Download citation
Download citation
link to html
In the crystal structure of the title compound, trans-(Ph2PCH2COPh)2Fe(CO)3, the molecule occupies a special position: the Fe atom and one of the carbonyl groups lie on the twofold axis. The Fe atom has an almost undistorted trigonal-bipyramidal coordination environment. The trans-phosphine ligands are in axial positions, the PFeP unit being almost linear [P-Fe-P 178.86 (3)°; Fe-P 2.2113 (4) Å] and orthogonal to the Fe(CO)3 plane [P-Fe-C 88.85 (6)°, 90.568 (14)°, and 90.61 (6)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012091/ya6158sup1.cif
Contains datablocks I, 991105b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012091/ya6158Isup2.hkl
Contains datablock I

CCDC reference: 217430

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.083
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 4 P1 -FE1 -P1 -C7 6.40 0.07 2.655 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 8 P1 -FE1 -P1 -C1 -116.51 0.07 2.655 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 12 P1 -FE1 -P1 -C20 130.16 0.08 2.655 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 58 C22 -FE1 -C21 -O1 -71.00 20.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 59 C21 -FE1 -C21 -O1 109.00 20.00 2.655 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 60 P1 -FE1 -C21 -O1 -161.00 20.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 61 P1 -FE1 -C21 -O1 20.00 20.00 2.655 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 62 C21 -FE1 -C22 -O3 -164.00100.00 2.655 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 63 C21 -FE1 -C22 -O3 16.00100.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 64 P1 -FE1 -C22 -O3 105.00100.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 65 P1 -FE1 -C22 -O3 -75.00100.00 2.655 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
11 Alert Level C = Please check

Comment top

For many years we used trans-(Ph2Ppy)2Fe(CO)3 as neutral organometallic tridentate ligand and reacted it with various metal derivatives to yield a series of homo- and heterobinuclear complexes (Zhang & Cheng, 1996). Owing to the important role of hemilabile ligands containing a combination of soft and hard donor atoms (Jeffrey & Rauchfuss, 1979), we used Ph2PCH2COPh (Bouaoud et al., 1986) as a ligand to synthesize trans-(Ph2PCH2COPh)2Fe(CO)3. In the literature method, trans-(P)2Fe(CO)3 (P = phosphine ligand) is synthesized under basic conditions and some phosphine ligands containing functional groups such as COOH, etc. can therefore not be used.

Recently, we described a new synthetic route leading to trans-(Ph2PCH2COPh)2Fe(CO)3 (Cui et al., 2003), and now we report its crystal structure. According to the new synthesis, KOH is reacted with Fe(CO)5 to give KH(CO)4, and then H2SO4 and phosphine are added. The KH(CO)4 formed initially is then reacted with H2SO4 to give H2Fe(CO)4, which is activated by the excess of the acid and further reacted with the phosphine ligand, thus producing the target complex, trans-(Ph2PCH2COPh)2Fe(CO)3, (I), in high yield.

The structural study has shown that the molecule of the title compound (Fig. 1) occupies a special position: the Fe atom and one of the carbonyl groups lie on the twofold axis. The Fe atom has a trigonal-bipyramidal coordination environment, with two phosphine ligands in axial positions and three carbonyl groups lying on the equatorial plane. The PFeP unit has the expected parameters, with Fe—P distances of 2.2113 (4) Å and a P—Fe—P angle of 178.86 (3)°. Its geometry is comparable to those observed in trans-(Ph2Ppyrimidine)2Fe(CO)3 (Fe–P 2.202 Å, P—Fe—P 174.2°; Li et al., 1997) and trans-(Ph2Ppy)2Fe(CO)3 (2.206 Å, 177.1°; Zhang et al., 1996). The directions of the Fe—P bonds are almost exactly orthogonal to the equatorial FeC3 plane, all P—Fe—C angles being close to 90° [P1—Fe1—C21 88.85 (6), P1—Fe1—C22 90.568 (14), P1—Fe1—C21i 90.61 (6); symmetry code (i): 1 − x, y, 0.5 − z]. The C—Fe—C angles are not much different from the ideal value of 120° [C21—Fe1—C22 118.71 (6)°].

Experimental top

Synthesis was carried out under Ar atmosphere. After the mixture of KOH(0.26 g, 4.6 mmol) and Fe(CO)5 (0.3 ml, 2.3 mmol) in CH3OH (20 ml) was stirred for 30 min, H2SO4 (0.46 g, 4.6 mmol) in 10 ml of CH3OH and Ph2PCH2COPh (1.39 g, 4.6 mmol) in 5 ml of CH2Cl2 were added. After stirring for 2 h, the resulting yellow solid was collected by filtration and dried in vacuo. Yield 1.43 g (83%).

Refinement top

All H atoms were placed in geometrically calculated positions and included in the refinement in the riding motion approximation, with Uiso(H)=1.2Ueq of the carrier carbon atom.

Computing details top

Data collection: Bruker SMART (Bruker, 1998); cell refinement: Bruker SMART; data reduction: Bruker SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level; the H atoms are omitted.
(I) top
Crystal data top
[Fe(C20H17OP)(CO)3]F(000) = 1552
Mr = 748.49Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.4621 (14) ÅCell parameters from 553 reflections
b = 8.6575 (6) Åθ = 2.6–22.3°
c = 20.9787 (14) ŵ = 0.55 mm1
β = 102.342 (1)°T = 298 K
V = 3630.5 (4) Å3Plate, yellow
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
CCD area detector
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2024
Tmin = 0.874, Tmax = 0.936k = 1010
7325 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.7565P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Fe(C20H17OP)(CO)3]V = 3630.5 (4) Å3
Mr = 748.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.4621 (14) ŵ = 0.55 mm1
b = 8.6575 (6) ÅT = 298 K
c = 20.9787 (14) Å0.40 × 0.35 × 0.20 mm
β = 102.342 (1)°
Data collection top
CCD area detector
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2656 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.936Rint = 0.010
7325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3203 reflectionsΔρmin = 0.26 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.60899 (4)0.25000.02855 (12)
P10.44951 (2)0.61152 (5)0.14569 (2)0.02946 (13)
O10.61366 (8)0.7711 (2)0.21637 (8)0.0637 (4)
O20.57564 (8)0.6373 (2)0.06666 (8)0.0638 (4)
O30.50000.2709 (2)0.25000.0522 (5)
C10.36502 (9)0.5285 (2)0.12348 (9)0.0366 (4)
C20.32580 (11)0.5476 (3)0.06132 (11)0.0640 (7)
H2A0.34100.60960.03130.077*
C30.26425 (13)0.4754 (4)0.04341 (13)0.0773 (8)
H3A0.23860.48910.00150.093*
C40.24084 (12)0.3840 (3)0.08691 (13)0.0653 (7)
H4A0.19950.33560.07470.078*
C50.27858 (11)0.3646 (3)0.14820 (12)0.0563 (6)
H5A0.26280.30240.17780.068*
C60.34052 (10)0.4368 (2)0.16706 (10)0.0430 (5)
H6A0.36560.42320.20920.052*
C70.43928 (9)0.8003 (2)0.10551 (8)0.0349 (4)
C80.43626 (11)0.8212 (3)0.03897 (10)0.0517 (5)
H8A0.44380.73780.01360.062*
C90.42209 (12)0.9647 (3)0.01048 (11)0.0591 (6)
H9A0.42020.97680.03390.071*
C100.41079 (11)1.0890 (2)0.04687 (11)0.0552 (6)
H10A0.40051.18480.02730.066*
C110.41469 (13)1.0710 (2)0.11232 (12)0.0592 (6)
H11A0.40731.15530.13740.071*
C120.42956 (11)0.9279 (2)0.14168 (10)0.0483 (5)
H12A0.43300.91790.18640.058*
C130.61637 (10)0.4173 (2)0.12767 (10)0.0434 (5)
C140.60503 (11)0.2708 (3)0.14895 (11)0.0534 (5)
H14A0.56150.23430.14380.064*
C150.65845 (14)0.1779 (3)0.17797 (14)0.0732 (7)
H15A0.65050.07890.19180.088*
C160.72235 (14)0.2309 (4)0.18627 (16)0.0846 (9)
H16A0.75780.16830.20600.102*
C170.73453 (13)0.3747 (4)0.16587 (18)0.0900 (10)
H17A0.77830.41060.17190.108*
C180.68197 (12)0.4680 (3)0.13608 (14)0.0693 (7)
H18A0.69070.56580.12150.083*
C190.56209 (10)0.5229 (2)0.09451 (9)0.0411 (4)
C200.48964 (9)0.4863 (2)0.09350 (9)0.0377 (4)
H20A0.48680.38000.10720.045*
H20B0.46440.49430.04890.045*
C210.56868 (10)0.7075 (2)0.22928 (8)0.0387 (4)
C220.50000.4047 (3)0.25000.0361 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0289 (2)0.0323 (2)0.02270 (19)0.0000.00155 (14)0.000
P10.0307 (3)0.0318 (3)0.0239 (2)0.00018 (18)0.00150 (18)0.00077 (17)
O10.0551 (9)0.0793 (11)0.0606 (10)0.0266 (9)0.0212 (8)0.0055 (9)
O20.0633 (10)0.0703 (11)0.0618 (10)0.0010 (8)0.0220 (8)0.0231 (9)
O30.0655 (14)0.0347 (12)0.0545 (12)0.0000.0089 (10)0.000
C10.0312 (9)0.0388 (10)0.0369 (10)0.0002 (8)0.0010 (8)0.0043 (8)
C20.0478 (13)0.0931 (19)0.0438 (12)0.0196 (13)0.0069 (10)0.0100 (12)
C30.0517 (14)0.110 (2)0.0566 (15)0.0225 (15)0.0189 (12)0.0044 (15)
C40.0404 (12)0.0687 (16)0.0780 (17)0.0159 (11)0.0071 (12)0.0032 (13)
C50.0435 (12)0.0519 (13)0.0711 (15)0.0111 (10)0.0065 (11)0.0056 (11)
C60.0366 (10)0.0428 (11)0.0459 (11)0.0015 (8)0.0005 (9)0.0021 (9)
C70.0343 (9)0.0364 (10)0.0310 (9)0.0016 (8)0.0002 (7)0.0037 (8)
C80.0675 (14)0.0513 (12)0.0342 (10)0.0080 (11)0.0067 (10)0.0058 (9)
C90.0708 (16)0.0621 (15)0.0403 (12)0.0017 (12)0.0028 (11)0.0177 (11)
C100.0554 (13)0.0421 (12)0.0582 (14)0.0071 (10)0.0101 (11)0.0190 (10)
C110.0776 (17)0.0352 (11)0.0618 (15)0.0015 (11)0.0081 (12)0.0021 (10)
C120.0662 (14)0.0384 (11)0.0387 (11)0.0013 (10)0.0078 (10)0.0031 (9)
C130.0418 (11)0.0482 (12)0.0419 (11)0.0041 (9)0.0123 (9)0.0091 (9)
C140.0502 (12)0.0500 (13)0.0616 (14)0.0080 (10)0.0158 (10)0.0038 (11)
C150.0723 (18)0.0548 (15)0.0921 (19)0.0221 (13)0.0167 (15)0.0001 (14)
C160.0611 (18)0.080 (2)0.108 (2)0.0319 (15)0.0051 (16)0.0168 (18)
C170.0383 (14)0.095 (2)0.132 (3)0.0076 (14)0.0080 (16)0.017 (2)
C180.0473 (14)0.0673 (16)0.093 (2)0.0040 (12)0.0151 (13)0.0031 (14)
C190.0469 (11)0.0473 (12)0.0304 (10)0.0004 (9)0.0115 (8)0.0054 (9)
C200.0407 (10)0.0404 (10)0.0300 (9)0.0031 (8)0.0026 (8)0.0064 (8)
C210.0409 (11)0.0470 (11)0.0262 (9)0.0046 (9)0.0025 (8)0.0028 (8)
C220.0336 (14)0.0452 (17)0.0274 (13)0.0000.0019 (10)0.000
Geometric parameters (Å, º) top
Fe1—C221.769 (3)C8—C91.382 (3)
Fe1—C21i1.776 (2)C8—H8A0.9300
Fe1—C211.776 (2)C9—C101.367 (3)
Fe1—P12.2113 (4)C9—H9A0.9300
Fe1—P1i2.2113 (4)C10—C111.367 (3)
P1—C71.8302 (18)C10—H10A0.9300
P1—C11.8382 (18)C11—C121.388 (3)
P1—C201.8527 (18)C11—H11A0.9300
C1—C61.383 (3)C12—H12A0.9300
C1—C21.387 (3)C13—C141.380 (3)
O1—C211.153 (2)C13—C181.387 (3)
O2—C191.212 (2)C13—C191.491 (3)
C2—C31.384 (3)C14—C151.389 (3)
C2—H2A0.9300C14—H14A0.9300
O3—C221.158 (3)C15—C161.361 (4)
C3—C41.369 (4)C15—H15A0.9300
C3—H3A0.9300C16—C171.357 (4)
C4—C51.361 (4)C16—H16A0.9300
C4—H4A0.9300C17—C181.383 (4)
C5—C61.393 (3)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—H6A0.9300C19—C201.512 (3)
C7—C121.378 (3)C20—H20A0.9700
C7—C81.396 (3)C20—H20B0.9700
C22—Fe1—C21i118.71 (6)C10—C9—H9A119.6
C22—Fe1—C21118.71 (6)C8—C9—H9A119.6
C21i—Fe1—C21122.58 (13)C11—C10—C9119.4 (2)
C22—Fe1—P190.568 (14)C11—C10—H10A120.3
C21i—Fe1—P190.61 (6)C9—C10—H10A120.3
C21—Fe1—P188.85 (6)C10—C11—C12120.5 (2)
C22—Fe1—P1i90.568 (14)C10—C11—H11A119.8
C21i—Fe1—P1i88.85 (6)C12—C11—H11A119.8
C21—Fe1—P1i90.61 (6)C7—C12—C11120.99 (19)
P1—Fe1—P1i178.86 (3)C7—C12—H12A119.5
C7—P1—C1102.94 (8)C11—C12—H12A119.5
C7—P1—C20105.77 (9)C14—C13—C18118.3 (2)
C1—P1—C2097.64 (8)C14—C13—C19123.7 (2)
C7—P1—Fe1116.61 (6)C18—C13—C19118.0 (2)
C1—P1—Fe1117.53 (6)C13—C14—C15120.2 (2)
C20—P1—Fe1113.99 (6)C13—C14—H14A119.9
C6—C1—C2118.12 (18)C15—C14—H14A119.9
C6—C1—P1120.74 (14)C16—C15—C14120.3 (3)
C2—C1—P1121.02 (16)C16—C15—H15A119.8
C3—C2—C1120.7 (2)C14—C15—H15A119.8
C3—C2—H2A119.6C17—C16—C15120.3 (3)
C1—C2—H2A119.6C17—C16—H16A119.8
C4—C3—C2120.5 (2)C15—C16—H16A119.8
C4—C3—H3A119.7C16—C17—C18120.1 (3)
C2—C3—H3A119.7C16—C17—H17A120.0
C5—C4—C3119.5 (2)C18—C17—H17A120.0
C5—C4—H4A120.3C17—C18—C13120.7 (3)
C3—C4—H4A120.3C17—C18—H18A119.6
C4—C5—C6120.7 (2)C13—C18—H18A119.6
C4—C5—H5A119.6O2—C19—C13120.12 (19)
C6—C5—H5A119.6O2—C19—C20119.32 (18)
C1—C6—C5120.4 (2)C13—C19—C20120.53 (18)
C1—C6—H6A119.8C19—C20—P1115.23 (13)
C5—C6—H6A119.8C19—C20—H20A108.5
C12—C7—C8117.75 (17)P1—C20—H20A108.5
C12—C7—P1118.54 (14)C19—C20—H20B108.5
C8—C7—P1123.56 (15)P1—C20—H20B108.5
C9—C8—C7120.6 (2)H20A—C20—H20B107.5
C9—C8—H8A119.7O1—C21—Fe1179.37 (18)
C7—C8—H8A119.7O3—C22—Fe1180.0
C10—C9—C8120.7 (2)
C22—Fe1—P1—C7173.60 (7)P1—C7—C8—C9173.77 (17)
C21i—Fe1—P1—C767.68 (9)C7—C8—C9—C100.0 (4)
C21—Fe1—P1—C754.89 (9)C8—C9—C10—C111.1 (4)
P1i—Fe1—P1—C76.40 (7)C9—C10—C11—C120.4 (4)
C22—Fe1—P1—C163.49 (7)C8—C7—C12—C112.5 (3)
C21i—Fe1—P1—C155.23 (9)P1—C7—C12—C11173.32 (18)
C21—Fe1—P1—C1177.81 (9)C10—C11—C12—C71.4 (4)
P1i—Fe1—P1—C1116.51 (7)C18—C13—C14—C150.0 (3)
C22—Fe1—P1—C2049.84 (7)C19—C13—C14—C15178.4 (2)
C21i—Fe1—P1—C20168.56 (9)C13—C14—C15—C160.7 (4)
C21—Fe1—P1—C2068.86 (9)C14—C15—C16—C170.5 (5)
P1i—Fe1—P1—C20130.16 (8)C15—C16—C17—C180.4 (5)
C7—P1—C1—C6144.33 (16)C16—C17—C18—C131.1 (5)
C20—P1—C1—C6107.48 (17)C14—C13—C18—C170.9 (4)
Fe1—P1—C1—C614.70 (18)C19—C13—C18—C17179.3 (3)
C7—P1—C1—C239.9 (2)C14—C13—C19—O2166.6 (2)
C20—P1—C1—C268.3 (2)C18—C13—C19—O211.8 (3)
Fe1—P1—C1—C2169.50 (17)C14—C13—C19—C2011.6 (3)
C6—C1—C2—C30.7 (4)C18—C13—C19—C20170.02 (19)
P1—C1—C2—C3175.2 (2)O2—C19—C20—P173.4 (2)
C1—C2—C3—C40.2 (5)C13—C19—C20—P1108.46 (18)
C2—C3—C4—C50.1 (5)C7—P1—C20—C1971.13 (15)
C3—C4—C5—C60.1 (4)C1—P1—C20—C19176.95 (14)
C2—C1—C6—C50.9 (3)Fe1—P1—C20—C1958.29 (15)
P1—C1—C6—C5175.04 (17)C22—Fe1—C21—O171 (20)
C4—C5—C6—C10.6 (3)C21i—Fe1—C21—O1109 (20)
C1—P1—C7—C1297.22 (17)P1—Fe1—C21—O1161 (20)
C20—P1—C7—C12160.86 (16)P1i—Fe1—C21—O120 (20)
Fe1—P1—C7—C1232.98 (18)C21i—Fe1—C22—O3164 (100)
C1—P1—C7—C878.30 (18)C21—Fe1—C22—O316 (100)
C20—P1—C7—C823.62 (19)P1—Fe1—C22—O3105 (100)
Fe1—P1—C7—C8151.51 (15)P1i—Fe1—C22—O375 (100)
C12—C7—C8—C91.8 (3)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C20H17OP)(CO)3]
Mr748.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.4621 (14), 8.6575 (6), 20.9787 (14)
β (°) 102.342 (1)
V3)3630.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.874, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
7325, 3203, 2656
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.06
No. of reflections3203
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: Bruker SMART (Bruker, 1998), Bruker SMART, Bruker SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds