Download citation
Download citation
link to html
The mol­ecules of 3-amino-4-anilino-1H-isochromen-1-one, C15H12N2O2, (I), and 3-amino-4-[methyl(phenyl)amino]-1H-isochromen-1-one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The mol­ecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N-H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three-centre N-H...(O)2 hydrogen bond, one two-centre C-H...O hydrogen bond and two C-H...[pi](arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113014777/yf3035sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014777/yf3035Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014777/yf3035IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113014777/yf3035Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113014777/yf3035IIsup5.cml
Supplementary material

CCDC references: 957016; 957017

Comment top

Isochromen-1-ones are a class of compounds which exhibit a wide range of biological activity, including fungicidal (Findlay & Buthelezi, 1995), herbicidal and insecticidal (Qadeer, Rama et al., 2007), antibacterial (Zhang et al., 2008), anti-inflammatory (Qadeer, Rama & Garduño, 2007) and antitumour (Lam et al., 1989) activities. As part of a programme aimed at the production of new heterocyclic compounds containing an isochromene fragment, we have synthesized several 3,4-diamino derivatives using the methodology of Opatz & Ferenc (2005), and we report here the molecular and supramolecular structures of 3-amino-4-anilino-1H-isochromen-1-one, (I) (Fig. 1), and 3-amino-4-[methyl(phenyl)amino]-1H-isochromen-1-one, (II) (Fig. 2).

The molecular conformations of (I) and (II) are very similar, as shown by the key torsion angles (Tables 1 and 3). These values also show that the molecules of (I) and (II) exhibit no internal symmetry and hence that they are conformationally chiral, although the centrosymmetric space group accommodates equal numbers of the two conformational enantiomers in each case. The conformational similarity of the two compounds is also shown by the dihedral angles between the planes of their two aryl rings, 79.2 (2)° in (I) and 79.3 (2)° in (II). In both compounds, the fused aryl rings show evidence of some bond fixation, with the C5—C6 and C7—C8 bonds being significantly shorter than the other bonds in these rings (Tables 1 and 3). The rotation of the substituted amino group by almost 90° from the plane of the adjacent heterocyclic ring, presumably for steric reasons, effectively prevents the development of any electronic polarization involving significant transfer of electron density from atom N1, via atoms C4, C4a, C8 and C1, to atom O11.

In both compounds, there is a short intramolecular N—H···N contact but, in each case, the N—H···N angle is small (Tables 2 and 4). Atom N41 is only slightly pyramidalised, with the sums of the bond angles being 353.3° in (I) and 356.5 (3)° in (II) (cf. 328.4° for an idealized pyramidal geometry). Hence, atom N41 is likely to be of low basicity in each compound, so these contacts must be regarded as adventitious rather than significant.

Although there are three independent N—H bonds in the molecule of (I), only one of these participates in the supramolecular assembly. Pairs of inversion-related N—H···O hydrogen bonds (Table 2) link pairs of molecules into cyclic centrosymmetric R22(12) (Bernstein et al., 1995) dimers (Fig. 3). While C—H···O hydrogen bonds are absent from the crystal structure of (I), two short C—H···π(arene) contacts are present, although in each of these the C—H···Cg (Cg is the ring centroid) angle is less than 140° and thus they are not regarded as structurally significant (cf. Wood et al., 2009). The only short intermolecular contacts to potential hydrogen-bond acceptors are made by atom H41, bonded to N41. Both have H···O distances (Table 2) above the sum of the van der Waals radii (Bondi, 1964) and hence these contacts cannot be regarded as either hydrogen bonds or having structural significance.

Compound (II) has fewer N—H bonds in its molecular constitution than (I), despite the fact that the overall supramolecular assembly for (II) is more complex than that for (I), as N—H···O, C—H···O and C—H···π(arene) hydrogen bonds are all present (Table 4). Together, these interactions link the molecules into complex sheets, and a cyclic centrosymmetric dimer can be regarded as the basic building block for the formation of this sheet. The dimer in (II) differs from that in (I) in that it contains three-centre N—H···(O)2 hydrogen bonds, as opposed to the simple two-centre N—H···O hydrogen bonds in the dimer of (I). Inversion-related pairs of three-centre hydrogen bonds generate a dimer in which an outer R22(12) ring is divided into one R22(8) segment and two R12(4) segments (Fig. 4). The reference dimer is centred at (1/2, 1/2, 1/2) and the single C—H···O hydrogen bond suffices to link dimers of this type into a sheet. In the reference dimer, atoms C46 at (x, y, z) and (-x + 1, -y + 1, -z + 1) act as hydrogen-bond donors to, respectively, atoms O11 at (-x + 1, y - 1/2, -z + 3/2) and (x, -y + 3/2, z - 1/2), which form parts of the cyclic dimers centred at (1/2, 0, 1) and (1/2, 1, 0), respectively. Atoms O11 at (x, y, z) and (-x + 1, -y + 1, -z + 1) accept hydrogen bonds from, respectively, atoms C46 at (-x + 1, y + 1/2, -z + 3/2) and (x, -y + 1/2, z - 1/2), which form parts of the dimers centred at (1/2, 1, 1) and (1/2, 0, 0), respectively. In this manner, the cyclic dimers are linked into a sheet lying parallel to (100) (Fig. 5). There are also two structurally significant C—H···π(arene) hydrogen bonds present (Table 4), but these both lie within the sheet and hence do not affect the dimensionality of the hydrogen-bonded structure, but simply add to its complexity.

Thus, the notional change from the constitution of (I) to that of (II) by the introduction of a single methyl group brings about a significant change in the pattern of supramolecular assembly, even though neither the methyl group in (II), nor the corresponding N—H bond in (I), plays any direct role in the assembly.

Related literature top

For related literature, see: Bernstein et al. (1995); Bondi (1964); Findlay & Buthelezi (1995); Lam et al. (1989); Opatz & Ferenc (2005); Qadeer, Rama & Garduño (2007); Qadeer, Rama, Fan, Liu & Liu (2007); Wood et al. (2009); Zhang et al. (2008).

Experimental top

For the synthesis of (I) and (II), acetic acid (1.14 ml, 20 mmol), either aniline [for (I)] or N-methylaniline [for (II)] (20 mmol) and potassium cyanide (0.78 g, 12 mmol) were added to a stirred solution of 2-formylbenzoic acid (10 mmol) in methanol (25 ml). The resulting mixture was heated under reflux for 3 h. After cooling the mixture to ambient temperature, the resulting crystalline product was collected by filtration, washed successively with water and cold methanol, and then dried in air. Yellow crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, of solutions in methanol. Analysis for (I): yield 86%, m.p. 448–450 K; MS (EI, 70 eV) m/z (%): 252 (100), 235 (16), 223 (26), 196 (52), 195 (71), 180 (66), 179 (81), 178 (68), 152 (26), 151 (24), 130 (40), 77 (85). Analysis for (II): yield 92%, m.p. 476–478 K; MS (EI, 70 eV) m/z (%): 266 (100), 249 (53), 238 (62), 223 (52), 210 (38), 194 (74), 180 (25), 179 (25), 165 (28), 152 (23), 130 (23), 77 (56).

Refinement top

All H atoms were located in difference maps. C-bound H atoms were treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic) or 0.98 Å (methyl) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other C-bound H atoms. N-bound H atoms were permitted to ride at the positions located in difference maps, with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Tables 2 and 4.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms and the unit-cell outline have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y, -z + 1). Dashed lines indicate hydrogen bonds. [Added text OK?]
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of the hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms and the unit-cell outline have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1). Dashed lines indicate hydrogen bonds. [Added text OK?]
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (II), showing the formation of the hydrogen-bonded sheet parallel to (100). For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Dashed lines indicate hydrogen bonds. [Added text OK?]
(I) 3-Amino-4-anilino-1H-isochromen-1-one top
Crystal data top
C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2735 reflections
a = 10.157 (2) Åθ = 3.2–27.5°
b = 5.7147 (5) ŵ = 0.10 mm1
c = 21.208 (3) ÅT = 120 K
β = 105.048 (15)°Block, yellow
V = 1188.8 (3) Å30.28 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2735 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.974, Tmax = 0.985l = 2727
20238 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.5724P]
where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H12N2O2V = 1188.8 (3) Å3
Mr = 252.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.157 (2) ŵ = 0.10 mm1
b = 5.7147 (5) ÅT = 120 K
c = 21.208 (3) Å0.28 × 0.19 × 0.16 mm
β = 105.048 (15)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1921 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.985Rint = 0.061
20238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
2735 reflectionsΔρmin = 0.32 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59062 (17)0.2369 (3)0.59534 (8)0.0221 (4)
O20.47584 (12)0.2154 (2)0.54346 (5)0.0236 (3)
C30.37270 (17)0.3787 (3)0.53060 (8)0.0217 (4)
C40.37494 (17)0.5680 (3)0.56922 (8)0.0212 (4)
C4a0.48515 (17)0.5944 (3)0.62705 (8)0.0211 (4)
C50.49359 (18)0.7811 (3)0.67141 (8)0.0233 (4)
H50.42480.89810.66320.028*
C60.60091 (19)0.7951 (3)0.72655 (9)0.0271 (4)
H60.60510.92220.75590.033*
C70.70381 (18)0.6254 (3)0.74013 (9)0.0267 (4)
H70.77640.63630.77870.032*
C80.69917 (18)0.4423 (3)0.69730 (9)0.0247 (4)
H80.76930.32770.70590.030*
C8a0.59052 (17)0.4258 (3)0.64102 (8)0.0213 (4)
O110.67983 (13)0.0941 (2)0.59781 (6)0.0289 (3)
N310.27422 (16)0.3171 (3)0.47708 (7)0.0291 (4)
H31A0.29440.20930.45280.035*
H31B0.20760.41310.46360.035*
N410.26697 (15)0.7334 (3)0.55028 (7)0.0230 (3)
H410.28320.85780.52900.028*
C410.17127 (17)0.7663 (3)0.58681 (8)0.0205 (4)
C420.09466 (18)0.9726 (3)0.57911 (8)0.0234 (4)
H420.11041.09190.55070.028*
C430.00440 (18)1.0034 (3)0.61281 (9)0.0259 (4)
H430.05691.14300.60670.031*
C440.02781 (18)0.8330 (3)0.65530 (9)0.0270 (4)
H440.09540.85530.67840.032*
C450.04934 (18)0.6292 (3)0.66342 (9)0.0263 (4)
H450.03460.51180.69260.032*
C460.14788 (18)0.5946 (3)0.62942 (8)0.0240 (4)
H460.19940.45390.63520.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (8)0.0235 (9)0.0237 (9)0.0036 (7)0.0091 (7)0.0004 (7)
O20.0244 (6)0.0238 (6)0.0231 (6)0.0012 (5)0.0069 (5)0.0050 (5)
C30.0215 (8)0.0250 (9)0.0206 (8)0.0001 (7)0.0089 (7)0.0017 (7)
C40.0222 (9)0.0212 (8)0.0218 (8)0.0005 (7)0.0089 (7)0.0006 (7)
C4a0.0232 (9)0.0215 (8)0.0208 (8)0.0025 (7)0.0099 (7)0.0009 (7)
C50.0271 (9)0.0203 (9)0.0247 (9)0.0005 (7)0.0105 (7)0.0018 (7)
C60.0304 (10)0.0267 (10)0.0259 (9)0.0055 (8)0.0103 (8)0.0059 (8)
C70.0244 (9)0.0324 (10)0.0226 (9)0.0055 (8)0.0047 (7)0.0028 (8)
C80.0210 (9)0.0269 (9)0.0275 (9)0.0016 (7)0.0084 (7)0.0001 (7)
C8a0.0219 (8)0.0217 (8)0.0230 (8)0.0023 (7)0.0107 (7)0.0004 (7)
O110.0250 (7)0.0286 (7)0.0343 (7)0.0049 (6)0.0098 (6)0.0056 (6)
N310.0296 (8)0.0317 (8)0.0243 (8)0.0036 (7)0.0039 (7)0.0071 (7)
N410.0273 (8)0.0212 (7)0.0221 (7)0.0036 (6)0.0093 (6)0.0043 (6)
C410.0212 (8)0.0216 (8)0.0175 (8)0.0019 (7)0.0027 (7)0.0027 (7)
C420.0233 (9)0.0213 (9)0.0233 (9)0.0003 (7)0.0018 (7)0.0014 (7)
C430.0215 (9)0.0235 (9)0.0303 (9)0.0025 (7)0.0024 (7)0.0023 (8)
C440.0206 (9)0.0334 (10)0.0262 (9)0.0015 (8)0.0046 (7)0.0043 (8)
C450.0246 (9)0.0306 (10)0.0231 (9)0.0023 (8)0.0054 (7)0.0027 (7)
C460.0244 (9)0.0223 (9)0.0244 (9)0.0025 (7)0.0049 (7)0.0022 (7)
Geometric parameters (Å, º) top
C1—O111.210 (2)C8a—C4a1.413 (2)
C1—O21.385 (2)N31—H31A0.8604
C1—C8a1.450 (2)N31—H31B0.8602
O2—C31.377 (2)N41—C411.404 (2)
C3—N311.350 (2)N41—H410.8800
C3—C41.354 (2)C41—C461.395 (2)
C4—N411.424 (2)C41—C421.399 (2)
C4—C4a1.438 (2)C42—C431.388 (3)
C4a—C51.410 (2)C42—H420.9500
C5—C61.379 (3)C43—C441.389 (3)
C5—H50.9500C43—H430.9500
C6—C71.400 (3)C44—C451.389 (3)
C6—H60.9500C44—H440.9500
C7—C81.378 (3)C45—C461.391 (3)
C7—H70.9500C45—H450.9500
C8—C8a1.403 (2)C46—H460.9500
C8—H80.9500
O11—C1—O2116.15 (15)C8—C8a—C1118.80 (16)
O11—C1—C8a127.09 (16)C4a—C8a—C1119.94 (15)
O2—C1—C8a116.76 (15)C3—N31—H31A116.7
C3—O2—C1122.51 (13)C3—N31—H31B117.4
N31—C3—C4127.56 (16)H31A—N31—H31B123.2
N31—C3—O2110.44 (15)C41—N41—C4121.72 (14)
C4—C3—O2121.99 (15)C41—N41—H41115.0
C3—C4—N41117.98 (15)C4—N41—H41116.6
C3—C4—C4a119.15 (16)C46—C41—C42119.03 (16)
N41—C4—C4a122.88 (15)C46—C41—N41121.47 (15)
C5—C4a—C8a117.67 (16)C42—C41—N41119.48 (15)
C5—C4a—C4123.19 (16)C43—C42—C41120.15 (16)
C8a—C4a—C4119.13 (15)C43—C42—H42119.9
C6—C5—C4a120.50 (17)C41—C42—H42119.9
C6—C5—H5119.7C42—C43—C44120.95 (17)
C4a—C5—H5119.7C42—C43—H43119.5
C5—C6—C7121.20 (17)C44—C43—H43119.5
C5—C6—H6119.4C43—C44—C45118.84 (17)
C7—C6—H6119.4C43—C44—H44120.6
C8—C7—C6119.62 (17)C45—C44—H44120.6
C8—C7—H7120.2C44—C45—C46120.88 (17)
C6—C7—H7120.2C44—C45—H45119.6
C7—C8—C8a119.79 (17)C46—C45—H45119.6
C7—C8—H8120.1C45—C46—C41120.16 (16)
C8a—C8—H8120.1C45—C46—H46119.9
C8—C8a—C4a121.20 (16)C41—C46—H46119.9
O11—C1—O2—C3173.13 (15)C4—C4a—C8a—C8179.12 (16)
C8a—C1—O2—C37.4 (2)C5—C4a—C8a—C1176.80 (15)
C1—O2—C3—N31179.26 (14)C4—C4a—C8a—C13.6 (2)
C1—O2—C3—C42.1 (2)O11—C1—C8a—C84.8 (3)
N31—C3—C4—N414.6 (3)O2—C1—C8a—C8174.57 (15)
O2—C3—C4—N41177.02 (14)O11—C1—C8a—C4a172.58 (17)
N31—C3—C4—C4a175.57 (17)O2—C1—C8a—C4a8.1 (2)
O2—C3—C4—C4a2.8 (2)C3—C4—N41—C41112.61 (18)
C3—C4—C4a—C5177.66 (16)C4a—C4—N41—C4167.5 (2)
N41—C4—C4a—C52.5 (3)C4—N41—C41—C4621.4 (2)
C3—C4—C4a—C8a1.9 (2)C4—N41—C41—C42160.47 (15)
N41—C4—C4a—C8a177.92 (15)C46—C41—C42—C430.9 (2)
C8a—C4a—C5—C60.5 (2)N41—C41—C42—C43177.27 (15)
C4—C4a—C5—C6179.06 (17)C41—C42—C43—C441.0 (3)
C4a—C5—C6—C70.1 (3)C42—C43—C44—C450.3 (3)
C5—C6—C7—C80.9 (3)C43—C44—C45—C460.4 (3)
C6—C7—C8—C8a0.9 (3)C44—C45—C46—C410.5 (3)
C7—C8—C8a—C4a0.2 (3)C42—C41—C46—C450.2 (2)
C7—C8—C8a—C1177.56 (16)N41—C41—C46—C45177.97 (16)
C5—C4a—C8a—C80.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 represents the centroid of the ring C4a/C5–C8/C8a and Cg3 represents the centroid of the ring C61–C66.
D—H···AD—HH···AD···AD—H···A
N31—H31A···O11i0.862.092.941 (2)169
N31—H31B···N410.862.552.852 (2)102
N41—H41···O2ii0.882.793.503 (2)140
N41—H41···O11iii0.882.823.465 (2)131
C6—H6···Cg2iv0.952.883.579 (2)131
C7—H7···Cg3v0.952.983.719 (2)135
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
(II) 3-Amino-4-[methyl(phenyl)amino]-1H-isochromen-1-one top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2987 reflections
a = 14.5018 (15) Åθ = 3.0–27.5°
b = 7.7796 (8) ŵ = 0.09 mm1
c = 11.608 (2) ÅT = 120 K
β = 95.728 (13)°Plate, yellow
V = 1303.1 (3) Å30.32 × 0.30 × 0.17 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2987 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.971, Tmax = 0.985l = 1514
21810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.7064P]
where P = (Fo2 + 2Fc2)/3
2987 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H14N2O2V = 1303.1 (3) Å3
Mr = 266.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5018 (15) ŵ = 0.09 mm1
b = 7.7796 (8) ÅT = 120 K
c = 11.608 (2) Å0.32 × 0.30 × 0.17 mm
β = 95.728 (13)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2987 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1958 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.061
21810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2987 reflectionsΔρmin = 0.29 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45967 (12)0.5724 (3)0.71944 (16)0.0265 (4)
O20.44055 (8)0.49766 (17)0.61128 (10)0.0252 (3)
C30.35632 (12)0.4253 (2)0.57538 (15)0.0232 (4)
C40.28499 (12)0.4302 (2)0.64227 (15)0.0224 (4)
C4a0.29941 (12)0.5001 (2)0.75664 (15)0.0223 (4)
C50.22963 (12)0.5044 (2)0.83301 (15)0.0242 (4)
H50.16980.46020.80840.029*
C60.24700 (13)0.5716 (3)0.94249 (16)0.0273 (4)
H60.19900.57390.99240.033*
C70.33457 (13)0.6368 (3)0.98137 (17)0.0305 (5)
H70.34600.68131.05770.037*
C80.40397 (13)0.6362 (3)0.90892 (16)0.0295 (4)
H80.46340.68120.93480.035*
C8a0.38688 (12)0.5691 (2)0.79676 (15)0.0234 (4)
O110.53605 (9)0.6362 (2)0.73776 (12)0.0381 (4)
N310.35618 (11)0.3520 (2)0.47081 (13)0.0314 (4)
H31A0.40200.37060.42810.038*
H31B0.30370.30470.44230.038*
N410.19777 (10)0.3608 (2)0.59630 (12)0.0241 (4)
C410.16719 (11)0.2065 (3)0.64021 (14)0.0235 (4)
C420.07511 (12)0.1515 (3)0.61804 (16)0.0288 (4)
H420.03100.22260.57490.035*
C430.04817 (13)0.0068 (3)0.65898 (17)0.0336 (5)
H430.01440.04270.64280.040*
C440.11008 (14)0.1132 (3)0.72260 (17)0.0330 (5)
H440.09080.22130.74990.040*
C450.20166 (13)0.0585 (3)0.74587 (16)0.0293 (4)
H450.24500.12950.79030.035*
C460.23007 (12)0.0975 (3)0.70515 (15)0.0254 (4)
H460.29290.13180.72120.030*
C470.13092 (13)0.4791 (3)0.53655 (17)0.0335 (5)
H47A0.09960.42240.46810.050*
H47B0.16330.58170.51260.050*
H47C0.08500.51260.58880.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (9)0.0323 (11)0.0246 (9)0.0012 (8)0.0016 (7)0.0005 (8)
O20.0203 (6)0.0324 (8)0.0233 (6)0.0018 (5)0.0042 (5)0.0000 (6)
C30.0214 (9)0.0249 (10)0.0232 (9)0.0005 (7)0.0010 (7)0.0031 (8)
C40.0200 (8)0.0248 (10)0.0223 (9)0.0004 (7)0.0013 (7)0.0013 (8)
C4a0.0214 (9)0.0217 (10)0.0237 (9)0.0009 (7)0.0030 (7)0.0037 (8)
C50.0215 (9)0.0257 (10)0.0259 (9)0.0010 (7)0.0040 (7)0.0029 (8)
C60.0290 (10)0.0275 (11)0.0267 (10)0.0000 (8)0.0095 (7)0.0032 (8)
C70.0380 (11)0.0293 (11)0.0245 (9)0.0048 (9)0.0048 (8)0.0036 (9)
C80.0289 (10)0.0318 (11)0.0275 (10)0.0070 (9)0.0016 (8)0.0008 (9)
C8a0.0210 (9)0.0250 (10)0.0242 (9)0.0013 (7)0.0024 (7)0.0021 (8)
O110.0229 (7)0.0567 (10)0.0350 (8)0.0115 (7)0.0053 (6)0.0062 (7)
N310.0259 (8)0.0455 (11)0.0239 (8)0.0070 (8)0.0079 (6)0.0050 (8)
N410.0185 (7)0.0291 (9)0.0242 (8)0.0008 (6)0.0003 (6)0.0029 (7)
C410.0203 (9)0.0321 (11)0.0185 (8)0.0003 (8)0.0042 (7)0.0036 (8)
C420.0210 (9)0.0365 (12)0.0290 (10)0.0001 (8)0.0037 (7)0.0047 (9)
C430.0236 (10)0.0413 (13)0.0369 (11)0.0078 (9)0.0076 (8)0.0082 (10)
C440.0386 (11)0.0315 (12)0.0303 (10)0.0081 (9)0.0105 (8)0.0032 (9)
C450.0330 (10)0.0314 (11)0.0237 (10)0.0018 (9)0.0040 (8)0.0001 (8)
C460.0215 (9)0.0330 (11)0.0216 (9)0.0021 (8)0.0017 (7)0.0031 (8)
C470.0254 (10)0.0388 (12)0.0348 (11)0.0011 (9)0.0045 (8)0.0060 (10)
Geometric parameters (Å, º) top
C1—O111.213 (2)N31—H31A0.8799
C1—O21.386 (2)N31—H31B0.8800
C1—C8a1.452 (3)N41—C411.394 (2)
O2—C31.371 (2)N41—C471.461 (2)
C3—N311.341 (2)C41—C421.401 (2)
C3—C41.354 (2)C41—C461.408 (3)
C4—N411.429 (2)C42—C431.390 (3)
C4—C4a1.431 (2)C42—H420.9500
C4a—C51.411 (2)C43—C441.380 (3)
C5—C61.374 (3)C43—H430.9500
C5—H50.9500C44—C451.395 (3)
C6—C71.400 (3)C44—H440.9500
C6—H60.9500C45—C461.380 (3)
C7—C81.374 (3)C45—H450.9500
C7—H70.9500C46—H460.9500
C8—C8a1.402 (3)C47—H47A0.9800
C8—H80.9500C47—H47B0.9800
C8a—C4a1.413 (2)C47—H47C0.9800
O11—C1—O2115.27 (16)C3—N31—H31B116.2
O11—C1—C8a127.31 (17)H31A—N31—H31B122.1
O2—C1—C8a117.40 (15)C41—N41—C4119.40 (14)
C3—O2—C1122.61 (14)C41—N41—C47119.74 (15)
N31—C3—C4126.76 (17)C4—N41—C47117.40 (16)
N31—C3—O2111.75 (15)N41—C41—C42121.85 (16)
C4—C3—O2121.49 (16)N41—C41—C46120.13 (16)
C3—C4—N41118.27 (16)C42—C41—C46117.97 (18)
C3—C4—C4a119.56 (16)C43—C42—C41120.18 (18)
N41—C4—C4a122.15 (15)C43—C42—H42119.9
C5—C4a—C8a117.42 (16)C41—C42—H42119.9
C5—C4a—C4123.00 (16)C44—C43—C42121.63 (18)
C8a—C4a—C4119.58 (16)C44—C43—H43119.2
C6—C5—C4a120.89 (17)C42—C43—H43119.2
C6—C5—H5119.6C43—C44—C45118.4 (2)
C4a—C5—H5119.6C43—C44—H44120.8
C5—C6—C7120.85 (17)C45—C44—H44120.8
C5—C6—H6119.6C46—C45—C44120.87 (19)
C7—C6—H6119.6C46—C45—H45119.6
C8—C7—C6119.86 (18)C44—C45—H45119.6
C8—C7—H7120.1C45—C46—C41120.90 (17)
C6—C7—H7120.1C45—C46—H46119.6
C7—C8—C8a119.81 (17)C41—C46—H46119.6
C7—C8—H8120.1N41—C47—H47A109.5
C8a—C8—H8120.1N41—C47—H47B109.5
C8—C8a—C4a121.16 (16)H47A—C47—H47B109.5
C8—C8a—C1119.70 (16)N41—C47—H47C109.5
C4a—C8a—C1119.14 (16)H47A—C47—H47C109.5
C3—N31—H31A120.4H47B—C47—H47C109.5
O11—C1—O2—C3177.68 (17)C4—C4a—C8a—C11.9 (3)
C8a—C1—O2—C31.2 (3)O11—C1—C8a—C84.0 (3)
C1—O2—C3—N31176.13 (16)O2—C1—C8a—C8177.23 (17)
C1—O2—C3—C43.2 (3)O11—C1—C8a—C4a175.1 (2)
N31—C3—C4—N414.3 (3)O2—C1—C8a—C4a3.6 (3)
O2—C3—C4—N41176.46 (16)C3—C4—N41—C41108.4 (2)
N31—C3—C4—C4a174.21 (18)C4a—C4—N41—C4170.1 (2)
O2—C3—C4—C4a5.0 (3)C3—C4—N41—C4792.6 (2)
C3—C4—C4a—C5177.78 (18)C4a—C4—N41—C4788.9 (2)
N41—C4—C4a—C50.7 (3)C4—N41—C41—C42165.59 (17)
C3—C4—C4a—C8a2.4 (3)C47—N41—C41—C427.1 (3)
N41—C4—C4a—C8a179.09 (17)C4—N41—C41—C4616.9 (2)
C8a—C4a—C5—C60.7 (3)C47—N41—C41—C46175.39 (17)
C4—C4a—C5—C6179.47 (18)N41—C41—C42—C43177.10 (17)
C4a—C5—C6—C70.3 (3)C46—C41—C42—C430.4 (3)
C5—C6—C7—C81.0 (3)C41—C42—C43—C440.4 (3)
C6—C7—C8—C8a0.5 (3)C42—C43—C44—C450.2 (3)
C7—C8—C8a—C4a0.6 (3)C43—C44—C45—C460.8 (3)
C7—C8—C8a—C1178.55 (19)C44—C45—C46—C410.8 (3)
C5—C4a—C8a—C81.2 (3)N41—C41—C46—C45177.74 (16)
C4—C4a—C8a—C8178.99 (17)C42—C41—C46—C450.1 (3)
C5—C4a—C8a—C1177.96 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 represents the centroid of the ring C4a/C5–C8/C8a and Cg3 represents the centroid of the ring C61–C66.
D—H···AD—HH···AD···AD—H···A
N31—H31A···O2i0.882.583.395 (2)154
N31—H31A···O11i0.882.203.011 (2)152
N31—H31B···N410.882.512.841 (2)103
C46—H46···O11ii0.952.483.404 (2)164
C6—H6···Cg3iii0.952.623.449 (2)146
C45—H45···Cg2iv0.952.693.571 (2)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H12N2O2C16H14N2O2
Mr252.27266.29
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)10.157 (2), 5.7147 (5), 21.208 (3)14.5018 (15), 7.7796 (8), 11.608 (2)
β (°) 105.048 (15) 95.728 (13)
V3)1188.8 (3)1303.1 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.09
Crystal size (mm)0.28 × 0.19 × 0.160.32 × 0.30 × 0.17
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.974, 0.9850.971, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
20238, 2735, 1921 21810, 2987, 1958
Rint0.0610.061
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.10 0.050, 0.125, 1.07
No. of reflections27352987
No. of parameters172182
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.320.22, 0.29

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
C4a—C51.410 (2)C7—C81.378 (3)
C5—C61.379 (3)C8—C8a1.403 (2)
C6—C71.400 (3)C8a—C4a1.413 (2)
C3—C4—N41—C41112.61 (18)C4—N41—C41—C42160.47 (15)
Hydrogen-bond geometry (Å, º) for (I) top
Cg2 represents the centroid of the ring C4a/C5–C8/C8a and Cg3 represents the centroid of the ring C61–C66.
D—H···AD—HH···AD···AD—H···A
N31—H31A···O11i0.862.092.941 (2)169
N31—H31B···N410.862.552.852 (2)102
N41—H41···O2ii0.882.793.503 (2)140
N41—H41···O11iii0.882.823.465 (2)131
C6—H6···Cg2iv0.952.883.579 (2)131
C7—H7···Cg3v0.952.983.719 (2)135
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
Selected geometric parameters (Å, º) for (II) top
C4a—C51.411 (2)C7—C81.374 (3)
C5—C61.374 (3)C8—C8a1.402 (3)
C6—C71.400 (3)C8a—C4a1.413 (2)
C3—C4—N41—C41108.4 (2)C4—N41—C41—C42165.59 (17)
C3—C4—N41—C4792.6 (2)
Hydrogen-bond geometry (Å, º) for (II) top
Cg2 represents the centroid of the ring C4a/C5–C8/C8a and Cg3 represents the centroid of the ring C61–C66.
D—H···AD—HH···AD···AD—H···A
N31—H31A···O2i0.882.583.395 (2)154
N31—H31A···O11i0.882.203.011 (2)152
N31—H31B···N410.882.512.841 (2)103
C46—H46···O11ii0.952.483.404 (2)164
C6—H6···Cg3iii0.952.623.449 (2)146
C45—H45···Cg2iv0.952.693.571 (2)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds