Download citation
Download citation
link to html
The title compound, C13H11N3O3S, adopts a cistrans conformation, where the furoyl moiety and the benzoyl group lie respectively cis and trans relative to the S atom across the thio­urea C—N bonds. Both H atoms belonging to the hydrazine moiety participate in intramolecular hydrogen bonds; one of them forms an N—H...O bond and closes the six-membered pseudo-ring, whereas the other one participates in N—H...O and N—H...S bonds, forming two five-membered pseudo-rings. The mol­ecules in the crystal are linked by N—H...O and C—H...O intermolecular hydrogen bonds involving the amide and phenyl H atoms and the O atoms of the furoyl and benzoyl groups. The intermolecular hydrogen bonds give rise to infinite chains running along the c axis of the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023620/ya6149sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023620/ya6149Isup2.hkl
Contains datablock I

CCDC reference: 204676

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.141
  • Data-to-parameter ratio = 16.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Thiourea and dithio compounds, such as dithiocarbazate and dithiocarbamates, are potential biologically active compounds. Some thiourea derivatives, such as N-[2-(2-chlorophenethyl)]-N'-[2-(5-bromopyridyl)]thiourea, have been reported as potent non-nucleoside inhibitors of HIV reverse transcriptase at nanomolar concentrations (Vig et al., 1998; Vankatachalam et al., 2001). Therefore, new thiourea derivatives and their structures are presently the focus of the studies of several research groups. Within the framework of such studies carried out in our group, the suitable quality crystals of the title compound, (I), were obtained and its crystal structure was determined.

As well as the majority of benzoylthiourea derivatives, the title compound, (I) (Fig. 1), adopts a cis–trans conformation where the N3/C9/O2/C10/C11/C12/C13/O3 furoyl moiety and the benzoyl group lie respectively cis and trans relative to to the S atom across the thiourea C—N bonds (Usman et al., 2002; Shanmuga Sundara Raj et al., 1999). The bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987). However, the N1==-C8 and N2-==C8 bond lengths of 1.387 (2) and 1.318 (2) Å, respectively are slightly shorter than the analogous bonds in N-benzoyl-N'-(2,6-dimethylphenyl)thiourea with a bulky dimethylphenyl substituent [1.395 (2) and 1.331 (3) Å, respectively (Usman et al., 2002)].

The S1/C8/N1/N2/C7/O1 and the O2/O3/C9/C10/C11/C12/C13 furoyl fragments are almost planar [maximum deviations at N1 and C10 from their respective mean planes are 0.039 (1) and 0.023 (2) Å]. Unlike the bulky N-benzoyl-N'-(2,6-dimethylphenyl)thiourea, where the aromatic rings are almost perpendicular to each other, the present compound shows the dihedral angle between the phenyl and the furoyl O2/O3/C9/C10/C11/C12/C13 planes of only 1.72 (8)°. The dihedral angles between the carbonylthiourea moiety S1/C8/N1/N2/C7/O1 and the phenyl C1/C2/C3/C4/C5/C6/C7 and furoyl O2/O3/C9/C10/C11/C12/C13 fragments are equal to 18.74 (7) and 17.60 (6)°, respectively.

There are three intramolecular hydrogen bonds in the molecule of (I) (N2—H2A···O1, N3—H3A···S1 and N3—H3A···O3; Table 2). As a result, in addition to typical for benzoylthiourea systems six-membered pseudocycle (O1—C7—N1—C8—N2—H2A), two five-membered rings (O3—C10—C9—N3—H3A and S1—C8—N2—N3—H3A) are formed. In the crystal, three intermolecular hydrogen bonds [N1—H1A···O2i, C1—H1B···O2i and C2—H2B···O1i; symmetry code (i): x, 1/2 − y, z − 1/2; Table 2] link the molecules into infinite chains parallel to the c axis (Fig. 2).

Experimental top

A solution of furan-2-carboxylic acid hydrazide (0.16 g, 1.40 mmol) in acetone (50 ml) was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoyl thiocyanate in a two-neck round-bottomed flask. The solution was refluxed for about one hour and then cooled on ice. The brown precipitate was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 76%). Recrystallization from DMF yielded single crystals suitable for X-ray analysis.

Refinement top

After checking their presence in a difference map, all H atoms were included in the refinement in the riding-motion approximation and allowed to ride on the parent C or N atoms, with C—H = 0.97 Å and N—H = 0.89 Å.

Computing details top

Data collection: SMART(Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids at the 50% probability level. The dashed lines denote the intramolecular N—H···O and N—H···S hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title complex, viewed down the b axis. The dashed lines denote the intermolecular N—H···O and C—H···O hydrogen bonds.
N-[N-(Furan-2-carbonyl)-hydrazinocarbothioyl]-benzamide top
Crystal data top
C13H11N3O3SF(000) = 600
Mr = 289.31Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7902 (14) ÅCell parameters from 3018 reflections
b = 7.5505 (8) Åθ = 1.6–27.5°
c = 13.9952 (15) ŵ = 0.25 mm1
β = 90.375 (2)°T = 299 K
V = 1351.5 (3) Å3Block, brown
Z = 40.61 × 0.39 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3065 independent reflections
Radiation source: fine-focus sealed tube2548 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.018
Detector resolution: 83.66 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 1616
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
k = 97
Tmin = 0.862, Tmax = 0.929l = 1717
7854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.2233P]
where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H11N3O3SV = 1351.5 (3) Å3
Mr = 289.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7902 (14) ŵ = 0.25 mm1
b = 7.5505 (8) ÅT = 299 K
c = 13.9952 (15) Å0.61 × 0.39 × 0.30 mm
β = 90.375 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3065 independent reflections
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
2548 reflections with I > 2σ(I)'
Tmin = 0.862, Tmax = 0.929Rint = 0.018
7854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3065 reflectionsΔρmin = 0.24 e Å3
181 parameters
Special details top

Experimental. Due to large fraction of weak data at higher angles, the 2θ maximum is limited to 55°.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32038 (4)0.11672 (8)0.43803 (3)0.0640 (2)
O10.00052 (10)0.1927 (2)0.55967 (9)0.0622 (4)
O20.18606 (10)0.0735 (2)0.77269 (9)0.0585 (4)
O30.42788 (12)0.1285 (2)0.71557 (11)0.0678 (4)
N10.12097 (10)0.21639 (19)0.44317 (9)0.0443 (3)
H1A0.13180.25380.38600.053*
N20.18874 (11)0.0983 (2)0.58095 (10)0.0489 (4)
H2A0.12860.11680.60620.059*
N30.26738 (12)0.0221 (2)0.63375 (11)0.0539 (4)
H3A0.32130.02060.60550.065*
C10.04962 (14)0.3110 (3)0.31386 (12)0.0496 (4)
H1B0.00980.26440.28530.059*
C20.12924 (15)0.3808 (3)0.25803 (13)0.0545 (5)
H2B0.12360.37980.19180.065*
C30.21662 (15)0.4514 (3)0.29990 (14)0.0560 (5)
H3B0.26960.49940.26220.067*
C40.22572 (16)0.4509 (3)0.39809 (14)0.0612 (5)
H4A0.28480.49900.42640.073*
C50.14789 (16)0.3799 (3)0.45408 (14)0.0538 (5)
H5A0.15510.37800.52020.065*
C60.05850 (12)0.3108 (2)0.41250 (11)0.0427 (4)
C70.02142 (13)0.2348 (2)0.47812 (12)0.0449 (4)
C80.20562 (13)0.1432 (2)0.49137 (12)0.0442 (4)
C90.26055 (12)0.0138 (2)0.72926 (12)0.0433 (4)
C100.34991 (13)0.0723 (2)0.77474 (13)0.0463 (4)
C110.37363 (18)0.1043 (3)0.86534 (16)0.0725 (6)
H11A0.33350.07930.91880.087*
C120.47552 (19)0.1866 (4)0.8629 (2)0.0836 (8)
H12A0.51440.22530.91520.100*
C130.5025 (2)0.1965 (4)0.7736 (2)0.0821 (7)
H13A0.56530.24420.75250.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0465 (3)0.1028 (5)0.0427 (3)0.0105 (2)0.00506 (19)0.0016 (2)
O10.0506 (7)0.0935 (10)0.0424 (7)0.0085 (7)0.0093 (5)0.0177 (7)
O20.0460 (7)0.0837 (9)0.0459 (7)0.0121 (6)0.0024 (5)0.0071 (6)
O30.0606 (9)0.0754 (10)0.0676 (9)0.0212 (7)0.0122 (7)0.0068 (7)
N10.0424 (7)0.0573 (8)0.0334 (7)0.0010 (6)0.0023 (5)0.0018 (6)
N20.0427 (8)0.0628 (9)0.0413 (8)0.0065 (6)0.0018 (6)0.0052 (6)
N30.0507 (8)0.0696 (10)0.0414 (8)0.0157 (7)0.0020 (6)0.0029 (7)
C10.0426 (9)0.0641 (11)0.0421 (9)0.0026 (8)0.0057 (7)0.0006 (8)
C20.0527 (10)0.0722 (12)0.0387 (9)0.0033 (9)0.0004 (7)0.0044 (8)
C30.0548 (10)0.0611 (11)0.0520 (11)0.0052 (9)0.0040 (8)0.0062 (8)
C40.0549 (11)0.0719 (13)0.0569 (12)0.0154 (9)0.0059 (8)0.0002 (9)
C50.0539 (10)0.0660 (12)0.0416 (9)0.0086 (8)0.0060 (7)0.0006 (8)
C60.0418 (8)0.0456 (9)0.0406 (9)0.0043 (7)0.0030 (6)0.0005 (7)
C70.0429 (9)0.0522 (9)0.0395 (9)0.0029 (7)0.0038 (6)0.0006 (7)
C80.0461 (9)0.0496 (9)0.0370 (8)0.0029 (7)0.0003 (6)0.0047 (7)
C90.0412 (8)0.0455 (9)0.0433 (9)0.0019 (7)0.0005 (6)0.0029 (7)
C100.0416 (8)0.0508 (9)0.0465 (9)0.0007 (7)0.0027 (7)0.0019 (7)
C110.0624 (12)0.1038 (18)0.0513 (12)0.0057 (12)0.0062 (9)0.0137 (11)
C120.0659 (14)0.1033 (19)0.0813 (17)0.0148 (13)0.0197 (12)0.0285 (14)
C130.0629 (13)0.0875 (17)0.096 (2)0.0265 (12)0.0056 (12)0.0216 (14)
Geometric parameters (Å, º) top
S1—C81.6631 (18)C2—C31.373 (3)
O1—C71.219 (2)C2—H2B0.9300
O2—C91.220 (2)C3—C41.380 (3)
O3—C101.368 (2)C3—H3B0.9300
O3—C131.351 (3)C4—C51.372 (3)
N1—C71.374 (2)C4—H4A0.9300
N1—C81.387 (2)C5—C61.388 (2)
N1—H1A0.8600C5—H5A0.9300
N2—N31.371 (2)C6—C71.485 (2)
N2—C81.318 (2)C9—C101.457 (2)
N2—H2A0.8600C10—C111.324 (3)
N3—C91.342 (2)C11—C121.444 (3)
N3—H3A0.8600C11—H11A0.9300
C1—C21.384 (3)C12—C131.300 (4)
C1—C61.386 (2)C12—H12A0.9300
C1—H1B0.9300C13—H13A0.9300
C13—O3—C10105.60 (18)C1—C6—C5119.35 (16)
C7—N1—C8126.13 (14)C1—C6—C7123.78 (15)
C7—N1—H1A116.9C5—C6—C7116.84 (15)
C8—N1—H1A116.9O1—C7—N1121.75 (16)
C8—N2—N3119.77 (14)O1—C7—C6121.19 (14)
C8—N2—H2A120.1N1—C7—C6117.05 (14)
N3—N2—H2A120.1N2—C8—N1115.66 (14)
C9—N3—N2120.29 (14)N2—C8—S1123.14 (13)
C9—N3—H3A119.9N1—C8—S1121.20 (12)
N2—N3—H3A119.9O2—C9—N3122.36 (15)
C2—C1—C6119.88 (16)O2—C9—C10124.06 (16)
C2—C1—H1B120.1N3—C9—C10113.58 (14)
C6—C1—H1B120.1C11—C10—O3111.08 (17)
C3—C2—C1120.32 (17)C11—C10—C9132.35 (18)
C3—C2—H2B119.8O3—C10—C9116.54 (15)
C1—C2—H2B119.8C10—C11—C12104.9 (2)
C2—C3—C4119.90 (17)C10—C11—H11A127.6
C2—C3—H3B120.1C12—C11—H11A127.6
C4—C3—H3B120.1C13—C12—C11107.0 (2)
C5—C4—C3120.27 (18)C13—C12—H12A126.5
C5—C4—H4A119.9C11—C12—H12A126.5
C3—C4—H4A119.9C12—C13—O3111.4 (2)
C4—C5—C6120.27 (17)C12—C13—H13A124.3
C4—C5—H5A119.9O3—C13—H13A124.3
C6—C5—H5A119.9
C8—N2—N3—C9164.33 (16)N3—N2—C8—S11.6 (2)
C6—C1—C2—C30.7 (3)C7—N1—C8—N24.6 (2)
C1—C2—C3—C40.8 (3)C7—N1—C8—S1175.93 (14)
C2—C3—C4—C50.1 (3)N2—N3—C9—O20.5 (3)
C3—C4—C5—C61.2 (3)N2—N3—C9—C10179.54 (15)
C2—C1—C6—C50.4 (3)C13—O3—C10—C110.5 (3)
C2—C1—C6—C7178.34 (16)C13—O3—C10—C9177.71 (18)
C4—C5—C6—C11.3 (3)O2—C9—C10—C110.9 (3)
C4—C5—C6—C7179.39 (18)N3—C9—C10—C11179.0 (2)
C8—N1—C7—O13.2 (3)O2—C9—C10—O3178.67 (17)
C8—N1—C7—C6177.63 (15)N3—C9—C10—O31.2 (2)
C1—C6—C7—O1159.43 (18)O3—C10—C11—C120.4 (3)
C5—C6—C7—O118.6 (3)C9—C10—C11—C12177.4 (2)
C1—C6—C7—N121.4 (2)C10—C11—C12—C130.2 (3)
C5—C6—C7—N1160.64 (16)C11—C12—C13—O30.1 (3)
N3—N2—C8—N1178.88 (15)C10—O3—C13—C120.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.172.988 (2)158
N2—H2A···O10.861.862.5395 (19)134
N3—H3A···S10.862.562.9148 (16)105
N3—H3A···O30.862.212.606 (2)108
C1—H1B···O2i0.932.573.194 (2)124
C2—H2B···O1i0.932.493.284 (2)143
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O3S
Mr289.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)12.7902 (14), 7.5505 (8), 13.9952 (15)
β (°) 90.375 (2)
V3)1351.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.61 × 0.39 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionEmpirical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.862, 0.929
No. of measured, independent and
observed [I > 2σ(I)'] reflections
7854, 3065, 2548
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.141, 1.04
No. of reflections3065
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART(Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
S1—C81.6631 (18)N1—C71.374 (2)
O1—C71.219 (2)N1—C81.387 (2)
O2—C91.220 (2)N2—N31.371 (2)
O3—C101.368 (2)N2—C81.318 (2)
O3—C131.351 (3)N3—C91.342 (2)
C13—O3—C10105.60 (18)O1—C7—N1121.75 (16)
C7—N1—C8126.13 (14)N1—C7—C6117.05 (14)
C8—N2—N3119.77 (14)N2—C8—N1115.66 (14)
C9—N3—N2120.29 (14)O2—C9—N3122.36 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.172.988 (2)158
N2—H2A···O10.861.862.5395 (19)134
N3—H3A···S10.862.562.9148 (16)105
N3—H3A···O30.862.212.606 (2)108
C1—H1B···O2i0.932.573.194 (2)124
C2—H2B···O1i0.932.493.284 (2)143
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds