Download citation
Download citation
link to html
The title complex, [Cu(C4H6N2)4(CF3SO3)2], was prepared by reaction of Cu(CF3SO3)2·6H2O and 2-methyl­imidazole in aceto­nitrile. The central Cu atom is coordinated by four 2-methyl­imidazole ligands forming an equatorial plane (average Cu-N 2.007 Å) and two tri­fluoro­methyl­sulfonate anions at the axial sites, with long Cu-O bonds of 2.651 (4) and 3.069 (6) Å; thus, the Cu atom has the octahedral environment typical for CuII complexes, with a tetragonal distortion. All four 2-methyl­imidazole rings are tilted out of the CuN4 plane by about 50°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016288/ya6131sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016288/ya6131Isup2.hkl
Contains datablock I

CCDC reference: 198305

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.058
  • wR factor = 0.126
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found


Amber Alert Alert Level B:
PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. I
Author response: Although it seems that the present cell can be transformed to orthorhombic C or monoclinic C-lattices, the R factors for equivalent reflections averaged are too large, R(int) = 0.667 for the former and 0.697 for the later. The structure was solved at the present cell, monoclinic P-lattice, and no higher symmtry was found. The output of program XPREP for searching higher symmetry is inclosed as following. SEARCH FOR HIGHER METRIC SYMMETRY
Option A: FOM = 0.323 deg. ORTHORHOMBIC C-lattice R(int) = 0.667 [ 2746] Cell: 16.064 34.005 10.674 90.00 90.00 90.32 Volume: 5830.61 Matrix: 0.0000 0.0000 1.0000 2.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Option B: FOM = 0.000 deg. MONOCLINIC P-lattice R(int) = 0.044 [ 204] Cell: 16.064 10.674 18.763 90.00 115.02 90.00 Volume: 2915.31 Matrix: 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 -1.0000 0.0000 -1.0000
Option C: FOM = 0.323 deg. MONOCLINIC C-lattice R(int) = 0.697 [ 305] Cell: 34.005 16.064 10.674 90.00 90.00 89.68 Volume: 5830.61 Matrix:-2.0000 0.0000 -1.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Option D: FOM = 0.323 deg. MONOCLINIC C-lattice R(int) = 0.667 [ 2746] Cell: 16.064 34.005 10.674 90.00 90.00 90.32 Volume: 5830.61 Matrix: 0.0000 0.0000 -1.0000 -2.0000 0.0000 -1.0000 0.0000 1.0000 0.0000 Option B selected

0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Coordination chemistry of copper complexes has been the focus of numerous studies, since it can provide important clues for better understanding the structures and probable mechanisms of reactions involving copper-containing metalloproteins (Kaim & Schwederski, 1991). The structures of copper complexes are affected by various factors (Hathaway, 1987), such as ligand field stabilization energies, the Pauling electroneutrality principle, Jahn-Teller effect, counter-ion effects, steric effects, etc. Considerable research effort has been focused on low molecular weight Cu(II)–imidazole complexes in order to understand their stereochemistry and the interactions of histidyl residues with copper ions (Ohtsu et al., 2001; Wang et al., 1999; Jian et al., 1999). The structures and bonding properties of Cu(II)–imidazole chromophores have been studied by X-ray diffraction and electronic spectra in our earlier work (Liu & Su, 1995; Su et al., 1995). The study of the title complex, (I), was undertaken in order to compare its structure with that of its analogue, [Cu(ImH)4(CF3SO3)2] (where ImH = imidazole), and thus consider the effect of substitution at the imidazole ligands on the structure of complex.

Fig. 1 shows an ORTEP (Johnson, 1965) drawing of the title complex and Table 1 lists the distances and angles involving the Cu atom. The Cu atom has an octahedral coordination, with bond angles indicating relatively slight distortions (12 angles from 82.96 to 99.05° and three angles, 175.0–175.6°), and equatorial Cu—N bonds in the normal range typical for Cu—N coordination (1.994–2.026 Å). Both axial Cu—O bonds are much longer than one would expect for normal Cu—O coordination bonds; in addition, one of the Cu—O distances (Cu1—O6 3.069 (6) Å) is significantly longer than the other (Cu1—O2 2.651 (4) Å), which is very different from the geometry of other Cu(II)–imidazole complexes, which have long but almost identical axial bonds, e.g. 2.593 Å in [Cu(ImH)4(CF3SO3)2] (Liu & Su, 1995), 2.625 Å in [Cu(ImH)4(ClO4)2] (Ivarsson, 1973), 2.574 Å in [Cu(ImH)4(SO4)2] (Fransson & Lundberg, 1972) and 2.566 Å in [Cu(ImH)4(NO3)2] (McFadden et al., 1976).

It was found that the conformations of the imidazole ligands in tetrakis-imidazole and tetrakis-monosubstituted imidazole copper(II) complexes are mainly affected by the donor abilities of both the imidazole ligands and the counter ions. For the title complex, the dihedral angles between the imidazole rings and the equatorial CuN4 plane are 47.2 (2), 47.8 (3), 51.9 (3) and 51.3 (2)°, respectively. The dihedral angles for the analog with unsubstituted imidazole and the same anion, [Cu(ImH)4(CF3SO3)2], fall into two categories; one pair of trans imidazole rings is almost perpendicular to the equatorial plane (88.2°) and another is tilted by 59.4° (Liu & Su, 1995). Complexes with very weak σ-donor anions such as [Cu(ImH)4(ClO4)2] (Ivarsson, 1973), tend to have a perpendicular and a parallel pair of imidazole ligands, forming the dihedral angles of 94.3 and 18.7° with the metal coordination plane, respectively. Corresponding complexes with relatively stronger σ-donor anions have all four imidazole rings perpendicular to the equatorial plane, e.g., 98.6 and 94.6° in [Cu(ImH)4(NO3)2] (McFadden et al.,1976).

A view of the packing is shown in Fig. 2. The discrete complexes are connected by hydrogen bonding between N atoms of imidazole ligands and O atoms of trifluoromethylsulfonate to form layers parallel to the bc plane.

Experimental top

2-Mehtylimidazole (2M-ImH) (Merck), 2,2'-dimethoxypropane (Aldrich), cupric oxide (Merck), trifluoromethylsulfonic acid (Aldrich) and organic solvents of reagent grade were used as received. Cu(CF3SO3)2·6H2O was prepared from CuO and CF3SO3H. Tetrakis(2-methylimidazolo)bis(trifluoromethylsulfonato)copper(II), Cu(2—CH3—ImH)4(CF3SO3)2, was prepared by the following procedure: Cu(CF3SO3)2·6H2O (1 mmole) and 2-methylimidazole (4 mmole) were dissolved in acetonitrile containing 5% of 2,2-dimethoxypropane. After stirring the mixture at room temperature for two hours, diethyl ether was added dropwise until precipitate began to appear. The solution was stored in a refrigerator for two days yielding dark blue crystal, yield, 83%.

Refinement top

The H atoms were generated geometrically with C—H bonds of 0.96 Å and N—H bonds of 0.90 Å. They were included in the final refinement in the riding motion approximation with fixed isotropic temperature factors of 0.12 Å2 for the methyl H atoms and 0.08 Å2 for all other hydrogen atoms.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP (Johnson, 1965) drawing of the structure of tetrakis(2-methylimidazolo)bis(trifluoromethylsulfonato)copper(II) with 35% probability displacement displacement ellipsoids, showing the atom numbering scheme.
[Figure 2] Fig. 2. A view of the packing along the b direction. Dashed lines denote weak Cu—O bonds and hydrogen bonds.
tetrakis(2-methylimidazolo) bis(trifluoromethylsulfonato)copper(II) top
Crystal data top
[Cu(CH3C3H3N2)4(CF3SO3)2]F(000) = 1404
Mr = 690.11Dx = 1.572 Mg m3
Monoclinic, P21/cMelting point: 465-471°K (decomposed) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 18.763 (4) ÅCell parameters from 25 reflections
b = 10.674 (2) Åθ = 10.0–13.5°
c = 16.064 (3) ŵ = 0.98 mm1
β = 115.02 (3)°T = 293 K
V = 2915.3 (12) Å3Prism, dark blue
Z = 40.32 × 0.22 × 0.16 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 2220
Absorption correction: ψ scan
(North et al, 1968)
k = 120
Tmin = 0.742, Tmax = 0.855l = 019
5291 measured reflections3 standard reflections every 120 min
5092 independent reflections intensity decay: 15%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.001P)2 + 10.P]
where P = (Fo2 + 2Fc2)/3
5092 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(CH3C3H3N2)4(CF3SO3)2]V = 2915.3 (12) Å3
Mr = 690.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.763 (4) ŵ = 0.98 mm1
b = 10.674 (2) ÅT = 293 K
c = 16.064 (3) Å0.32 × 0.22 × 0.16 mm
β = 115.02 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2600 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al, 1968)
Rint = 0.035
Tmin = 0.742, Tmax = 0.8553 standard reflections every 120 min
5291 measured reflections intensity decay: 15%
5092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.65 e Å3
5092 reflectionsΔρmin = 0.49 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.74186 (4)0.01102 (6)0.49439 (5)0.0488 (2)
S10.58212 (9)0.04278 (14)0.24141 (10)0.0498 (4)
S20.92442 (10)0.03064 (17)0.77262 (13)0.0654 (5)
O10.5818 (3)0.0295 (5)0.1674 (3)0.0858 (15)
O20.6205 (2)0.0126 (5)0.3308 (3)0.0748 (13)
O30.6012 (3)0.1719 (4)0.2370 (3)0.0731 (14)
O40.9068 (3)0.1597 (4)0.7713 (3)0.0804 (15)
O50.9318 (4)0.0342 (6)0.8531 (4)0.129 (2)
O60.8784 (3)0.0292 (5)0.6862 (4)0.1055 (19)
F10.4361 (3)0.0957 (6)0.1374 (4)0.134 (2)
F20.4684 (3)0.1156 (6)0.2813 (3)0.124 (2)
F30.4520 (3)0.0641 (6)0.2218 (4)0.140 (2)
F41.0275 (3)0.0904 (6)0.7119 (3)0.1232 (19)
F51.0480 (3)0.0840 (6)0.7778 (4)0.142 (2)
F61.0717 (3)0.0817 (6)0.8555 (4)0.146 (2)
N10.7836 (4)0.1576 (5)0.4510 (4)0.0662 (16)
N20.8510 (4)0.2945 (6)0.4151 (4)0.091 (2)
H2A0.89310.33030.41170.080*
N30.8098 (3)0.1128 (5)0.4690 (3)0.0500 (12)
N40.8664 (3)0.2362 (5)0.4070 (4)0.0647 (15)
H4D0.88120.26890.36510.080*
N50.6917 (3)0.1350 (4)0.5274 (3)0.0471 (12)
N60.6431 (3)0.2677 (5)0.5922 (4)0.0637 (15)
H6A0.62830.30180.63370.080*
N70.6723 (3)0.1269 (5)0.5275 (3)0.0618 (15)
N80.6235 (4)0.2653 (6)0.5862 (4)0.0775 (18)
H8D0.62130.33220.61920.080*
C10.8500 (4)0.1947 (7)0.4613 (5)0.069 (2)
C20.7681 (6)0.3289 (8)0.3681 (6)0.112 (3)
H2B0.75000.40270.33090.080*
C30.7280 (5)0.2489 (7)0.3864 (5)0.080 (2)
H3A0.67160.24810.36230.080*
C40.9252 (4)0.1348 (8)0.5179 (5)0.089 (2)
H4A0.91660.06440.54960.120*
H4B0.94910.10690.47880.120*
H4C0.95930.19390.56180.120*
C50.8232 (3)0.1334 (6)0.3953 (4)0.0529 (16)
C60.8830 (4)0.2852 (7)0.4920 (5)0.081 (2)
H6B0.91470.35740.51940.080*
C70.8483 (4)0.2109 (6)0.5296 (5)0.0654 (18)
H7A0.84840.22210.58890.080*
C80.7977 (4)0.0578 (7)0.3119 (4)0.0671 (19)
H8A0.81590.09540.27020.120*
H8B0.74130.05410.28360.120*
H8C0.81860.02540.32680.120*
C90.6793 (3)0.1577 (6)0.6022 (4)0.0441 (14)
C100.6305 (4)0.3186 (6)0.5092 (4)0.0652 (19)
H10A0.60620.39780.48510.080*
C110.6595 (4)0.2361 (6)0.4693 (4)0.0546 (16)
H11A0.65790.24420.40890.080*
C140.5592 (4)0.1849 (8)0.5312 (5)0.081 (2)
H14A0.50620.19210.52520.080*
C120.7011 (4)0.0778 (7)0.6844 (4)0.0647 (19)
H12A0.68450.11710.72700.120*
H12B0.75710.06650.71290.120*
H12C0.67590.00220.66660.120*
C130.6846 (4)0.2239 (6)0.5789 (5)0.0640 (18)
C150.5876 (4)0.1037 (7)0.4932 (4)0.0653 (19)
H15A0.55790.03990.45040.080*
C160.7612 (4)0.2851 (7)0.6266 (5)0.086 (2)
H16A0.75730.35450.66250.120*
H16B0.79840.22530.66620.120*
H16C0.77850.31450.58170.120*
C170.4791 (4)0.0474 (8)0.2193 (5)0.075 (2)
C181.0230 (4)0.0294 (8)0.7802 (6)0.077 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0737 (5)0.0365 (4)0.0618 (4)0.0011 (4)0.0534 (4)0.0014 (4)
S10.0641 (10)0.0526 (10)0.0459 (9)0.0089 (7)0.0361 (8)0.0047 (7)
S20.0746 (11)0.0566 (11)0.0901 (13)0.0147 (9)0.0591 (11)0.0153 (10)
O10.111 (4)0.082 (4)0.081 (3)0.023 (3)0.057 (3)0.019 (3)
O20.075 (3)0.095 (4)0.053 (2)0.010 (3)0.024 (2)0.031 (3)
O30.113 (4)0.058 (3)0.076 (3)0.012 (3)0.067 (3)0.006 (2)
O40.111 (4)0.068 (3)0.094 (4)0.008 (3)0.073 (3)0.003 (3)
O50.159 (5)0.126 (5)0.151 (5)0.009 (4)0.114 (5)0.051 (4)
O60.081 (3)0.111 (4)0.129 (5)0.029 (3)0.048 (3)0.059 (4)
F10.093 (4)0.182 (6)0.099 (4)0.057 (4)0.014 (3)0.024 (4)
F20.103 (4)0.182 (6)0.122 (4)0.025 (4)0.081 (3)0.026 (4)
F30.101 (4)0.142 (5)0.186 (6)0.049 (4)0.071 (4)0.004 (4)
F40.103 (4)0.182 (5)0.124 (4)0.001 (4)0.086 (3)0.027 (4)
F50.119 (4)0.129 (5)0.193 (6)0.045 (4)0.082 (4)0.002 (4)
F60.090 (4)0.215 (7)0.115 (4)0.064 (4)0.026 (3)0.043 (4)
N10.095 (4)0.052 (3)0.071 (4)0.020 (3)0.054 (4)0.007 (3)
N20.109 (6)0.092 (5)0.073 (4)0.042 (4)0.040 (4)0.023 (4)
N30.054 (3)0.058 (3)0.050 (3)0.003 (3)0.034 (3)0.001 (3)
N40.066 (4)0.083 (4)0.056 (4)0.016 (3)0.037 (3)0.009 (3)
N50.063 (3)0.046 (3)0.048 (3)0.002 (2)0.039 (3)0.005 (2)
N60.067 (4)0.076 (4)0.052 (4)0.023 (3)0.029 (3)0.012 (3)
N70.103 (5)0.045 (3)0.057 (3)0.008 (3)0.054 (3)0.007 (3)
N80.104 (5)0.073 (4)0.063 (4)0.033 (4)0.042 (4)0.015 (3)
C10.087 (6)0.069 (5)0.075 (5)0.025 (4)0.056 (5)0.015 (4)
C20.156 (10)0.082 (6)0.097 (7)0.008 (6)0.054 (7)0.044 (5)
C30.088 (6)0.069 (5)0.085 (6)0.009 (4)0.039 (5)0.021 (4)
C40.066 (5)0.098 (6)0.089 (6)0.005 (5)0.019 (4)0.003 (5)
C50.037 (3)0.071 (4)0.057 (4)0.003 (3)0.026 (3)0.013 (3)
C60.087 (5)0.077 (5)0.081 (6)0.033 (4)0.038 (5)0.009 (4)
C70.070 (4)0.073 (5)0.065 (4)0.011 (4)0.039 (4)0.006 (4)
C80.066 (4)0.094 (5)0.046 (4)0.000 (4)0.028 (3)0.005 (4)
C90.042 (3)0.056 (4)0.042 (3)0.002 (3)0.026 (3)0.007 (3)
C100.079 (5)0.066 (4)0.053 (4)0.026 (4)0.030 (4)0.003 (3)
C110.074 (4)0.049 (4)0.050 (4)0.007 (3)0.035 (3)0.003 (3)
C140.066 (5)0.104 (6)0.080 (5)0.012 (5)0.036 (4)0.005 (5)
C120.065 (4)0.093 (5)0.045 (4)0.006 (4)0.032 (3)0.003 (4)
C130.097 (5)0.047 (4)0.068 (5)0.009 (4)0.055 (4)0.004 (3)
C150.063 (4)0.085 (5)0.070 (4)0.006 (4)0.048 (4)0.018 (4)
C160.089 (6)0.083 (6)0.074 (5)0.037 (5)0.023 (4)0.008 (4)
C170.065 (5)0.090 (6)0.077 (5)0.011 (4)0.038 (4)0.002 (5)
C180.068 (5)0.088 (6)0.080 (5)0.011 (4)0.035 (4)0.007 (5)
Geometric parameters (Å, º) top
Cu1—N12.002 (5)N6—H6A0.9001
Cu1—N31.994 (5)N7—C131.283 (8)
Cu1—N52.004 (4)N7—C151.467 (8)
Cu1—N72.026 (5)N8—C131.280 (8)
Cu1—O22.651 (4)N8—C141.439 (9)
Cu1—O63.069 (6)N8—H8D0.9000
S1—O11.416 (4)C1—C41.463 (9)
S1—O21.434 (4)C2—C31.253 (10)
S1—O31.434 (4)C2—H2B0.9599
S1—C171.812 (7)C3—H3A0.9600
S2—O41.415 (5)C4—H4A0.9600
S2—O51.421 (5)C4—H4B0.9599
S2—O61.438 (5)C4—H4C0.9600
S2—C181.802 (7)C5—C81.461 (8)
F1—C171.322 (8)C6—C71.322 (8)
F2—C171.317 (8)C6—H6B0.9599
F3—C171.302 (9)C7—H7A0.9600
F4—C181.308 (8)C8—H8A0.9600
F5—C181.305 (9)C8—H8B0.9599
F6—C181.295 (8)C8—H8C0.9599
N1—C11.250 (8)C9—C121.475 (8)
N1—C31.482 (8)C10—C111.335 (8)
N2—C11.303 (8)C10—H10A0.9601
N2—C21.458 (10)C11—H11A0.9600
N2—H2A0.9000C14—C151.298 (9)
N3—C51.329 (7)C14—H14A0.9600
N3—C71.404 (8)C12—H12A0.9601
N4—C51.330 (7)C12—H12B0.9600
N4—C61.369 (8)C12—H12C0.9600
N4—H4D0.9000C13—C161.465 (9)
N5—C91.340 (6)C15—H15A0.9600
N5—C111.387 (7)C16—H16A0.9600
N6—C91.332 (7)C16—H16B0.9600
N6—C101.365 (8)C16—H16C0.9600
N3—Cu1—N194.0 (2)H4A—C4—H4B109.5
N3—Cu1—N587.19 (18)C1—C4—H4C109.7
N1—Cu1—N5175.0 (2)H4A—C4—H4C109.5
N3—Cu1—N7175.4 (2)H4B—C4—H4C109.5
N1—Cu1—N790.3 (2)N3—C5—N4110.1 (6)
N5—Cu1—N788.8 (2)N3—C5—C8127.9 (6)
N1—Cu1—O287.0 (2)N4—C5—C8122.0 (5)
N3—Cu1—O299.05 (17)C7—C6—N4106.1 (6)
N5—Cu1—O287.97 (18)C7—C6—H6B127.1
N7—Cu1—O282.96 (18)N4—C6—H6B126.7
N1—Cu1—O691.0 (2)C6—C7—N3109.9 (6)
N3—Cu1—O684.99 (18)C6—C7—H7A125.7
N5—Cu1—O693.97 (17)N3—C7—H7A124.4
N7—Cu1—O693.13 (19)C5—C8—H8A109.5
O2—Cu1—O6175.61 (14)C5—C8—H8B109.0
O1—S1—O3113.2 (3)H8A—C8—H8B109.5
O1—S1—O2116.0 (3)C5—C8—H8C109.9
O3—S1—O2114.6 (3)H8A—C8—H8C109.5
O1—S1—C17103.0 (3)H8B—C8—H8C109.5
O3—S1—C17103.4 (3)N6—C9—N5108.9 (5)
O2—S1—C17104.4 (3)N6—C9—C12123.5 (5)
O4—S2—O5114.8 (4)N5—C9—C12127.6 (5)
O4—S2—O6112.1 (4)C11—C10—N6105.6 (6)
O5—S2—O6116.7 (4)C11—C10—H10A127.5
O4—S2—C18103.6 (4)N6—C10—H10A126.9
O5—S2—C18103.5 (4)C10—C11—N5109.9 (5)
O6—S2—C18104.0 (3)C10—C11—H11A125.4
C1—N1—C3104.6 (6)N5—C11—H11A124.7
C1—N1—Cu1135.7 (6)C15—C14—N8106.5 (6)
C3—N1—Cu1119.6 (5)C15—C14—H14A128.3
C1—N2—C2103.4 (6)N8—C14—H14A125.2
C1—N2—H2A127.3C9—C12—H12A109.5
C2—N2—H2A129.3C9—C12—H12B109.5
C5—N3—C7104.9 (5)H12A—C12—H12B109.5
C5—N3—Cu1132.1 (4)C9—C12—H12C109.4
C7—N3—Cu1122.6 (4)H12A—C12—H12C109.5
C5—N4—C6108.9 (5)H12B—C12—H12C109.5
C5—N4—H4D125.2N8—C13—N7114.4 (7)
C6—N4—H4D125.9N8—C13—C16121.2 (7)
C9—N5—C11105.8 (5)N7—C13—C16124.5 (7)
C9—N5—Cu1131.1 (4)C14—C15—N7107.8 (6)
C11—N5—Cu1123.1 (4)C14—C15—H15A125.6
C9—N6—C10109.7 (5)N7—C15—H15A126.7
C9—N6—H6A124.6C13—C16—H16A110.6
C10—N6—H6A125.6C13—C16—H16B109.2
C13—N7—C15104.5 (5)H16A—C16—H16B109.5
C13—N7—Cu1134.5 (5)C13—C16—H16C108.7
C15—N7—Cu1120.9 (4)H16A—C16—H16C109.5
C13—N8—C14106.8 (6)H16B—C16—H16C109.5
C13—N8—H8D126.3F3—C17—F2107.1 (7)
C14—N8—H8D126.9F3—C17—F1107.8 (7)
N1—C1—N2115.9 (8)F2—C17—F1108.3 (7)
N1—C1—C4126.1 (7)F3—C17—S1111.6 (6)
N2—C1—C4117.9 (7)F2—C17—S1111.0 (6)
C3—C2—N2108.8 (7)F1—C17—S1110.9 (5)
C3—C2—H2B128.0F6—C18—F5107.8 (7)
N2—C2—H2B123.2F6—C18—F4107.4 (7)
C2—C3—N1107.3 (7)F5—C18—F4106.6 (7)
C2—C3—H3A125.5F6—C18—S2111.0 (6)
N1—C3—H3A127.3F5—C18—S2112.1 (6)
C1—C4—H4A109.8F4—C18—S2111.6 (6)
C1—C4—H4B108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.902.022.812 (7)146
N4—H4D···O4ii0.901.922.822 (6)177
N6—H6A···O3iii0.901.952.826 (6)164
N8—H8D···O1iv0.901.952.823 (7)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(CH3C3H3N2)4(CF3SO3)2]
Mr690.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.763 (4), 10.674 (2), 16.064 (3)
β (°) 115.02 (3)
V3)2915.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.32 × 0.22 × 0.16
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al, 1968)
Tmin, Tmax0.742, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
5291, 5092, 2600
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.126, 1.04
No. of reflections5092
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.49

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CAD-4-PC, XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N12.002 (5)Cu1—N72.026 (5)
Cu1—N31.994 (5)Cu1—O22.651 (4)
Cu1—N52.004 (4)Cu1—O63.069 (6)
N3—Cu1—N194.0 (2)N5—Cu1—O287.97 (18)
N3—Cu1—N587.19 (18)N7—Cu1—O282.96 (18)
N1—Cu1—N5175.0 (2)N1—Cu1—O691.0 (2)
N3—Cu1—N7175.4 (2)N3—Cu1—O684.99 (18)
N1—Cu1—N790.3 (2)N5—Cu1—O693.97 (17)
N5—Cu1—N788.8 (2)N7—Cu1—O693.13 (19)
N1—Cu1—O287.0 (2)O2—Cu1—O6175.61 (14)
N3—Cu1—O299.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.902.022.812 (7)146.0
N4—H4D···O4ii0.901.922.822 (6)176.8
N6—H6A···O3iii0.901.952.826 (6)164.0
N8—H8D···O1iv0.901.952.823 (7)162.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds