Download citation
Download citation
link to html
The V atom in the oxovanadium(IV) complex [VO(H2biim)(H2O)3]SO4·2H2O, with a non-deprotonated 2,2'-bi­imidazole ligand (H2biim, C6H6N4), has a distorted octahedral coordin­ation with the vanadyl O atom in a trans position with respect to one of the water mol­ecules. The N-V-N angle within the five-membered chelate ring is the smallest in the coordination octahedron [78.66 (12)°]; the angles involving the vanadyl bond are somewhat wider than the corresponding angles involving the trans V-O(OH2) coordination bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802005615/ya6092sup1.cif
Contains datablocks I, F

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802005615/ya6092Isup2.hkl
Contains datablock I

CCDC reference: 185738

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.057
  • wR factor = 0.102
  • Data-to-parameter ratio = 12.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_420 Alert B D-H Without Acceptor O(10) - H(15) ?
Yellow Alert Alert Level C:
PLAT_354 Alert C Short O-H Bond (0.82A) O(9) - H(13) = 0.68 Ang.
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The role of vanadium in biological processes has become a topic of study in recent years (Rehder, 1991; Butler & Walker, 1993). The chemistry of vanadium(IV) is dominated by the stable oxovanadium dication (VO2+), which remains intact in various reactions (Cotton & Wilkinson, 1987). A vanadium enzyme has been described which exhibits histidine-nitrogen coordination to vanadium (Messerschmidt & Wever, 1996). This is consistent with the X-ray absorption spectra, which indicate that the vanadium(IV) ion is surrounded by oxygen and/or nitrogen donors (Arber et al., 1989). Vanadium compounds also act as insulin-enhancing agents (Thompson & Orvig, 2000). Therefore, it is important to study the relationship of the syntheses, structures and biological effects of such vanadium complexes.

2,2'-Biimidazole (H2biim) is a ligand that can be coordinated to transition metals in non-deprotonated (H2biim), mono-deprotonated (Hbiim-) and bis-deprotonated (biim2-) forms. The presence of an imidazole moiety in biological molecules has encouraged studies of H2biim-containing transition metal complexes. Thus, a variety of geometries and ligating schemes for H2biim to CuII, CoII, FeII,III, NiII, ZnII, AgI, and CdII have been investigated (Abushamleh & Goodwin, 1979; Liu & Su, 1996; Martinez Lorente et al., 1995; Ye et al., 1999; Hester et al., 1996). In contrast to other first row transition metal ions, only one example of six-coordinated vanadium containing H2biim, [VOCl(H2biim)2]Cl, has been reported (Cancela et al., 2001). The synthesis and crystal structure of a complex of oxovanadium(IV) with neutral 2,2'-biimidazole, i.e. [VO(H2biim)(H2O)3]SO4.2H2O, (I), is reported in this paper.

The crystal of (I) is built of [VO(H2biim)(H2O)3]2+ cations, sulfate anions and solvate water molecules. The structure of the cation is shown in Fig. 1. Selected interatomic distances and angles are listed in Table 1.

The V atom has a distorted octahedral coordination formed by vanadyl oxygen, three water ligands and two N atoms of the 2,2'-biimidazole ligand. The water O2 atom is in a trans position with respect to the vanadyl O1 atom. The V1O1 bond [1.579 (3) Å], is within the range 1.52–1.68 Å observed for vanadyl VO bonds (Fisher et al., 1989). However, it is somewhat shorter than one, found earlier in VO2+ groups in octahedral complexes (Kime-Hunt et al.,1989). The V1—O(O3, O4) distances are similar and in accordance with those in [HB(Me2pz)3]VOCl(DMF) (Kime-Hunt et al., 1989) and VO(O2)(pyridine-2-carboxylato-N,O)·2H2O (Mimoun et al., 1983). The V1—O2(H2O) distance trans to the vanadyl group is, however, significantly longer.

The mean vanadium–imidazole nitrogen distance [2.099 (3) Å] is quite similar to the V—N distance, derived from EXAFS data, reported for native vanadium(V) and reduced vanadium(IV) forms of vanadium bromoperoxidase, and nearly the same as for six-coordinate vanadium(IV) (Arber et al., 1989).

Angles in the coordination sphere deviate appreciably from the ideal octahedral values, the maximum deviations being, as expected, due to the chelating `bite' of the biimidazole. The N1—V1—N3 angle, 78.66 (12)°, is, obviously, smaller than the ideal octahedral value, but similar to that found for [VOCl(H2biim)2]Cl, 77.66 (8)°. The average O1—V1—N(N1,N3) and O1—V—O(O3,O4) angles (100.46 and 94.55°, respectively) are larger than the average O2—V—N(N1,N3) and O2—V—O(O3,O4) angles (82.85 and 81.66°, respectively). Such a difference in bond angles is typical for octahedral VO2+ complexes. The C3—C4 distance is similar to those found for free biimidazole (Cromer et al., 1987) and for [Ni(H2biim)2(H2O)2](NO3)2 (Mighell et al., 1969) of 1.423 and 1.441 Å, respectively. Both imidazole rings are planar, the largest deviation from the ring least-squares plane being 0.009 (4) Å.

The extensive hydrogen-bonding network links cations, anions and water molecules into the infinite three-dimensional network (Table 2 and Fig. 2).

Experimental top

H2biim was synthesized in accordance with a published procedure (Thummel et al., 1989). VOSO4·6H2O was commercially available from Acros without further purification. VOSO4·6H2O (0.217 g, 1 mmol) dissolved in 10 ml of deoxygenated water was added slowly to a suspension of H2biim (0.067 g, 0.5 mmol) in 15 ml of water in an inert-atmosphere flask to give a blue–green solution. This solution was left in a refrigerator for a few days. Blue crystals were collected by filtration, washed with water and dried under vacuum. Analysis (%) found: C 18.52, H 4.18, N 14.57; calculated for C6H16N4O10SV: C 18.61, H 4.16, N 14.47. CHN were analyzed in a Perkin-Elmer 240 C Elemental Analyzer.

Refinement top

H atoms attached to C and N atoms were placed in calculated positions (C—H = 0.93 Å and N—H = 0.86 Å), with Uiso(H) = 1.2Ueq or 1.5Ueq of their respective parent atoms. H atoms bonded to O atoms were located in difference Fourier maps and refined isotropically [Uiso(H) values are in the range 0.01–0.09 Å2; O—H bond lengths span the 0.68–0.89 Å interval].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1994-1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title cation, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound. The hydrogen bonds are shown as dotted lines.
Triaqua(2,2'-biimidazole)oxovandium(IV) sulfate dihydrate top
Crystal data top
[VO(C6H6N4)(H2O)3]SO4·2H2OF(000) = 796
Mr = 387.23Dx = 1.693 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ynCell parameters from 2919 reflections
a = 8.796 (2) Åθ = 2.3–27.4°
b = 16.337 (5) ŵ = 0.85 mm1
c = 11.058 (3) ÅT = 293 K
β = 106.994 (3)°Block, blue
V = 1519.7 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
SMART5.0 CCD area-detector
diffractometer
2966 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.785, Tmax = 0.849k = 1320
6656 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0051P)2 + 5.8095P]
where P = (Fo2 + 2Fc2)/3
2966 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[VO(C6H6N4)(H2O)3]SO4·2H2OV = 1519.7 (7) Å3
Mr = 387.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.796 (2) ŵ = 0.85 mm1
b = 16.337 (5) ÅT = 293 K
c = 11.058 (3) Å0.30 × 0.20 × 0.20 mm
β = 106.994 (3)°
Data collection top
SMART5.0 CCD area-detector
diffractometer
2966 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2613 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.849Rint = 0.029
6656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.53 e Å3
2966 reflectionsΔρmin = 0.50 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.82108 (7)0.13784 (4)0.35777 (6)0.02700 (17)
S10.75417 (11)0.86569 (6)0.87250 (9)0.0310 (2)
O10.9707 (3)0.10862 (18)0.3179 (3)0.0382 (7)
O20.6153 (4)0.1895 (2)0.4024 (3)0.0380 (7)
O30.8789 (4)0.25890 (18)0.3664 (3)0.0365 (7)
O40.6776 (4)0.1455 (2)0.1759 (3)0.0373 (7)
O50.8211 (4)0.9476 (2)0.8859 (3)0.0588 (10)
O60.6329 (3)0.8599 (2)0.9393 (3)0.0428 (7)
O70.8812 (4)0.8083 (2)0.9274 (3)0.0578 (10)
O80.6819 (3)0.8473 (2)0.7383 (3)0.0472 (8)
O90.8183 (5)0.0961 (3)0.0066 (4)0.0474 (9)
O100.1423 (5)0.2973 (3)0.3171 (4)0.0642 (11)
N10.9128 (4)0.12241 (19)0.5533 (3)0.0303 (7)
N20.9117 (4)0.0520 (2)0.7214 (3)0.0363 (8)
H20.88910.01490.76850.044*
N30.7161 (4)0.0259 (2)0.3844 (3)0.0322 (7)
N40.6770 (4)0.0647 (2)0.5181 (3)0.0397 (9)
H40.68280.08930.58810.048*
C11.0133 (5)0.1591 (3)0.6578 (4)0.0385 (10)
H11.07240.20620.65710.046*
C21.0130 (5)0.1164 (3)0.7609 (4)0.0443 (11)
H2A1.07080.12830.84390.053*
C30.8549 (5)0.0574 (2)0.5971 (4)0.0293 (8)
C40.7503 (5)0.0046 (2)0.5053 (4)0.0304 (9)
C50.5908 (5)0.0898 (3)0.4002 (4)0.0453 (11)
H50.52750.13640.38030.054*
C60.6155 (5)0.0338 (3)0.3186 (4)0.0415 (10)
H60.57130.03540.23130.050*
H70.524 (6)0.181 (3)0.353 (4)0.048 (15)*
H80.623 (6)0.221 (3)0.457 (5)0.046 (15)*
H90.959 (6)0.271 (3)0.350 (4)0.043 (14)*
H100.874 (6)0.288 (3)0.429 (5)0.069 (18)*
H110.588 (5)0.139 (3)0.152 (4)0.033 (13)*
H120.723 (7)0.128 (4)0.131 (5)0.07 (2)*
H130.894 (6)0.104 (3)0.042 (5)0.051 (19)*
H140.808 (6)0.051 (3)0.018 (5)0.06 (2)*
H150.189 (5)0.264 (2)0.380 (4)0.015 (11)*
H160.210 (8)0.326 (4)0.378 (6)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0282 (3)0.0269 (3)0.0261 (3)0.0009 (3)0.0082 (3)0.0011 (3)
S10.0281 (5)0.0363 (5)0.0279 (5)0.0055 (4)0.0071 (4)0.0028 (4)
O10.0340 (15)0.0405 (17)0.0405 (16)0.0031 (13)0.0114 (13)0.0003 (13)
O20.0277 (16)0.0438 (19)0.0412 (18)0.0014 (14)0.0082 (14)0.0118 (16)
O30.0422 (18)0.0314 (16)0.0412 (18)0.0066 (14)0.0205 (15)0.0037 (14)
O40.0288 (17)0.054 (2)0.0287 (16)0.0041 (15)0.0079 (14)0.0017 (14)
O50.084 (3)0.047 (2)0.059 (2)0.0299 (19)0.041 (2)0.0159 (17)
O60.0334 (15)0.059 (2)0.0392 (16)0.0015 (15)0.0149 (13)0.0078 (15)
O70.0467 (19)0.074 (3)0.057 (2)0.0173 (17)0.0220 (17)0.0281 (19)
O80.0399 (17)0.067 (2)0.0313 (16)0.0180 (16)0.0053 (13)0.0001 (15)
O90.033 (2)0.064 (3)0.043 (2)0.0005 (18)0.0085 (17)0.0149 (19)
O100.052 (2)0.063 (3)0.083 (3)0.010 (2)0.028 (2)0.014 (3)
N10.0340 (17)0.0273 (18)0.0267 (16)0.0005 (14)0.0046 (14)0.0015 (14)
N20.051 (2)0.0321 (19)0.0251 (17)0.0010 (16)0.0101 (16)0.0039 (15)
N30.0356 (18)0.0294 (18)0.0292 (17)0.0038 (15)0.0057 (14)0.0004 (14)
N40.046 (2)0.037 (2)0.0344 (19)0.0102 (17)0.0097 (16)0.0055 (16)
C10.044 (2)0.029 (2)0.036 (2)0.0069 (19)0.0026 (19)0.0044 (18)
C20.054 (3)0.039 (3)0.032 (2)0.003 (2)0.000 (2)0.0052 (19)
C30.033 (2)0.026 (2)0.028 (2)0.0023 (17)0.0086 (17)0.0032 (16)
C40.035 (2)0.026 (2)0.029 (2)0.0011 (17)0.0080 (17)0.0021 (16)
C50.047 (3)0.040 (3)0.044 (3)0.017 (2)0.005 (2)0.005 (2)
C60.047 (3)0.041 (3)0.032 (2)0.009 (2)0.005 (2)0.0044 (19)
Geometric parameters (Å, º) top
V1—O11.579 (3)O10—H160.89 (7)
V1—O22.180 (3)N1—C31.329 (5)
V1—O32.037 (3)N1—C11.370 (5)
V1—O42.042 (3)N2—C31.321 (5)
V1—N12.090 (3)N2—C21.365 (5)
V1—N32.107 (3)N2—H20.8600
S1—O71.449 (3)N3—C41.328 (5)
S1—O51.452 (3)N3—C61.375 (5)
S1—O81.465 (3)N4—C41.331 (5)
S1—O61.467 (3)N4—C51.366 (5)
O2—H70.84 (5)N4—H40.8600
O2—H80.78 (5)C1—C21.338 (6)
O3—H90.80 (5)C1—H10.9300
O3—H100.86 (6)C2—H2A0.9300
O4—H110.76 (4)C3—C41.440 (5)
O4—H120.78 (6)C5—C61.346 (6)
O9—H130.68 (5)C5—H50.9300
O9—H140.78 (6)C6—H60.9300
O10—H150.88 (4)
O1—V1—O395.13 (15)H15—O10—H1670 (4)
O1—V1—O493.96 (14)C3—N1—C1105.3 (3)
O3—V1—O493.46 (13)C3—N1—V1113.6 (3)
O1—V1—N198.68 (14)C1—N1—V1141.1 (3)
O3—V1—N193.03 (13)C3—N2—C2107.2 (3)
O4—V1—N1165.20 (13)C3—N2—H2126.4
O1—V1—N3102.23 (14)C2—N2—H2126.4
O3—V1—N3161.67 (14)C4—N3—C6105.5 (3)
O4—V1—N391.21 (13)C4—N3—V1112.9 (3)
N1—V1—N378.66 (12)C6—N3—V1141.5 (3)
O1—V1—O2174.22 (14)C4—N4—C5107.8 (3)
O3—V1—O279.97 (13)C4—N4—H4126.1
O4—V1—O283.35 (14)C5—N4—H4126.1
N1—V1—O284.71 (13)C2—C1—N1109.2 (4)
N3—V1—O282.98 (13)C2—C1—H1125.4
O7—S1—O5108.3 (2)N1—C1—H1125.4
O7—S1—O8110.2 (2)C1—C2—N2107.0 (4)
O5—S1—O8109.60 (19)C1—C2—H2A126.5
O7—S1—O6109.41 (18)N2—C2—H2A126.5
O5—S1—O6109.89 (19)N2—C3—N1111.3 (3)
O8—S1—O6109.44 (17)N2—C3—C4131.5 (4)
V1—O2—H7119 (3)N1—C3—C4117.1 (3)
V1—O2—H8123 (4)N3—C4—N4110.9 (3)
H7—O2—H8117 (5)N3—C4—C3117.5 (3)
V1—O3—H9117 (3)N4—C4—C3131.6 (4)
V1—O3—H10121 (4)C6—C5—N4106.4 (4)
H9—O3—H10108 (5)C6—C5—H5126.8
V1—O4—H11128 (3)N4—C5—H5126.8
V1—O4—H12109 (4)C5—C6—N3109.5 (4)
H11—O4—H12113 (5)C5—C6—H6125.3
H13—O9—H14112 (6)N3—C6—H6125.3
O1—V1—N1—C3105.3 (3)N1—C1—C2—N20.1 (5)
O3—V1—N1—C3159.1 (3)C3—N2—C2—C10.3 (5)
O4—V1—N1—C343.1 (7)C2—N2—C3—N10.6 (5)
N3—V1—N1—C34.5 (3)C2—N2—C3—C4176.6 (4)
O2—V1—N1—C379.4 (3)C1—N1—C3—N20.6 (4)
O1—V1—N1—C177.4 (4)V1—N1—C3—N2177.6 (3)
O3—V1—N1—C118.2 (4)C1—N1—C3—C4177.0 (3)
O4—V1—N1—C1134.2 (6)V1—N1—C3—C44.8 (4)
N3—V1—N1—C1178.3 (5)C6—N3—C4—N40.0 (5)
O2—V1—N1—C197.8 (4)V1—N3—C4—N4177.7 (3)
O1—V1—N3—C4100.1 (3)C6—N3—C4—C3179.8 (4)
O3—V1—N3—C460.8 (5)V1—N3—C4—C32.2 (4)
O4—V1—N3—C4165.6 (3)C5—N4—C4—N30.0 (5)
N1—V1—N3—C43.5 (3)C5—N4—C4—C3179.8 (4)
O2—V1—N3—C482.5 (3)N2—C3—C4—N3178.8 (4)
O1—V1—N3—C683.6 (5)N1—C3—C4—N31.8 (5)
O3—V1—N3—C6115.5 (5)N2—C3—C4—N41.4 (8)
O4—V1—N3—C610.7 (5)N1—C3—C4—N4178.4 (4)
N1—V1—N3—C6179.8 (5)C4—N4—C5—C60.0 (5)
O2—V1—N3—C693.9 (5)N4—C5—C6—N30.0 (5)
C3—N1—C1—C20.5 (5)C4—N3—C6—C50.0 (5)
V1—N1—C1—C2176.9 (3)V1—N3—C6—C5176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.861.922.775 (5)170
N4—H4···O8i0.861.962.817 (5)175
O2—H7···O8ii0.84 (5)1.85 (5)2.691 (4)172 (5)
O2—H8···O7iii0.78 (5)1.93 (5)2.697 (5)171 (5)
O3—H9···O10iv0.80 (5)1.81 (5)2.608 (5)179 (5)
O3—H10···O6iii0.86 (6)1.88 (6)2.735 (4)176 (5)
O4—H11···O6ii0.76 (4)1.91 (4)2.657 (4)167 (5)
O4—H12···O90.78 (6)1.88 (6)2.654 (5)172 (6)
O9—H13···O7v0.68 (5)2.39 (5)2.971 (6)145 (6)
O9—H14···O5vi0.78 (6)2.02 (6)2.772 (5)163 (6)
O10—H16···O9vii0.89 (7)1.94 (7)2.814 (6)167 (6)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x, y1, z1; (vii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[VO(C6H6N4)(H2O)3]SO4·2H2O
Mr387.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.796 (2), 16.337 (5), 11.058 (3)
β (°) 106.994 (3)
V3)1519.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSMART5.0 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
6656, 2966, 2613
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.102, 1.00
No. of reflections2966
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.50

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1994-1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
V1—O11.579 (3)N2—C21.365 (5)
V1—O22.180 (3)N3—C41.328 (5)
V1—O32.037 (3)N3—C61.375 (5)
V1—O42.042 (3)N4—C41.331 (5)
V1—N12.090 (3)N4—C51.366 (5)
V1—N32.107 (3)C1—C21.338 (6)
N1—C31.329 (5)C3—C41.440 (5)
N1—C11.370 (5)C5—C61.346 (6)
N2—C31.321 (5)
O1—V1—O395.13 (15)C1—N1—V1141.1 (3)
O1—V1—O493.96 (14)C3—N2—C2107.2 (3)
O3—V1—O493.46 (13)C4—N3—C6105.5 (3)
O1—V1—N198.68 (14)C4—N3—V1112.9 (3)
O3—V1—N193.03 (13)C6—N3—V1141.5 (3)
O4—V1—N1165.20 (13)C4—N4—C5107.8 (3)
O1—V1—N3102.23 (14)C2—C1—N1109.2 (4)
O3—V1—N3161.67 (14)N1—C1—H1125.4
O4—V1—N391.21 (13)C1—C2—N2107.0 (4)
N1—V1—N378.66 (12)N2—C3—N1111.3 (3)
O1—V1—O2174.22 (14)N2—C3—C4131.5 (4)
O3—V1—O279.97 (13)N1—C3—C4117.1 (3)
O4—V1—O283.35 (14)N3—C4—N4110.9 (3)
N1—V1—O284.71 (13)N3—C4—C3117.5 (3)
N3—V1—O282.98 (13)N4—C4—C3131.6 (4)
C3—N1—C1105.3 (3)C6—C5—N4106.4 (4)
C3—N1—V1113.6 (3)C5—C6—N3109.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.861.922.775 (5)169.8
N4—H4···O8i0.861.962.817 (5)174.6
O2—H7···O8ii0.84 (5)1.85 (5)2.691 (4)172 (5)
O2—H8···O7iii0.78 (5)1.93 (5)2.697 (5)171 (5)
O3—H9···O10iv0.80 (5)1.81 (5)2.608 (5)179 (5)
O3—H10···O6iii0.86 (6)1.88 (6)2.735 (4)176 (5)
O4—H11···O6ii0.76 (4)1.91 (4)2.657 (4)167 (5)
O4—H12···O90.78 (6)1.88 (6)2.654 (5)172 (6)
O9—H13···O7v0.68 (5)2.39 (5)2.971 (6)145 (6)
O9—H14···O5vi0.78 (6)2.02 (6)2.772 (5)163 (6)
O10—H16···O9vii0.89 (7)1.94 (7)2.814 (6)167 (6)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x, y1, z1; (vii) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds