178.7 (2)
Mg1—N9A—C2A—N5A9.7 (4)C1—N5—C2—N910.2 (4)
C1A—N5A—C2A—N6A160.9 (3)C1—N5—C2—N6171.4 (2)
C1A—N5A—C2A—N9A18.3 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N7ii0.83 (3)2.17 (3)2.980 (3)166 (3)
O2W—H2W···N8A0.85 (3)2.12 (3)2.966 (3)172 (3)
N5—H5···N3iv0.84 (2)2.23 (2)3.052 (4)169 (3)
N5A—H5A···N3Aii0.85 (2)1.96 (2)2.793 (3)165 (3)
O1—H11···O4iv0.84 (3)2.28 (3)3.121 (4)177 (3)
O1—H12···O1W0.86 (3)1.94 (3)2.799 (3)172 (3)
O2—H21···N6ii0.89 (2)1.86 (2)2.746 (3)176 (2)
O2—H22···N4v0.82 (2)2.12 (2)2.913 (3)162 (3)
O3—H31···N40.84 (3)2.04 (3)2.850 (4)162 (3)
O3—H32···N2iv0.85 (2)1.97 (2)2.766 (3)155 (3)
O4—H41···N6Aiv0.84 (3)2.23 (3)3.051 (4)166 (3)
O4—H42···N7Avi0.88 (2)1.82 (2)2.687 (3)172 (3)
O5—H51···O2Wvii0.87 (3)1.94 (3)2.803 (3)176 (3)
O5—H52···O2ii0.83 (3)2.20 (3)3.028 (3)178 (4)
O6—H61···N2A0.81 (3)2.03 (3)2.829 (4)169 (3)
O6—H62···N6Ai0.85 (3)2.21 (3)3.005 (4)155 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1; (vi) x+1/2, y1/2, z+1; (vii) x1/2, y+1/2, z+1.
(II) Bis[5-(pyrazin-2-yl)tetrazolate] hexaaquamagnesium(II) top
Crystal data top
(C5H3N6)[Mg(H2O)6]V = 466.8 (3) Å3
Mr = 426.67Z = 1
Triclinic, P1F(000) = 222
Hall symbol: -P 1Dx = 1.518 Mg m3
a = 7.868 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.268 (3) ŵ = 0.16 mm1
c = 8.608 (2) ÅT = 100 K
α = 63.59 (2)°Prism, colorless
β = 68.56 (3)°0.3 × 0.15 × 0.09 mm
γ = 80.47 (2)°
Data collection top
Bruker APEX-II
diffractometer
2163 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.0°, θmin = 2.8°
ϕ and ω scansh = 011
2759 measured reflectionsk = 1111
2759 independent reflectionsl = 1012
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0205P)2 + 0.3392P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.30 e Å3
2759 reflectionsΔρmin = 0.20 e Å3
157 parameters
Crystal data top
(C5H3N6)[Mg(H2O)6]γ = 80.47 (2)°
Mr = 426.67V = 466.8 (3) Å3
Triclinic, P1Z = 1
a = 7.868 (2) ÅMo Kα radiation
b = 8.268 (3) ŵ = 0.16 mm1
c = 8.608 (2) ÅT = 100 K
α = 63.59 (2)°0.3 × 0.15 × 0.09 mm
β = 68.56 (3)°
Data collection top
Bruker APEX-II
diffractometer
2163 reflections with I > 2σ(I)
2759 measured reflectionsRint = 0.000
2759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0529 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.30 e Å3
2759 reflectionsΔρmin = 0.20 e Å3
157 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50000.00000.50000.0329 (2)
O10.4497 (2)0.0126 (2)0.2498 (2)0.0439 (4)
O20.24537 (19)0.1082 (2)0.3994 (2)0.0419 (4)
O30.3854 (2)0.2616 (2)0.6021 (2)0.0418 (4)
N6B0.2113 (2)0.1967 (3)0.1037 (2)0.0427 (4)
N1A0.0405 (2)0.2387 (2)0.0579 (2)0.0384 (4)
N4B0.1302 (2)0.2159 (3)0.3839 (2)0.0425 (4)
N3B0.0150 (2)0.2725 (3)0.3718 (2)0.0387 (4)
C40.0813 (2)0.3041 (3)0.1259 (2)0.0310 (4)
C30.2368 (3)0.4119 (3)0.2464 (3)0.0367 (4)
H30.25810.46080.37220.044*
N2A0.3558 (2)0.4467 (2)0.1859 (3)0.0410 (4)
C50.0388 (2)0.2587 (3)0.1991 (2)0.0317 (4)
N5B0.2646 (2)0.1713 (3)0.2246 (3)0.0451 (5)
C10.1606 (3)0.2737 (3)0.1177 (3)0.0484 (6)
H10.13730.22940.24350.058*
C20.3179 (3)0.3737 (3)0.0027 (3)0.0474 (6)
H20.39920.39060.04460.057*
H11W0.515 (4)0.043 (4)0.212 (4)0.079 (10)*
H21W0.201 (4)0.137 (4)0.460 (3)0.074 (10)*
H12W0.390 (4)0.054 (4)0.144 (3)0.077 (10)*
H32W0.276 (3)0.286 (4)0.541 (4)0.069 (9)*
H22W0.173 (3)0.135 (4)0.290 (3)0.069 (9)*
H31W0.447 (3)0.361 (3)0.653 (4)0.078 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0259 (4)0.0438 (5)0.0263 (4)0.0137 (4)0.0023 (3)0.0129 (4)
O10.0391 (8)0.0648 (10)0.0285 (7)0.0208 (7)0.0027 (6)0.0199 (7)
O20.0307 (7)0.0618 (10)0.0325 (8)0.0218 (6)0.0005 (6)0.0205 (7)
O30.0326 (7)0.0445 (8)0.0393 (8)0.0121 (6)0.0027 (6)0.0132 (7)
N6B0.0308 (8)0.0649 (12)0.0342 (9)0.0178 (8)0.0034 (7)0.0220 (8)
N1A0.0336 (8)0.0511 (10)0.0296 (8)0.0162 (7)0.0073 (6)0.0130 (7)
N4B0.0363 (9)0.0596 (11)0.0343 (9)0.0138 (8)0.0083 (7)0.0200 (8)
N3B0.0299 (8)0.0529 (10)0.0332 (8)0.0125 (7)0.0051 (6)0.0180 (8)
C40.0259 (8)0.0345 (9)0.0305 (9)0.0069 (7)0.0059 (7)0.0122 (7)
C30.0328 (9)0.0406 (10)0.0310 (9)0.0122 (8)0.0051 (7)0.0102 (8)
N2A0.0335 (8)0.0430 (10)0.0431 (10)0.0152 (7)0.0086 (7)0.0132 (8)
C50.0271 (8)0.0375 (10)0.0285 (9)0.0088 (7)0.0065 (7)0.0115 (7)
N5B0.0337 (9)0.0665 (12)0.0392 (9)0.0168 (8)0.0070 (7)0.0240 (9)
C10.0461 (12)0.0654 (15)0.0322 (10)0.0252 (11)0.0119 (9)0.0116 (10)
C20.0418 (11)0.0568 (14)0.0445 (12)0.0209 (10)0.0179 (9)0.0120 (10)
Geometric parameters (Å, º) top
Mg1—O2i2.0496 (13)N1A—C11.348 (3)
Mg1—O22.0496 (13)N1A—C41.351 (2)
Mg1—O1i2.0900 (14)N4B—N5B1.325 (2)
Mg1—O12.0900 (14)N4B—N3B1.357 (2)
Mg1—O32.1231 (16)N3B—C51.344 (2)
Mg1—O3i2.1231 (16)C4—C31.406 (2)
O1—H11W0.821 (18)C4—C51.482 (3)
O1—H12W0.827 (17)C3—N2A1.345 (3)
O2—H21W0.845 (17)C3—H30.9300
O2—H22W0.851 (17)N2A—C21.345 (3)
O3—H32W0.876 (17)C1—C21.389 (3)
O3—H31W0.870 (17)C1—H10.9300
N6B—C51.349 (2)C2—H20.9300
N6B—N5B1.359 (2)
O2i—Mg1—O2180.00 (10)H32W—O3—H31W105 (2)
O2i—Mg1—O1i89.08 (6)C5—N6B—N5B104.40 (16)
O2—Mg1—O1i90.92 (6)C1—N1A—C4116.77 (16)
O2i—Mg1—O190.92 (6)N5B—N4B—N3B109.11 (16)
O2—Mg1—O189.08 (6)C5—N3B—N4B105.00 (15)
O1i—Mg1—O1180.0N1A—C4—C3120.56 (17)
O2i—Mg1—O390.89 (6)N1A—C4—C5119.06 (15)
O2—Mg1—O389.11 (6)C3—C4—C5120.37 (17)
O1i—Mg1—O389.77 (7)N2A—C3—C4122.29 (18)
O1—Mg1—O390.23 (7)N2A—C3—H3118.9
O2i—Mg1—O3i89.11 (6)C4—C3—H3118.9
O2—Mg1—O3i90.89 (6)C3—N2A—C2116.44 (17)
O1i—Mg1—O3i90.23 (7)N3B—C5—N6B111.72 (16)
O1—Mg1—O3i89.77 (7)N3B—C5—C4122.89 (16)
O3—Mg1—O3i180.0N6B—C5—C4125.38 (17)
Mg1—O1—H11W131 (2)N4B—N5B—N6B109.77 (16)
Mg1—O1—H12W131 (2)N1A—C1—C2122.1 (2)
H11W—O1—H12W91.2 (18)N1A—C1—H1119.0
Mg1—O2—H21W124.1 (19)C2—C1—H1119.0
Mg1—O2—H22W124.3 (18)N2A—C2—C1121.7 (2)
H21W—O2—H22W111 (2)N2A—C2—H2119.1
Mg1—O3—H32W120.6 (19)C1—C2—H2119.1
Mg1—O3—H31W123 (2)
N5B—N4B—N3B—C50.3 (2)N1A—C4—C5—N3B160.71 (19)
C1—N1A—C4—C33.6 (3)C3—C4—C5—N3B18.5 (3)
C1—N1A—C4—C5175.6 (2)N1A—C4—C5—N6B18.1 (3)
N1A—C4—C3—N2A3.6 (3)C3—C4—C5—N6B162.7 (2)
C5—C4—C3—N2A175.64 (19)N3B—N4B—N5B—N6B0.2 (3)
C4—C3—N2A—C20.4 (3)C5—N6B—N5B—N4B0.1 (3)
N4B—N3B—C5—N6B0.2 (2)C4—N1A—C1—C20.7 (4)
N4B—N3B—C5—C4178.75 (18)C3—N2A—C2—C12.5 (4)
N5B—N6B—C5—N3B0.1 (2)N1A—C1—C2—N2A2.4 (4)
N5B—N6B—C5—C4178.85 (19)
Symmetry code: (i) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11W···N5Bii0.82 (3)2.12 (3)2.900 (3)158 (3)
O1—H12W···N6Biii0.83 (2)2.01 (2)2.827 (2)171 (3)
O2—H21W···N4Biv0.85 (3)2.00 (3)2.842 (3)172 (3)
O2—H22W···N1Aiii0.85 (2)2.01 (2)2.831 (2)161 (3)
O3—H31W···N2Av0.87 (3)2.04 (3)2.879 (3)163 (3)
O3—H32W···N3B0.87 (3)2.02 (3)2.877 (2)165 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z; (iv) x, y, z1; (v) x+1, y+1, z1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O(C5H3N6)[Mg(H2O)6]
Mr476.97426.67
Crystal system, space groupOrthorhombic, P21212Triclinic, P1
Temperature (K)100100
a, b, c (Å)10.193 (3), 23.924 (2), 7.284 (3)7.868 (2), 8.268 (3), 8.608 (2)
α, β, γ (°)90, 90, 9063.59 (2), 68.56 (3), 80.47 (2)
V3)1776.3 (9)466.8 (3)
Z41
Radiation typeMo KαMo Kα
µ (mm1)0.220.16
Crystal size (mm)0.3 × 0.2 × 0.10.3 × 0.15 × 0.09
Data collection
DiffractometerAgilent SuperNova CCD
diffractometer
Bruker APEX-II
diffractometer
Absorption correctionMulti-scan
Tmin, Tmax0.949, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
11710, 4774, 4077 2759, 2759, 2163
Rint0.0260.000
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.082, 1.05 0.052, 0.112, 1.14
No. of reflections47742759
No. of parameters345157
No. of restraints189
H-atom treatmentAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.320.30, 0.20
Absolute structureFlack (1983), 2211 Friedel pairs?
Absolute structure parameter0.2 (2)?

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), WinGX (Farrugia, 2012), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), ORTEP-3 for Windoes (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N7i0.83 (3)2.17 (3)2.980 (3)166 (3)
O2W—H2W···N8A0.85 (3)2.12 (3)2.966 (3)172 (3)
N5—H5···N3ii0.84 (2)2.23 (2)3.052 (4)169 (3)
N5A—H5A···N3Ai0.85 (2)1.962 (19)2.793 (3)165 (3)
O1—H11···O4ii0.84 (3)2.28 (3)3.121 (4)177 (3)
O1—H12···O1W0.86 (3)1.94 (3)2.799 (3)172 (3)
O2—H21···N6i0.89 (2)1.86 (2)2.746 (3)176 (2)
O2—H22···N4iii0.82 (2)2.12 (2)2.913 (3)162 (3)
O3—H31···N40.84 (3)2.04 (3)2.850 (4)162 (3)
O3—H32···N2ii0.85 (2)1.97 (2)2.766 (3)155 (3)
O4—H41···N6Aii0.84 (3)2.23 (3)3.051 (4)166 (3)
O4—H42···N7Aiv0.88 (2)1.82 (2)2.687 (3)172 (3)
O5—H51···O2Wv0.87 (3)1.94 (3)2.803 (3)176 (3)
O5—H52···O2i0.83 (3)2.20 (3)3.028 (3)178 (4)
O6—H61···N2A0.81 (3)2.03 (3)2.829 (4)169 (3)
O6—H62···N6Avi0.85 (3)2.21 (3)3.005 (4)155 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z1; (iv) x+1/2, y1/2, z+1; (v) x1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H11W···N5Bi0.82 (3)2.12 (3)2.900 (3)158 (3)
O1—H12W···N6Bii0.83 (2)2.01 (2)2.827 (2)171 (3)
O2—H21W···N4Biii0.85 (3)2.00 (3)2.842 (3)172 (3)
O2—H22W···N1Aii0.85 (2)2.01 (2)2.831 (2)161 (3)
O3—H31W···N2Aiv0.87 (3)2.04 (3)2.879 (3)163 (3)
O3—H32W···N3B0.87 (3)2.02 (3)2.877 (2)165 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x, y, z1; (iv) x+1, y+1, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds