Download citation
Download citation
link to html
In di­benzyl­ammonium hydrogen maleate [or di­benzyl­am­monium (2Z)-3-carb­oxy­prop-2-enoate], C14H16N+·C4H3O4-, (I), the anion contains a fairly short and nearly linear O-H...O hydrogen bond, with an O...·O distance of 2.4603 (16) Å, but with the H atom clearly offset from the mid-point of the O...O vector. The counter-ions in (I) are linked by two N-H...O hydrogen bonds to form C22(6) chains and these chains are weakly linked into sheets by a C-H...O hydrogen bond. Bis(di­benzyl­amino)­methane, C29H30N2, (II), crystallizes with two independent mol­ecules lying across twofold rotation axes in the space group C2/c, and the mol­ecules are conformationally chiral; there are no direction-specific inter­molecular inter­actions in the crystal structure of (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011301651X/yf3037sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011301651X/yf3037Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011301651X/yf3037IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011301651X/yf3037Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011301651X/yf3037IIsup5.cml
Supplementary material

CCDC references: 957037; 957038

Comment top

We report here the molecular and supramolecular structure of dibenzylammonium hydrogen maleate, (I) (Fig. 1), and a redetermination of bis(dibenzylamino)methane, (II) (Fig. 2). Aminoethers are valuable building blocks in organic synthesis as they are important precursors in the synthesis of a wide range of pharmaceutical products (Pinder & Wieringa, 1993; Franchini et al., 2003; Cavalluzzi et al., 2007; Huang et al., 2009). In recent years, a series of selective serotonin (5-HT)-reuptake inhibitor antidepressants (e.g. Fluexetine and Paroxetine) and selective norepinephrine-reuptake inhibitor antidepressants (e.g. Tomoxetine and Viloxazine) have been developed (Pinder & Wieringa, 1993), and several of these compounds contain γ-aminoether functionality, which could be related to their biologivcal activity. Continuing with our current studies on the synthetic utility of benzylamines (Castillo et al., 2009; Abonía et al., 2010), the aminal (II) was isolated as a possible intermediate in a synthetic route to novel γ-aminoether derivatives starting from secondary benzylamines and using a four-component strategy mediated by a Mannich-type reaction (Abonía et al., 2013). In order to confirm the role of (II) in this route, it has been prepared from the reaction of dibenzylamine with paraformaldehyde in acetonitrile and then used to obtain the γ-aminoethers, thus confirming its intermediacy. As a model for the crystallization and characterization of new secondary benzylamine derivatives needed in this synthetic route we have prepared and crystallized the dibenzylammonium hydrogen maleate salt, (I).

The structure of compound (II) has been reported previously using diffraction data collected at 298 K [Cambridge Structural Database (CSD; Allen, 2002) refcode MIKQON (Lu et al., 2007)], but the refinement converged to a rather high R1 value of 0.0794, while the value of wR2 was also quoted as 0.0794, suggesting that unweighted data were used in the final refinements. Alongside the high R index is the rather low precision, with s.u. values for the bonded C—C distances ranging from 0.006 to 0.014 Å, with a mean s.u. of 0.009 Å. Accordingly, we have now taken the opportunity to reinvestigate compound (II) using diffraction data collected at 120 K, resulting in a lower R value and significantly better precision, with s.u. values for the bonded C—C distances typically equal to 0.002 Å.

In the cation of salt (I), the central backbone between atoms C11 and C21 (Fig. 1) is almost planar, as indicated by the relevant torsion angles (Table 1), while the two independent phenyl rings are almost orthogonal to this central plane. The anion of (I) contains a rather short and almost linear O—H···O hydrogen bond, forming an S(7) motif (Bernstein et al., 1995) (Fig. 1 and Table 2); however, despite the short O···O distance, the hydroxy H atom is clearly offset from the mid-point of the O···O vector. The C—O distances in the anion (Table 1) are fully consistent with the location of the hydroxy H atom as deduced from a difference map. Similarly short and nearly linear O—H···O hydrogen bonds are found in the hydrogen maelate salts formed with both 1,2-bis(pyridin-4-yl)ethane and 4,4'-bipyridyl, where the O···O distances are 2.4528 (18) and 2.463 (2) Å, respectively, with O—H···O angles of 178 and 176°, respectively (Bowes et al., 2003); in both of these salts, the H atom in the O—H···O hydrogen bond is clearly offset from the mid-point of the O···O vector, just as in salt (I).

The C—C—C—O torsion angles in the anion of (I) (Table 1) show that both of the carboxyl fragments are rotated slightly away from the plane defined by atoms C31–C34, such that atoms O31 and O34 (those involved in the intra-anion hydrogen bond) are both displaced to one side of the plane of C31–C34, by 0.143 (2) and 0.134 (2) Å, respectively, while atoms O32 and O33 are displaced to the other side of this plane, by 0.117 (2) and 0.115 (2) Å, respectively, corresponding to a disrotatory motion of the carboxyl groups around the C31—C32 and C33—C34 bonds. By contrast, the anions in the salts formed with 1,2-bis(pyridin-4-yl)ethane and 4,4'-bipyridyl are both effectively planar, with maximum deviations from the mean plane of the eight non-H atoms of the anions of 0.041 (2) Å in the former salt and only 0.013 (2) Å in the latter (Bowes et al., 2003).

In the asymmetric unit selected for salt (I) (Fig. 1), the two ions are linked by an N—H···O hydrogen bond (Table 2), while a second N—H···O hydrogen bond links such ion pairs which are related by translation to form a C22(6) (Bernstein et al., 1995) chain running parallel to the [100] direction (Fig. 3). There are also two short intermolecular C—H···O contacts present in the structure of (I) (Table 2). One of these interactions, having a C—H···O angle of 153°, weakly links the chains along [100] into a sheet parallel to (010) and built from S(7) and R76(25) rings (Fig. 4). In the other such interaction, which lies within the (010) sheet, the C—H···O angle is only 131°, so that this contact is probably not structurally significant (Wood et al., 2009). It is notable that the strong and nearly linear O—H···O and N—H···O hydrogen bonds in the structure of (I) all involve the negatively charged O atoms of the carboxylate group, whereas the C—H···O contacts involve the formally neutral O32 atom in the carboxylic acid unit.

Compound (II) crystallizes in the space group C2/c with two independent molecules both lying across twofold rotation axes. Comparison of the unit-cell dimensions at 298 K (Lu et al., 2007) and at 120 K indicates that no phase change has occurred between these two temperatures. The molecules of (II) exhibit no internal symmetry other that the twofold rotation axis and hence they are conformationally chiral, although the space group accommodates equal numbers of the two conformational enantiomers. There is thus considerable flexibility available in the choice of the asymmetric unit, but that selected here contains two independent molecules of the same enantiomeric form, as indicated by the general similarity of corresponding torsion angles (Table 3). On this basis, the type 1 molecule containing atom C1 lies across the rotation axis along (1/2, y, 1/4), while the type 2 molecule containing atom C2 lies across the axis along (1/2, y, 3/4).

In each molecule of (II), the arrangement of the benzyl groups is probably dominated by a combination of steric factors and the mutual repulsion of the lone pairs on the two N atoms, which adopt an anticlinal conformation relative to the N···N direction (Fig. 5). The projections along the N···N vectors, together with the detailed comparison of the relevant torsion angles (Table 3) confirm that there are sufficient conformational differences between the two independent molecules to preclude the possibility of any additional crystallographic symmetry.

Despite the bulk of the dibenzylamino group, the interbond angles (Table 3) at the central atoms C1 and C2 are unexceptional, and the C—N bond lengths involving atoms C1 and C2 are typical of their type [mean value (Allen et al., 1987) 1.469 Å]. Both of the N atom in compound (II) are markedly pyramidal, with sums of interbond angles of 332.4 (2)° at N1 and 330.4 (2)° at N2. Despite this, there are no C—H···N hydrogen bonds within the crystal structure of (II); indeed, there are no direction-specific interactions of any type, as both C—H···π(arene) hydrogen bonds and aromatic ππ stacking interactions are also absent.

Related literature top

For related literature, see: Abonía et al. (2010, 2013); Allen (2002); Allen et al. (1987); Bernstein et al. (1995); Bowes et al. (2003); Castillo et al. (2009); Cavalluzzi et al. (2007); Franchini et al. (2003); Huang et al. (2009); Lu et al. (2007); Pinder & Wieringa (1993); Wood et al. (2009).

Experimental top

For the synthesis of salt (I), a mixture of dibenzylamine (80 mg) and an excess of maleic acid (161 mg, 2.5 equivalents) in ethyl acetate (2 ml) was stirred at ambient temperature of 1 h. The resulting solid product was collected by filtration, washed with cold ethyl acetate (2 × 1 ml) and dried at ambient temperature to provide the product (I) as colourless crystals (yield 86%, m.p. 482 K). FT–IR (KBr): 3032, 2828, 2751, 2636, 1705 (CO), 1629 (CC), 1384, 1361, 1214, 109=86 [clarify] (C—O) cm-1. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethyl acetate. For the synthesis of compound (II), a mixture of dibenzylamine (201 mg, 2.0 mmol) and paraformaldehyde (15 mg, 1.0 mmol) in acetonitrile (2 ml) was stirred at ambient temperature for 3 h. The resulting solid product was collected by filtration, washed with acetonitrile (1 ml) and dried at ambient temperatur to provide the aminal (II) (yield 93%, m.p. 372 K). FT-IR (KBr): 3058, 2925, 2877, 1599, 739, 697 cm-1. Colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethanol.

Refinement top

All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic and alkene) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C). H atoms bonded to N or O atoms were permitted to ride at the positions deduced from difference maps, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Table 2.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ionic components of salt (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The independent molecular components of compound (II), showing the atom-labelling scheme for (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -x+1, y, -z+1/2; (b) -x+1, y, -z+3/2.]
[Figure 3] Fig. 3. Part of the crystal structure of salt (I), showing thee formation of a hydrogen-bonded chain along [100]. For the sake of clarity, H atoms bonded to C atoms have all been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x+1, y, z) and (x-1, y, z), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of salt (I), showing the formation of a hydrogen-bonded sheet parallel to (010). For the sake of clarity, H atoms not involved in the motifs shown have been omitted
[Figure 5] Fig. 5. Projections of the molecular structures in compound (II) along the N···N vectors, showing the molecular conformations for (a) a type 1 molecule and (b) a type 2 molecule. For the sake of clarity, H atoms have all been omitted. [Symmetry codes: (a) -x+1, y, -z+1/2; (b) -x+1, y, -z+3/2.]
(I) Dibenzylammonium (2Z)-3-carboxyprop-2-enoate top
Crystal data top
C14H16N+·C4H3O4F(000) = 664
Mr = 313.34Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3639 reflections
a = 5.7551 (5) Åθ = 2.8–27.5°
b = 16.1579 (19) ŵ = 0.09 mm1
c = 17.1230 (19) ÅT = 120 K
β = 95.464 (8)°Block, colourless
V = 1585.0 (3) Å30.32 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3639 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ & ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2020
Tmin = 0.971, Tmax = 0.976l = 2222
22681 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.5921P]
where P = (Fo2 + 2Fc2)/3
3639 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H16N+·C4H3O4V = 1585.0 (3) Å3
Mr = 313.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7551 (5) ŵ = 0.09 mm1
b = 16.1579 (19) ÅT = 120 K
c = 17.1230 (19) Å0.32 × 0.30 × 0.26 mm
β = 95.464 (8)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2621 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.058
22681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
3639 reflectionsΔρmin = 0.25 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5366 (2)0.29720 (8)0.32397 (7)0.0191 (3)
H1A0.38680.29770.33650.023*
H1B0.62530.29140.36950.023*
C170.5742 (3)0.22299 (10)0.27401 (9)0.0257 (4)
H17A0.74140.21920.26520.031*
H17B0.48320.22960.22230.031*
C110.5009 (3)0.14446 (10)0.31198 (9)0.0228 (3)
C120.6548 (3)0.10306 (10)0.36598 (10)0.0271 (4)
H120.80730.12460.37880.033*
C130.5884 (3)0.03080 (11)0.40131 (11)0.0336 (4)
H130.69470.00330.43850.040*
C140.3674 (3)0.00141 (11)0.38249 (11)0.0344 (4)
H140.32180.05100.40660.041*
C150.2136 (3)0.03868 (11)0.32862 (11)0.0343 (4)
H150.06230.01640.31530.041*
C160.2788 (3)0.11154 (11)0.29361 (10)0.0283 (4)
H160.17120.13910.25690.034*
C270.5999 (3)0.37606 (10)0.28506 (9)0.0225 (3)
H27A0.50250.38210.23450.027*
H27B0.76530.37360.27380.027*
C210.5641 (3)0.45008 (10)0.33596 (9)0.0209 (3)
C220.7442 (3)0.47900 (10)0.38888 (9)0.0251 (4)
H220.89000.45100.39400.030*
C230.7124 (3)0.54831 (11)0.43418 (10)0.0318 (4)
H230.83620.56770.47020.038*
C240.5000 (3)0.58949 (11)0.42711 (11)0.0336 (4)
H240.47830.63700.45830.040*
C250.3199 (3)0.56126 (11)0.37469 (11)0.0323 (4)
H250.17460.58960.36960.039*
C260.3511 (3)0.49167 (10)0.32962 (10)0.0267 (4)
H260.22620.47210.29410.032*
C310.0391 (3)0.19287 (11)0.62431 (10)0.0265 (4)
C320.2231 (3)0.19375 (10)0.56848 (9)0.0235 (3)
H320.36690.16960.58880.028*
C330.2229 (3)0.22217 (10)0.49537 (9)0.0224 (3)
H330.36500.21400.47240.027*
C340.0356 (3)0.26483 (10)0.44335 (9)0.0204 (3)
O310.17349 (18)0.21716 (8)0.60052 (7)0.0306 (3)
H310.16730.23730.54660.046*
O320.0899 (2)0.16877 (10)0.69127 (7)0.0472 (4)
O330.08704 (18)0.29195 (7)0.37947 (6)0.0273 (3)
O340.17021 (17)0.27045 (7)0.46603 (6)0.0243 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0174 (6)0.0214 (7)0.0185 (6)0.0016 (5)0.0018 (5)0.0008 (5)
C170.0295 (9)0.0243 (9)0.0242 (8)0.0014 (7)0.0076 (7)0.0042 (7)
C110.0237 (8)0.0210 (8)0.0243 (8)0.0021 (6)0.0055 (6)0.0056 (6)
C120.0249 (8)0.0245 (9)0.0319 (9)0.0000 (7)0.0021 (7)0.0053 (7)
C130.0409 (10)0.0260 (10)0.0334 (10)0.0036 (8)0.0011 (8)0.0004 (8)
C140.0419 (10)0.0231 (9)0.0404 (10)0.0051 (8)0.0161 (8)0.0040 (8)
C150.0255 (9)0.0310 (10)0.0475 (11)0.0050 (7)0.0084 (8)0.0142 (9)
C160.0255 (8)0.0273 (9)0.0318 (9)0.0038 (7)0.0012 (7)0.0075 (7)
C270.0233 (8)0.0231 (8)0.0213 (8)0.0026 (6)0.0030 (6)0.0021 (6)
C210.0213 (8)0.0196 (8)0.0220 (8)0.0013 (6)0.0036 (6)0.0034 (6)
C220.0216 (8)0.0251 (9)0.0283 (9)0.0000 (7)0.0008 (7)0.0002 (7)
C230.0290 (9)0.0314 (10)0.0346 (9)0.0048 (7)0.0011 (7)0.0053 (8)
C240.0376 (10)0.0213 (9)0.0440 (10)0.0028 (7)0.0145 (8)0.0061 (8)
C250.0245 (9)0.0249 (9)0.0488 (11)0.0047 (7)0.0105 (8)0.0041 (8)
C260.0215 (8)0.0253 (9)0.0330 (9)0.0007 (7)0.0012 (7)0.0043 (7)
C310.0213 (8)0.0328 (10)0.0252 (8)0.0006 (7)0.0012 (6)0.0032 (7)
C320.0166 (7)0.0270 (9)0.0267 (8)0.0030 (6)0.0003 (6)0.0017 (7)
C330.0163 (7)0.0272 (9)0.0242 (8)0.0031 (6)0.0038 (6)0.0000 (7)
C340.0177 (7)0.0206 (8)0.0227 (8)0.0004 (6)0.0011 (6)0.0037 (6)
O310.0203 (6)0.0458 (8)0.0264 (6)0.0057 (5)0.0057 (5)0.0092 (5)
O320.0293 (7)0.0836 (11)0.0290 (7)0.0082 (7)0.0044 (5)0.0217 (7)
O330.0230 (6)0.0354 (7)0.0239 (6)0.0043 (5)0.0050 (5)0.0064 (5)
O340.0170 (5)0.0314 (7)0.0245 (6)0.0032 (5)0.0025 (4)0.0019 (5)
Geometric parameters (Å, º) top
N1—C271.4987 (19)C21—C261.393 (2)
N1—C171.501 (2)C22—C231.384 (2)
N1—H1A0.9085C22—H220.9500
N1—H1B0.8954C23—C241.387 (2)
C17—C111.504 (2)C23—H230.9500
C17—H17A0.9900C24—C251.382 (3)
C17—H17B0.9900C24—H240.9500
C11—C121.390 (2)C25—C261.385 (2)
C11—C161.393 (2)C25—H250.9500
C12—C131.385 (2)C26—H260.9500
C12—H120.9500C31—O311.3120 (19)
C13—C141.384 (3)C31—O321.220 (2)
C13—H130.9500C31—C321.493 (2)
C14—C151.378 (3)C32—C331.333 (2)
C14—H140.9500C32—H320.9500
C15—C161.389 (3)C33—C341.499 (2)
C15—H150.9500C33—H330.9500
C16—H160.9500C34—O331.2402 (18)
C27—C211.506 (2)C34—O341.2842 (18)
C27—H27A0.9900O31—H310.9822
C27—H27B0.9900O34—H311.4792
C21—C221.391 (2)
C27—N1—C17111.82 (11)C21—C27—H27B109.3
C27—N1—H1A112.0H27A—C27—H27B108.0
C17—N1—H1A109.5C22—C21—C26118.97 (15)
C27—N1—H1B109.5C22—C21—C27120.64 (14)
C17—N1—H1B108.1C26—C21—C27120.37 (14)
H1A—N1—H1B105.6C23—C22—C21120.44 (15)
N1—C17—C11111.48 (12)C23—C22—H22119.8
N1—C17—H17A109.3C21—C22—H22119.8
C11—C17—H17A109.3C22—C23—C24120.12 (16)
N1—C17—H17B109.3C22—C23—H23119.9
C11—C17—H17B109.3C24—C23—H23119.9
H17A—C17—H17B108.0C25—C24—C23119.90 (17)
C12—C11—C16118.67 (16)C25—C24—H24120.0
C12—C11—C17120.42 (14)C23—C24—H24120.0
C16—C11—C17120.91 (15)C24—C25—C26120.04 (16)
C13—C12—C11120.74 (16)C24—C25—H25120.0
C13—C12—H12119.6C26—C25—H25120.0
C11—C12—H12119.6C25—C26—C21120.52 (16)
C14—C13—C12120.08 (17)C25—C26—H26119.7
C14—C13—H13120.0C21—C26—H26119.7
C12—C13—H13120.0O32—C31—O31121.36 (15)
C15—C14—C13119.77 (17)O32—C31—C32118.92 (15)
C15—C14—H14120.1O31—C31—C32119.71 (14)
C13—C14—H14120.1C33—C32—C31131.85 (15)
C14—C15—C16120.33 (16)C33—C32—H32114.1
C14—C15—H15119.8C31—C32—H32114.1
C16—C15—H15119.8C32—C33—C34130.74 (14)
C15—C16—C11120.40 (16)C32—C33—H33114.6
C15—C16—H16119.8C34—C33—H33114.6
C11—C16—H16119.8O33—C34—O34123.11 (14)
N1—C27—C21111.45 (12)O33—C34—C33117.90 (13)
N1—C27—H27A109.3O34—C34—C33118.98 (14)
C21—C27—H27A109.3C31—O31—H31105.9
N1—C27—H27B109.3C34—O34—H31109.1
C27—N1—C17—C11177.63 (12)C26—C21—C22—C230.4 (2)
N1—C17—C11—C1285.51 (18)C27—C21—C22—C23178.40 (15)
N1—C17—C11—C1694.80 (17)C21—C22—C23—C240.0 (3)
C16—C11—C12—C130.4 (2)C22—C23—C24—C250.0 (3)
C17—C11—C12—C13179.86 (15)C23—C24—C25—C260.4 (3)
C11—C12—C13—C140.6 (3)C24—C25—C26—C210.7 (3)
C12—C13—C14—C150.1 (3)C22—C21—C26—C250.7 (2)
C13—C14—C15—C160.5 (3)C27—C21—C26—C25178.07 (15)
C14—C15—C16—C110.6 (3)C31—C32—C33—C340.9 (3)
C12—C11—C16—C150.2 (2)C33—C32—C31—O316.5 (3)
C17—C11—C16—C15179.54 (15)C33—C32—C31—O32174.08 (19)
C17—N1—C27—C21179.37 (12)C32—C33—C34—O33173.64 (17)
N1—C27—C21—C2290.51 (17)C32—C33—C34—O347.5 (3)
N1—C27—C21—C2690.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O330.911.942.8412 (16)171
N1—H1B···O34i0.901.962.8582 (16)175
O31—H31···O340.981.482.4603 (16)177
C27—H27A···O32ii0.992.553.290 (2)131
C27—H27B···O32iii0.992.543.452 (2)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z1/2.
(II) Bis(dibenzylamino)methane top
Crystal data top
C29H30N2F(000) = 1744
Mr = 406.55Dx = 1.156 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5366 reflections
a = 25.548 (6) Åθ = 2.8–27.5°
b = 12.9426 (16) ŵ = 0.07 mm1
c = 18.555 (3) ÅT = 120 K
β = 130.428 (11)°Block, colourless
V = 4670.4 (16) Å30.42 × 0.24 × 0.23 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5366 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ & ω scansh = 3333
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.972, Tmax = 0.985l = 2424
18316 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.028P]
where P = (Fo2 + 2Fc2)/3
5366 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H30N2V = 4670.4 (16) Å3
Mr = 406.55Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.548 (6) ŵ = 0.07 mm1
b = 12.9426 (16) ÅT = 120 K
c = 18.555 (3) Å0.42 × 0.24 × 0.23 mm
β = 130.428 (11)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5366 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3223 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.055
18316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
5366 reflectionsΔρmin = 0.23 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.50000.50145 (17)0.25000.0307 (5)
H1A0.54120.45660.28850.037*0.50
H1B0.45880.45660.21150.037*0.50
N10.49758 (6)0.56599 (9)0.31241 (9)0.0276 (3)
C1170.56415 (8)0.61702 (12)0.38317 (11)0.0320 (4)
H11A0.58180.64150.35190.038*
H11B0.59730.56580.43190.038*
C1110.56044 (8)0.70735 (12)0.43112 (10)0.0266 (4)
C1120.50511 (8)0.77576 (12)0.38141 (11)0.0298 (4)
H1120.46740.76370.31630.036*
C1130.50456 (8)0.86085 (13)0.42574 (11)0.0335 (4)
H1130.46610.90610.39110.040*
C1140.55938 (9)0.88093 (13)0.51999 (12)0.0349 (4)
H1140.55900.94020.54990.042*
C1150.61455 (9)0.81410 (13)0.57019 (11)0.0362 (4)
H1150.65260.82750.63490.043*
C1160.61463 (8)0.72733 (13)0.52643 (11)0.0337 (4)
H1160.65230.68070.56210.040*
C1270.47741 (8)0.50487 (13)0.35771 (11)0.0315 (4)
H12A0.48430.54690.40780.038*
H12B0.50760.44350.38820.038*
C1210.40329 (8)0.46988 (12)0.28810 (10)0.0276 (4)
C1220.35101 (8)0.54050 (13)0.22746 (11)0.0315 (4)
H1220.36220.61110.22980.038*
C1230.28296 (9)0.50947 (14)0.16380 (11)0.0367 (4)
H1230.24790.55870.12290.044*
C1240.26594 (9)0.40668 (14)0.15969 (12)0.0373 (4)
H1240.21930.38510.11600.045*
C1250.31716 (9)0.33627 (14)0.21932 (12)0.0398 (4)
H1250.30580.26570.21670.048*
C1260.38526 (9)0.36730 (12)0.28316 (12)0.0343 (4)
H1260.42010.31780.32410.041*
C20.50000.97739 (17)0.75000.0296 (5)
H2A0.48481.02230.77650.035*0.50
H2B0.51521.02230.72350.035*0.50
N20.44225 (6)0.91302 (10)0.67439 (9)0.0279 (3)
C2170.46209 (8)0.85271 (12)0.62851 (12)0.0325 (4)
H21A0.50690.81900.67800.039*
H21B0.46840.90040.59290.039*
C2110.41026 (8)0.77066 (12)0.56140 (11)0.0287 (4)
C2120.36882 (8)0.72257 (12)0.57501 (11)0.0342 (4)
H2120.37100.74360.62590.041*
C2130.32439 (9)0.64434 (13)0.51542 (13)0.0443 (5)
H2130.29630.61210.52570.053*
C2140.32050 (10)0.61278 (15)0.44124 (13)0.0492 (5)
H2140.29010.55860.40070.059*
C2150.36114 (10)0.66048 (15)0.42603 (12)0.0469 (5)
H2150.35870.63920.37490.056*
C2160.40538 (9)0.73944 (13)0.48572 (11)0.0366 (4)
H2160.43270.77260.47460.044*
C2270.38256 (8)0.97856 (12)0.60460 (11)0.0304 (4)
H22A0.34560.93470.55140.036*
H22B0.39591.02920.57900.036*
C2210.35458 (7)1.03623 (12)0.64375 (10)0.0273 (4)
C2220.35201 (8)0.99267 (13)0.71004 (11)0.0311 (4)
H2220.36920.92470.73260.037*
C2230.32499 (8)1.04652 (14)0.74361 (11)0.0370 (4)
H2230.32451.01600.78970.044*
C2240.29869 (8)1.14460 (14)0.71023 (12)0.0400 (4)
H2240.28001.18170.73310.048*
C2250.29975 (8)1.18829 (13)0.64341 (12)0.0397 (4)
H2250.28091.25520.61940.048*
C2260.32808 (8)1.13546 (12)0.61092 (11)0.0335 (4)
H2260.32951.16710.56600.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (13)0.0289 (12)0.0330 (12)0.0000.0227 (11)0.000
N10.0252 (7)0.0311 (7)0.0289 (7)0.0022 (6)0.0187 (6)0.0009 (6)
C1170.0220 (8)0.0381 (9)0.0330 (9)0.0009 (7)0.0166 (8)0.0001 (7)
C1110.0227 (8)0.0317 (9)0.0269 (8)0.0009 (7)0.0167 (7)0.0035 (7)
C1120.0230 (8)0.0338 (9)0.0250 (8)0.0001 (7)0.0122 (7)0.0026 (7)
C1130.0281 (9)0.0334 (9)0.0348 (9)0.0033 (7)0.0185 (8)0.0047 (7)
C1140.0406 (10)0.0341 (9)0.0374 (10)0.0026 (8)0.0285 (9)0.0011 (8)
C1150.0333 (10)0.0449 (10)0.0226 (8)0.0055 (8)0.0147 (8)0.0006 (8)
C1160.0256 (9)0.0411 (10)0.0271 (8)0.0046 (8)0.0137 (8)0.0061 (8)
C1270.0295 (9)0.0349 (9)0.0304 (9)0.0034 (8)0.0196 (8)0.0055 (7)
C1210.0309 (9)0.0320 (9)0.0283 (8)0.0004 (7)0.0230 (8)0.0006 (7)
C1220.0319 (9)0.0295 (9)0.0335 (9)0.0004 (8)0.0214 (8)0.0009 (7)
C1230.0315 (9)0.0455 (11)0.0323 (9)0.0034 (8)0.0203 (8)0.0062 (8)
C1240.0327 (9)0.0517 (11)0.0314 (9)0.0101 (9)0.0226 (8)0.0017 (8)
C1250.0459 (11)0.0368 (10)0.0442 (10)0.0102 (9)0.0325 (10)0.0015 (8)
C1260.0387 (10)0.0325 (9)0.0395 (10)0.0026 (8)0.0289 (9)0.0055 (8)
C20.0235 (12)0.0298 (12)0.0308 (12)0.0000.0156 (11)0.000
N20.0199 (7)0.0326 (7)0.0279 (7)0.0012 (6)0.0139 (6)0.0042 (6)
C2170.0291 (9)0.0361 (9)0.0375 (9)0.0005 (8)0.0239 (8)0.0032 (8)
C2110.0266 (8)0.0290 (9)0.0289 (8)0.0047 (7)0.0172 (7)0.0029 (7)
C2120.0328 (9)0.0359 (9)0.0357 (9)0.0023 (8)0.0230 (8)0.0011 (8)
C2130.0384 (11)0.0351 (10)0.0556 (12)0.0058 (9)0.0287 (10)0.0014 (9)
C2140.0339 (10)0.0385 (11)0.0467 (11)0.0010 (9)0.0135 (9)0.0123 (9)
C2150.0448 (11)0.0533 (12)0.0318 (10)0.0126 (10)0.0200 (9)0.0065 (9)
C2160.0383 (10)0.0402 (10)0.0351 (9)0.0067 (8)0.0255 (8)0.0044 (8)
C2270.0248 (9)0.0371 (9)0.0262 (8)0.0027 (7)0.0151 (7)0.0019 (7)
C2210.0185 (8)0.0305 (9)0.0259 (8)0.0040 (7)0.0112 (7)0.0049 (7)
C2220.0244 (8)0.0333 (9)0.0320 (9)0.0026 (7)0.0167 (8)0.0032 (7)
C2230.0261 (9)0.0512 (11)0.0315 (9)0.0004 (8)0.0178 (8)0.0035 (8)
C2240.0234 (9)0.0495 (11)0.0363 (10)0.0019 (8)0.0146 (8)0.0115 (9)
C2250.0287 (9)0.0291 (9)0.0440 (10)0.0036 (8)0.0158 (9)0.0046 (8)
C2260.0282 (9)0.0298 (9)0.0317 (9)0.0011 (7)0.0146 (8)0.0003 (7)
Geometric parameters (Å, º) top
C1—N1i1.4612 (17)C2—N21.4678 (17)
C1—N11.4612 (17)C2—N2ii1.4678 (17)
C1—H1A0.9900C2—H2A0.9900
C1—H1B0.9900C2—H2B0.9900
N1—C1171.4685 (19)N2—C2171.4663 (19)
N1—C1271.4694 (19)N2—C2271.4700 (19)
C117—C1111.509 (2)C217—C2111.514 (2)
C117—H11A0.9900C217—H21A0.9900
C117—H11B0.9900C217—H21B0.9900
C111—C1161.391 (2)C211—C2121.385 (2)
C111—C1121.393 (2)C211—C2161.387 (2)
C112—C1131.380 (2)C212—C2131.381 (2)
C112—H1120.9500C212—H2120.9500
C113—C1141.382 (2)C213—C2141.376 (3)
C113—H1130.9500C213—H2130.9500
C114—C1151.378 (2)C214—C2151.385 (3)
C114—H1140.9500C214—H2140.9500
C115—C1161.387 (2)C215—C2161.387 (2)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
C127—C1211.512 (2)C227—C2211.506 (2)
C127—H12A0.9900C227—H22A0.9900
C127—H12B0.9900C227—H22B0.9900
C121—C1261.389 (2)C221—C2221.393 (2)
C121—C1221.391 (2)C221—C2261.394 (2)
C122—C1231.384 (2)C222—C2231.381 (2)
C122—H1220.9500C222—H2220.9500
C123—C1241.386 (2)C223—C2241.381 (2)
C123—H1230.9500C223—H2230.9500
C124—C1251.374 (2)C224—C2251.379 (2)
C124—H1240.9500C224—H2240.9500
C125—C1261.385 (2)C225—C2261.386 (2)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
N1—C1—N1i110.27 (17)N2—C2—N2ii110.83 (17)
N1i—C1—H1A109.6N2—C2—H2A109.5
N1—C1—H1A109.6N2ii—C2—H2A109.5
N1i—C1—H1B109.6N2—C2—H2B109.5
N1—C1—H1B109.6N2ii—C2—H2B109.5
H1A—C1—H1B108.1H2A—C2—H2B108.1
C1—N1—C117110.24 (11)C217—N2—C2110.21 (11)
C1—N1—C127110.87 (12)C217—N2—C227110.33 (12)
C117—N1—C127111.29 (12)C2—N2—C227109.87 (12)
N1—C117—C111113.35 (13)N2—C217—C211113.81 (13)
N1—C117—H11A108.9N2—C217—H21A108.8
C111—C117—H11A108.9C211—C217—H21A108.8
N1—C117—H11B108.9N2—C217—H21B108.8
C111—C117—H11B108.9C211—C217—H21B108.8
H11A—C117—H11B107.7H21A—C217—H21B107.7
C116—C111—C112118.00 (15)C212—C211—C216118.43 (15)
C116—C111—C117120.15 (14)C212—C211—C217121.96 (15)
C112—C111—C117121.78 (14)C216—C211—C217119.57 (15)
C113—C112—C111120.70 (14)C213—C212—C211120.79 (17)
C113—C112—H112119.7C213—C212—H212119.6
C111—C112—H112119.7C211—C212—H212119.6
C112—C113—C114120.70 (16)C214—C213—C212120.46 (18)
C112—C113—H113119.6C214—C213—H213119.8
C114—C113—H113119.6C212—C213—H213119.8
C115—C114—C113119.34 (16)C213—C214—C215119.60 (17)
C115—C114—H114120.3C213—C214—H214120.2
C113—C114—H114120.3C215—C214—H214120.2
C114—C115—C116120.12 (15)C214—C215—C216119.72 (17)
C114—C115—H115119.9C214—C215—H215120.1
C116—C115—H115119.9C216—C215—H215120.1
C115—C116—C111121.11 (15)C211—C216—C215120.98 (17)
C115—C116—H116119.4C211—C216—H216119.5
C111—C116—H116119.4C215—C216—H216119.5
N1—C127—C121112.46 (12)N2—C227—C221114.00 (12)
N1—C127—H12A109.1N2—C227—H22A108.8
C121—C127—H12A109.1C221—C227—H22A108.8
N1—C127—H12B109.1N2—C227—H22B108.8
C121—C127—H12B109.1C221—C227—H22B108.8
H12A—C127—H12B107.8H22A—C227—H22B107.6
C126—C121—C122118.12 (15)C222—C221—C226118.11 (15)
C126—C121—C127121.38 (14)C222—C221—C227122.29 (14)
C122—C121—C127120.50 (14)C226—C221—C227119.57 (14)
C123—C122—C121121.02 (16)C223—C222—C221121.17 (15)
C123—C122—H122119.5C223—C222—H222119.4
C121—C122—H122119.5C221—C222—H222119.4
C122—C123—C124120.06 (16)C224—C223—C222120.12 (17)
C122—C123—H123120.0C224—C223—H223119.9
C124—C123—H123120.0C222—C223—H223119.9
C125—C124—C123119.42 (16)C225—C224—C223119.51 (17)
C125—C124—H124120.3C225—C224—H224120.2
C123—C124—H124120.3C223—C224—H224120.2
C124—C125—C126120.55 (16)C224—C225—C226120.61 (16)
C124—C125—H125119.7C224—C225—H225119.7
C126—C125—H125119.7C226—C225—H225119.7
C125—C126—C121120.83 (16)C225—C226—C221120.45 (16)
C125—C126—H126119.6C225—C226—H226119.8
C121—C126—H126119.6C221—C226—H226119.8
N1i—C1—N1—C11770.90 (10)N2ii—C2—N2—C21764.21 (10)
N1i—C1—N1—C127165.41 (12)N2ii—C2—N2—C227174.01 (12)
C1—N1—C117—C111163.10 (13)C2—N2—C217—C211169.98 (13)
C127—N1—C117—C11173.45 (16)C227—N2—C217—C21168.51 (17)
N1—C117—C111—C116143.96 (15)N2—C217—C211—C21229.9 (2)
N1—C117—C111—C11239.3 (2)N2—C217—C211—C216152.47 (14)
C116—C111—C112—C1130.2 (2)C216—C211—C212—C2130.9 (2)
C117—C111—C112—C113176.60 (15)C217—C211—C212—C213176.75 (15)
C111—C112—C113—C1141.1 (2)C211—C212—C213—C2140.0 (3)
C112—C113—C114—C1151.0 (2)C212—C213—C214—C2150.5 (3)
C113—C114—C115—C1160.4 (2)C213—C214—C215—C2160.1 (3)
C114—C115—C116—C1111.7 (3)C212—C211—C216—C2151.3 (2)
C112—C111—C116—C1151.6 (2)C217—C211—C216—C215176.41 (15)
C117—C111—C116—C115175.26 (15)C214—C215—C216—C2110.8 (3)
C1—N1—C127—C12168.89 (15)C217—N2—C227—C221174.78 (13)
C117—N1—C127—C121168.02 (13)C2—N2—C227—C22163.51 (15)
N1—C127—C121—C126129.53 (15)N2—C227—C221—C22237.5 (2)
N1—C127—C121—C12250.98 (19)N2—C227—C221—C226144.65 (14)
C126—C121—C122—C1230.2 (2)C226—C221—C222—C2231.0 (2)
C127—C121—C122—C123179.67 (14)C227—C221—C222—C223178.85 (14)
C121—C122—C123—C1240.0 (2)C221—C222—C223—C2241.2 (2)
C122—C123—C124—C1250.1 (3)C222—C223—C224—C2250.1 (2)
C123—C124—C125—C1260.1 (3)C223—C224—C225—C2261.2 (2)
C124—C125—C126—C1210.2 (3)C224—C225—C226—C2211.5 (2)
C122—C121—C126—C1250.3 (2)C222—C221—C226—C2250.4 (2)
C127—C121—C126—C125179.78 (15)C227—C221—C226—C225177.57 (14)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H16N+·C4H3O4C29H30N2
Mr313.34406.55
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)120120
a, b, c (Å)5.7551 (5), 16.1579 (19), 17.1230 (19)25.548 (6), 12.9426 (16), 18.555 (3)
β (°) 95.464 (8) 130.428 (11)
V3)1585.0 (3)4670.4 (16)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.090.07
Crystal size (mm)0.32 × 0.30 × 0.260.42 × 0.24 × 0.23
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.971, 0.9760.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
22681, 3639, 2621 18316, 5366, 3223
Rint0.0580.055
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 1.08 0.050, 0.115, 1.01
No. of reflections36395366
No. of parameters208281
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.250.25, 0.23

Computer programs: COLLECT (Hooft, 1998), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
C31—O311.3120 (19)C34—O331.2402 (18)
C31—O321.220 (2)C34—O341.2842 (18)
C27—N1—C17—C11177.63 (12)C33—C32—C31—O316.5 (3)
N1—C17—C11—C1285.51 (18)C33—C32—C31—O32174.08 (19)
C17—N1—C27—C21179.37 (12)C32—C33—C34—O33173.64 (17)
N1—C27—C21—C2290.51 (17)C32—C33—C34—O347.5 (3)
C31—C32—C33—C340.9 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O330.911.942.8412 (16)171
N1—H1B···O34i0.901.962.8582 (16)175
O31—H31···O340.981.482.4603 (16)177
C27—H27A···O32ii0.992.553.290 (2)131
C27—H27B···O32iii0.992.543.452 (2)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
C1—N11.4612 (17)C2—N21.4678 (17)
N1—C1—N1i110.27 (17)N2—C2—N2ii110.83 (17)
N1i—C1—N1—C11770.90 (10)N2ii—C2—N2—C21764.21 (10)
N1i—C1—N1—C127165.41 (12)N2ii—C2—N2—C227174.01 (12)
C1—N1—C117—C111163.10 (13)C2—N2—C217—C211169.98 (13)
N1—C117—C111—C11239.3 (2)N2—C217—C211—C21229.9 (2)
C1—N1—C127—C12168.89 (15)C2—N2—C227—C22163.51 (15)
N1—C127—C121—C12250.98 (19)N2—C227—C221—C22237.5 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds