Download citation
Download citation
link to html
We report the structural characterization of a new quaternary telluride, Ba2Y0.87(1)Mn1.71(1)Te5, which was synthesized by the direct reaction of the elements inside a vacuum-sealed fused-silica tube. The quaternary phase is the first member of the Ba–M–Mn–Te system (M = Sc and Y). The com­position and structure of the phase were elucidated using SEM–EDX (scanning electron microscopy–energy dispersive X-ray spectrometry) and single-crystal X-ray diffraction (SCXRD) studies. The title phase is nonstoichiometric and crystallizes in the monoclinic system (space group C2/m) having the refined unit-cell parameters a = 15.1466 (8), b = 4.5782 (3), c = 10.6060 (7) Å and β = 116.956 (2)°, with two formula units (Z = 2). The pseudo-two-dimensional crystal structure of Ba2Y0.87(1)Mn1.71(1)Te5 consists of distorted YTe6 octa­hedra and MnTe4 tetra­hedra as the building blocks of the structure. The YTe6 octa­hedra are arranged to form infinite one-dimensional chains by sharing edges along the [010] direction. These chains are further connected to the MnTe4 tetra­hedra along the c axis to create layered two-dimensional polyanionic [Y0.87(1)Mn1.71(1)Te5]4− units. The stuffing of Ba2+ cations in between the layers of [Y0.87(1)Mn1.71(1)Te5]4− anions brings the charge neutrality of the structure. Each Ba atom in the structure sits at the centre of a distorted monocapped trigonal prism-like polyhedron of seven Te atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623011099/yd3036sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623011099/yd3036Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623011099/yd3036sup3.pdf
Additional synthesis details, PXRD data and UV-Vis-NIR data

CCDC reference: 2322183

Computing details top

Barium yttrium manganese telluride top
Crystal data top
Ba2Y0.87Mn1.71Te5F(000) = 897
Mr = 1083.70Dx = 5.490 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.1466 (8) ÅCell parameters from 4596 reflections
b = 4.5782 (3) Åθ = 3.0–35.0°
c = 10.6060 (7) ŵ = 22.18 mm1
β = 116.956 (2)°T = 298 K
V = 655.56 (7) Å3Irregular block, black
Z = 20.09 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1232 reflections with I > 2σ(I)
Radiation source: fine focused sealed tubeRint = 0.051
φ and ω scansθmax = 35.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1723
Tmin = 0.218, Tmax = 0.437k = 77
9408 measured reflectionsl = 1616
1509 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0062P)2 + 3.9559P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.07Δρmax = 2.17 e Å3
1509 reflectionsΔρmin = 2.34 e Å3
36 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00144 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A single-crystal X-ray diffraction data set of a Ba2Y0.87 (1)Mn1.71 (1)Te5 crystal was collected at 298 (2) K using a Bruker D8 Venture instrument equipped with a Photon III mixed-mode detector. Graphite-monochromatized Mo Kα radiation source with a wavelength of 0.71073 Å was used to collect the diffraction data. A suitable crystal coated with a thin layer of Paratone-N oil was placed on a micro-loop and then attached to a goniometer head to collect the diffraction data. The X-ray diffractometer was operated with fixed current and voltage values of 1.4 mA and 50 kV, respectively. An exposure time of 2 sec per frame was used for the data collection, and the distance between the crystal and the detector was fixed to 5 cm. The intensity data were recorded using ω and φ scans with a frame scan width of 0.5°. The APEX3 software (Bruker, 2016) was employed for data collection, Lorentz and polarization corrections, cell refinement and data reduction. The semi-empirical absorption corrections were performed by the multi-scan method implemented in the SADABS program (Krause et al., 2015).

The crystal structure of the Ba2Y0.87 (1)Mn1.71 (1)Te5 was solved and refined using the SHELXTL and SHELX suite of programs (Sheldrick, 2008).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.17331 (3)0.0000000.72380 (4)0.02649 (10)
Y10.0000000.0000000.0000000.0240 (3)0.872 (4)
Mn10.56364 (7)0.0000000.30201 (11)0.0221 (3)0.852 (4)
Te10.16098 (3)0.0000000.30842 (4)0.02280 (9)
Te20.38529 (2)0.0000000.06069 (4)0.01891 (9)
Te30.0000000.5000000.5000000.01990 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02203 (17)0.01482 (15)0.03531 (19)0.0000.00659 (14)0.000
Y10.0221 (5)0.0235 (5)0.0247 (5)0.0000.0091 (3)0.000
Mn10.0215 (5)0.0175 (5)0.0286 (5)0.0000.0124 (4)0.000
Te10.02063 (18)0.01460 (16)0.03142 (19)0.0000.01026 (14)0.000
Te20.01764 (17)0.01892 (16)0.01930 (15)0.0000.00761 (12)0.000
Te30.0190 (2)0.0204 (2)0.0179 (2)0.0000.00628 (17)0.000
Geometric parameters (Å, º) top
Ba1—Te3i3.4808 (3)Y1—Te13.0683 (4)
Ba1—Te33.4808 (3)Y1—Te2vii3.1125 (3)
Ba1—Te1ii3.5262 (4)Y1—Te2viii3.1125 (3)
Ba1—Te1iii3.5262 (4)Y1—Te2ix3.1125 (3)
Ba1—Te2iv3.5602 (5)Y1—Te2x3.1125 (3)
Ba1—Te2ii3.6181 (4)Mn1—Te3xi2.6784 (10)
Ba1—Te2iii3.6181 (4)Mn1—Te1xii2.7070 (6)
Ba1—Ba1i4.5782 (3)Mn1—Te1xi2.7070 (6)
Ba1—Ba1v4.5782 (3)Mn1—Te22.7531 (11)
Y1—Te1vi3.0683 (4)
Te3i—Ba1—Te382.239 (9)Te2viii—Y1—Te2x85.307 (10)
Te3i—Ba1—Te1ii135.294 (14)Te2ix—Y1—Te2x180.000 (12)
Te3—Ba1—Te1ii81.772 (8)Te3xi—Mn1—Te1xii111.46 (3)
Te3i—Ba1—Te1iii81.772 (8)Te3xi—Mn1—Te1xi111.46 (3)
Te3—Ba1—Te1iii135.294 (14)Te1xii—Mn1—Te1xi115.48 (4)
Te1ii—Ba1—Te1iii80.958 (12)Te3xi—Mn1—Te2100.29 (3)
Te3i—Ba1—Te2iv137.957 (5)Te1xii—Mn1—Te2108.49 (3)
Te3—Ba1—Te2iv137.957 (5)Te1xi—Mn1—Te2108.49 (3)
Te1ii—Ba1—Te2iv74.903 (10)Mn1viii—Te1—Mn1ix115.48 (4)
Te1iii—Ba1—Te2iv74.903 (10)Mn1viii—Te1—Y179.20 (2)
Te3i—Ba1—Te2ii121.448 (12)Mn1ix—Te1—Y179.20 (2)
Te3—Ba1—Te2ii71.916 (8)Mn1viii—Te1—Ba1ii161.81 (2)
Te1ii—Ba1—Te2ii92.276 (8)Mn1ix—Te1—Ba1ii81.497 (19)
Te1iii—Ba1—Te2ii149.445 (13)Y1—Te1—Ba1ii98.816 (11)
Te2iv—Ba1—Te2ii74.567 (11)Mn1viii—Te1—Ba1iii81.497 (19)
Te3i—Ba1—Te2iii71.916 (8)Mn1ix—Te1—Ba1iii161.81 (2)
Te3—Ba1—Te2iii121.448 (12)Y1—Te1—Ba1iii98.816 (11)
Te1ii—Ba1—Te2iii149.445 (13)Ba1ii—Te1—Ba1iii80.958 (12)
Te1iii—Ba1—Te2iii92.276 (8)Mn1—Te2—Y1xii77.746 (16)
Te2iv—Ba1—Te2iii74.567 (10)Mn1—Te2—Y1xi77.746 (16)
Te2ii—Ba1—Te2iii78.496 (12)Y1xii—Te2—Y1xi94.693 (10)
Te3i—Ba1—Ba1i48.880 (5)Mn1—Te2—Ba1xiii172.50 (3)
Te3—Ba1—Ba1i131.120 (4)Y1xii—Te2—Ba1xiii97.265 (9)
Te1ii—Ba1—Ba1i130.479 (6)Y1xi—Te2—Ba1xiii97.265 (9)
Te1iii—Ba1—Ba1i49.521 (6)Mn1—Te2—Ba1ii80.273 (19)
Te2iv—Ba1—Ba1i90.0Y1xii—Te2—Ba1ii89.148 (7)
Te2ii—Ba1—Ba1i129.248 (6)Y1xi—Te2—Ba1ii156.314 (12)
Te2iii—Ba1—Ba1i50.752 (6)Ba1xiii—Te2—Ba1ii105.434 (11)
Te3i—Ba1—Ba1v131.120 (5)Mn1—Te2—Ba1iii80.273 (19)
Te3—Ba1—Ba1v48.880 (5)Y1xii—Te2—Ba1iii156.314 (12)
Te1ii—Ba1—Ba1v49.521 (6)Y1xi—Te2—Ba1iii89.148 (6)
Te1iii—Ba1—Ba1v130.479 (6)Ba1xiii—Te2—Ba1iii105.434 (11)
Te2iv—Ba1—Ba1v90.0Ba1ii—Te2—Ba1iii78.496 (11)
Te2ii—Ba1—Ba1v50.752 (6)Mn1ii—Te3—Mn1ix180.0
Te2iii—Ba1—Ba1v129.248 (6)Mn1ii—Te3—Ba1v83.888 (18)
Ba1i—Ba1—Ba1v180.0Mn1ix—Te3—Ba1v96.112 (18)
Te1vi—Y1—Te1180.0Mn1ii—Te3—Ba1xiv96.112 (18)
Te1vi—Y1—Te2vii91.596 (9)Mn1ix—Te3—Ba1xiv83.888 (18)
Te1—Y1—Te2vii88.404 (9)Ba1v—Te3—Ba1xiv180.0
Te1vi—Y1—Te2viii88.404 (9)Mn1ii—Te3—Ba1xv96.112 (18)
Te1—Y1—Te2viii91.596 (9)Mn1ix—Te3—Ba1xv83.888 (18)
Te2vii—Y1—Te2viii180.000 (12)Ba1v—Te3—Ba1xv97.761 (9)
Te1vi—Y1—Te2ix88.404 (8)Ba1xiv—Te3—Ba1xv82.239 (9)
Te1—Y1—Te2ix91.596 (8)Mn1ii—Te3—Ba183.888 (18)
Te2vii—Y1—Te2ix85.307 (10)Mn1ix—Te3—Ba196.112 (18)
Te2viii—Y1—Te2ix94.693 (10)Ba1v—Te3—Ba182.239 (9)
Te1vi—Y1—Te2x91.596 (8)Ba1xiv—Te3—Ba197.761 (9)
Te1—Y1—Te2x88.404 (8)Ba1xv—Te3—Ba1180.0
Te2vii—Y1—Te2x94.693 (10)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z+1; (iv) x, y, z+1; (v) x, y+1, z; (vi) x, y, z; (vii) x+1/2, y+1/2, z; (viii) x1/2, y1/2, z; (ix) x1/2, y+1/2, z; (x) x+1/2, y1/2, z; (xi) x+1/2, y1/2, z; (xii) x+1/2, y+1/2, z; (xiii) x, y, z1; (xiv) x, y, z+1; (xv) x, y+1, z+1.
Fractional atomic coordinates and Uiso/Ueq values (Å2)a for the Ba2Y0.87 (1)Mn1.71 (1)Te5 structure top
AtomWyckoff positionSite symmetryS.O.F.xyzUiso*/Ueq
Ba14im10.17331 (3)00.72380 (4)0.02649 (10)
Y12a2/m0.872 (4)0000.0240 (3)
Mn14im0.852 (4)0.56364 (7)00.30201 (11)0.0221 (3)
Te14im10.16098 (3)00.30842 (4)0.02280 (9)
Te24im10.38529 (2)00.06069 (4)0.01891 (9)
Te32d2/m100.50.50.01990 (11)
Note: (a) Uiso/Ueq is the one-third value of the trace of the orthogonalized Uij tensor.
Selected interatomic distances (Å) for the Ba2Y0.87 (1)Mn1.71 (1)Te5 structure top
Atomic pairDistanceAtomic pairDistance
Y1—Te13.0683 (4) ×2Ba1···Mn14.1147 (13)
Y1—Te23.1125 (3) ×4Y1···Mn13.6915 (9)
Mn1—Te12.7070 (6) ×2Y1···.Y14.5781 (3)
Mn1—Te22.7531 (11)Mn1···Mn14.5781 (3)
Mn1—Te32.6784 (10)Te1···Te14.3694 (5)
Ba1—Te13.5262 (4) ×2Te1···Te24.3092 (6)
Ba1—Te23.5602 (5)Te1···Te34.4498 (5)
Ba1—Te23.6181 (4) ×2Te2···Te24.2167 (6)
Ba1—Te33.4808 (3) ×2Te2···Te34.170 (5)
Ba1···Ba14.5781 (3)Te3···Te34.5781 (3)
Ba1···Y14.7381 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds