Download citation
Download citation
link to html
In the title co-crystal, C7H4N2O6·C6H7NO, the two components are linked by an intermolecular hydrogen bond between the O—H and N—O groups [O...O 2.487 (1) Å]. The dihedral angle formed by the planes of the rings of the component mol­ecules is 7.40 (7)°. The rings of the complex are stacked along the b axis of the crystal. The stacks exhibit overlap between the aromatic rings, with a mean interplanar distance of 3.136 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680102089X/ya6072sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680102089X/ya6072Isup2.hkl
Contains datablock I

CCDC reference: 180543

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.035
  • wR factor = 0.095
  • Data-to-parameter ratio = 14.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 2973 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3141 Completeness (_total/calc) 94.65% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The para-methylpyridine N-oxide molecule (PPNO) represents an interesting system which tends to form molecular complexes with diverse hydrogen-bond donors (Moreno-Fuquen et al., 1995). The synthesis and characterization of the title PPNO and 3,5-dinitrobENZOic acid (DNBA) complex, (I), have a twofold purpose: (a) to enrich the crystallographic information on compounds based on the PPNO and (b) to analyze the type of hydrogen bond in the title complex, (I).

The DNBA–PPNO adduct with the adopted atom-numbering scheme is shown in Fig. 1. The molecular complex owes its formation to a strong hydrogen bond (Emsley, 1984) between the O7 atom of the N-oxide group of PPNO and the O3 atom of the DNBA carboxylic group. The O7···O3 distance is 2.487 (1) Å and the angle O7···HO3—O3 is 176 (2)°. The O3—HO3 and O7···HO3 distances are 0.95 (2) and 1.54 (2) Å, respectively. The dihedral angle formed by the planes of the rings of the component molecules is 7.40 (7)°.

The structure of pyridine oxide component is close to that found in a number of structures involving pyridine oxide derivatives, e.g. 4-methylpyridine N-oxide [Morris et al., 1998; Cambridge Structural Database (Allen et al., 1991) refcode NUSCAF], 4,4'-dimethyl-2,2'-bipyridine 1,1'-dioxide (Kanno & Iijima, 1997; TUDREP), 3,5-dinitrobENZOic acid (Domenicano et al., 1990; CUKCAM10) and 3-methyl-nitropyridine-1-oxide 3,5-dinitrobENZOic acid (Bochuan et al., 1995; FAFTAH). The N3—O7 bond length changes from 1.3335 (12) Å in (I) to 1.309 and 1.301 Å, respectively, in the NUSCAF and TUDREP structures. The C3—C7, O4—C7 and O3—C7 bond lengths in the CUKCAM10 structure change from 1.4837 (8), 1.2357 (7) and 1.2844 (5) Å to 1.5062 (15), 1.2187 (14) and 1.3074 (14) Å, respectively, in the title complex. The latter changes in bond lengths may be explained by the formation of intermolecular hydrogen bond in the title complex. The structural behavior of DNBA moiety in the title complex is very close to the structure of the same moiety in the FAFTAH structure.

The rings of the complex are stacked in the crystal along the b axis (Fig. 2). Resulting stacks exhibit overlap between the aromatic rings with a mean interplanar distance of 3.136 (1) Å.

Experimental top

Crystals of (I) were obtained from a mixture of equimolecular solutions of PPNO and DNBA in acetonitrile, which was left to evaporate slowly. Initial reagents were purchased from Aldrich and were used without additional purification. The melting point of the crystals of (I) is 403 (1) K.

Refinement top

All H atoms, with the exception of the carboxylic group HO3 atom, were placed in geometrically calculated positions and included in the refinement as riding. The displacement parameters of the H atoms were given a value of 1.2Ueq, where Ueq is the equivalent displacement parameter of the carrier atom. The HO3 atom was located in the difference Fourier synthesis and refined isotropically.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Enraf-Nonius 1989); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ZORTEP (Zsolnai, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A ORTEP-3 (Farrugia, 1997) plot of the asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of an arbitrary radii.
[Figure 2] Fig. 2. A ZORTEP view (Zsolnai, 1995) of the crystal packing showing the overlapped rings along b axis.
(I) top
Crystal data top
C7H4N2O6·C6H7NODx = 1.559 Mg m3
Dm = 1.547 Mg m3
Dm measured by floatation in KI solution
Mr = 321.25Melting point: 403(1) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2223 (2) ÅCell parameters from 2643 reflections
b = 6.3266 (1) Åθ = 1.0–27.5°
c = 23.4991 (4) ŵ = 0.13 mm1
β = 93.6067 (7)°T = 123 K
V = 1368.36 (4) Å3Cut_plate, yellow
Z = 40.20 × 0.15 × 0.08 mm
F(000) = 664
Data collection top
Nonius KappaCCD
diffractometer
2759 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ϕ and ω scansh = 011
4607 measured reflectionsk = 78
2973 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.05663P],
where P = (Fo2 + 2Fc2)/3
2973 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C7H4N2O6·C6H7NOV = 1368.36 (4) Å3
Mr = 321.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2223 (2) ŵ = 0.13 mm1
b = 6.3266 (1) ÅT = 123 K
c = 23.4991 (4) Å0.20 × 0.15 × 0.08 mm
β = 93.6067 (7)°
Data collection top
Nonius KappaCCD
diffractometer
2759 reflections with I > 2σ(I)
4607 measured reflectionsRint = 0.011
2973 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
2973 reflectionsΔρmin = 0.22 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16145 (11)1.1161 (2)0.39689 (5)0.0163 (2)
C20.20254 (11)0.9265 (2)0.42280 (5)0.0166 (2)
H20.16080.88150.45570.020*
C30.30813 (11)0.8051 (2)0.39810 (5)0.0163 (2)
C40.36967 (11)0.8741 (2)0.34875 (5)0.0172 (2)
H40.43940.79310.33190.021*
C50.32487 (11)1.0659 (2)0.32531 (5)0.0171 (2)
C60.22033 (11)1.1908 (2)0.34819 (5)0.0172 (2)
H60.19111.31870.33170.021*
C70.36106 (11)0.5996 (2)0.42424 (5)0.0174 (2)
N10.05276 (10)1.2500 (2)0.42293 (4)0.0196 (2)
N20.39206 (10)1.1435 (2)0.27433 (4)0.0218 (2)
O10.01459 (10)1.2001 (2)0.46991 (4)0.0304 (2)
O20.00691 (10)1.40442 (14)0.39587 (4)0.0275 (2)
O30.29742 (9)0.55048 (13)0.47062 (4)0.0224 (2)
O40.45300 (9)0.49427 (13)0.40224 (4)0.0227 (2)
O50.47452 (10)1.0252 (2)0.25054 (4)0.0317 (2)
O60.36325 (10)1.3238 (2)0.25824 (4)0.0344 (2)
HO30.331 (2)0.419 (4)0.4857 (8)0.056 (6)*
C80.17946 (12)0.1770 (2)0.63476 (5)0.0205 (2)
H80.11770.26190.65470.025*
C90.23219 (12)0.2507 (2)0.58478 (5)0.0201 (2)
H90.20590.38430.57120.024*
C100.35938 (12)0.0678 (2)0.57380 (5)0.0178 (2)
H100.41970.15100.55280.021*
C110.30788 (12)0.1444 (2)0.62357 (5)0.0188 (2)
H110.33400.27960.63590.023*
C120.21739 (12)0.0228 (2)0.65585 (5)0.0187 (2)
C130.16328 (13)0.1040 (2)0.71072 (5)0.0253 (3)
H1310.08690.01390.72250.030*
H1320.24160.10500.73960.030*
H1330.12670.24500.70510.030*
N30.32205 (10)0.12877 (15)0.55550 (4)0.0165 (2)
O70.37737 (9)0.19863 (13)0.50791 (3)0.0219 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0142 (5)0.0172 (5)0.0177 (5)0.0008 (4)0.0023 (4)0.0016 (4)
C20.0159 (5)0.0177 (5)0.0163 (5)0.0011 (4)0.0022 (4)0.0004 (4)
C30.0154 (5)0.0157 (5)0.0176 (5)0.0008 (4)0.0001 (4)0.0008 (4)
C40.0148 (5)0.0194 (5)0.0174 (5)0.0008 (4)0.0016 (4)0.0022 (4)
C50.0158 (5)0.0220 (5)0.0135 (5)0.0023 (4)0.0013 (4)0.0011 (4)
C60.0165 (5)0.0169 (5)0.0179 (5)0.0006 (4)0.0010 (4)0.0014 (4)
C70.0170 (5)0.0161 (5)0.0190 (5)0.0005 (4)0.0002 (4)0.0008 (4)
N10.0181 (4)0.0189 (5)0.0221 (5)0.0025 (4)0.0043 (4)0.0009 (4)
N20.0178 (5)0.0304 (6)0.0173 (5)0.0003 (4)0.0023 (4)0.0039 (4)
O10.0338 (5)0.0301 (5)0.0294 (5)0.0090 (4)0.0181 (4)0.0072 (4)
O20.0298 (5)0.0226 (4)0.0303 (5)0.0113 (4)0.0047 (4)0.0047 (4)
O30.0237 (4)0.0196 (4)0.0245 (4)0.0050 (3)0.0070 (3)0.0065 (3)
O40.0250 (4)0.0189 (4)0.0246 (5)0.0051 (3)0.0050 (3)0.0011 (3)
O50.0317 (5)0.0394 (5)0.0255 (5)0.0057 (4)0.0140 (4)0.0017 (4)
O60.0329 (5)0.0375 (5)0.0340 (5)0.0082 (4)0.0108 (4)0.0202 (4)
C80.0195 (5)0.0209 (6)0.0213 (6)0.0035 (4)0.0041 (4)0.0021 (4)
C90.0224 (5)0.0162 (5)0.0220 (6)0.0050 (4)0.0027 (4)0.0001 (4)
C100.0176 (5)0.0148 (5)0.0208 (6)0.0018 (4)0.0007 (4)0.0017 (4)
C110.0199 (5)0.0148 (5)0.0215 (6)0.0003 (4)0.0009 (4)0.0019 (4)
C120.0165 (5)0.0207 (5)0.0189 (5)0.0021 (4)0.0010 (4)0.0002 (4)
C130.0260 (6)0.0270 (6)0.0236 (6)0.0002 (5)0.0069 (5)0.0037 (5)
N30.0180 (4)0.0161 (5)0.0155 (4)0.0011 (3)0.0018 (3)0.0004 (3)
O70.0284 (4)0.0204 (4)0.0178 (4)0.0047 (3)0.0083 (3)0.0044 (3)
Geometric parameters (Å, º) top
C1—C61.381 (2)N2—O51.2263 (14)
C1—C21.387 (2)O3—HO30.95 (2)
C1—N11.4745 (14)C8—C91.380 (2)
C2—C31.3948 (15)C8—C121.394 (2)
C2—H20.930C8—H80.930
C3—C41.393 (2)C9—N31.3518 (14)
C3—C71.5062 (15)C9—H90.930
C4—C51.385 (2)C10—N31.3531 (14)
C4—H40.930C10—C111.378 (2)
C5—C61.381 (2)C10—H100.930
C5—N21.4675 (14)C11—C121.394 (2)
C6—H60.930C11—H110.930
C7—O41.2187 (14)C12—C131.502 (2)
C7—O31.3074 (14)C13—H1310.960
N1—O11.2210 (13)C13—H1320.960
N1—O21.2265 (13)C13—H1330.960
N2—O61.2256 (14)N3—O71.3335 (12)
C6—C1—C2123.32 (10)O5—N2—C5118.29 (10)
C6—C1—N1117.40 (10)C7—O3—HO3111.7 (12)
C2—C1—N1119.26 (10)C9—C8—C12120.98 (10)
C1—C2—C3118.15 (10)C9—C8—H8119.51
C1—C2—H2120.92C12—C8—H8119.51
C3—C2—H2120.92N3—C9—C8120.03 (10)
C4—C3—C2120.37 (10)N3—C9—H9119.98
C4—C3—C7118.13 (10)C8—C9—H9119.98
C2—C3—C7121.49 (10)N3—C10—C11119.91 (10)
C5—C4—C3118.60 (10)N3—C10—H10120.04
C5—C4—H4120.70C11—C10—H10120.04
C3—C4—H4120.70C10—C11—C12121.20 (10)
C6—C5—C4122.99 (10)C10—C11—H11119.40
C6—C5—N2117.86 (10)C12—C11—H11119.40
C4—C5—N2119.14 (10)C11—C12—C8116.89 (10)
C1—C6—C5116.55 (10)C11—C12—C13121.39 (11)
C1—C6—H6121.72C8—C12—C13121.72 (10)
C5—C6—H6121.72C12—C13—H131109.47
O4—C7—O3125.76 (10)C12—C13—H132109.47
O4—C7—C3121.03 (10)H131—C13—H132109.47
O3—C7—C3113.21 (9)C12—C13—H133109.47
O1—N1—O2124.41 (10)H131—C13—H133109.47
O1—N1—C1117.96 (9)H132—C13—H133109.47
O2—N1—C1117.63 (9)O7—N3—C9121.12 (9)
O6—N2—O5123.77 (10)O7—N3—C10117.91 (9)
O6—N2—C5117.94 (10)C9—N3—C10120.97 (10)
C6—C1—C2—C30.4 (2)C2—C1—N1—O18.0 (2)
N1—C1—C2—C3178.46 (9)C6—C1—N1—O29.7 (2)
C1—C2—C3—C40.1 (2)C2—C1—N1—O2172.12 (10)
C1—C2—C3—C7178.70 (10)C6—C5—N2—O67.4 (2)
C2—C3—C4—C50.7 (2)C4—C5—N2—O6171.67 (10)
C7—C3—C4—C5178.12 (9)C6—C5—N2—O5173.13 (10)
C3—C4—C5—C60.9 (2)C4—C5—N2—O57.8 (2)
C3—C4—C5—N2178.15 (10)C12—C8—C9—N30.0 (2)
C2—C1—C6—C50.1 (2)N3—C10—C11—C120.0 (2)
N1—C1—C6—C5178.27 (9)C10—C11—C12—C81.3 (2)
C4—C5—C6—C10.5 (2)C10—C11—C12—C13178.81 (11)
N2—C5—C6—C1178.57 (9)C9—C8—C12—C111.3 (2)
C4—C3—C7—O41.5 (2)C9—C8—C12—C13178.85 (11)
C2—C3—C7—O4179.74 (10)C8—C9—N3—O7178.25 (10)
C4—C3—C7—O3179.37 (10)C8—C9—N3—C101.3 (2)
C2—C3—C7—O30.59 (15)C11—C10—N3—O7178.29 (10)
C6—C1—N1—O1170.24 (10)C11—C10—N3—C91.3 (2)

Experimental details

Crystal data
Chemical formulaC7H4N2O6·C6H7NO
Mr321.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.2223 (2), 6.3266 (1), 23.4991 (4)
β (°) 93.6067 (7)
V3)1368.36 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4607, 2973, 2759
Rint0.011
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.05
No. of reflections2973
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Enraf-Nonius 1989), DENZO and COLLECT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ZORTEP (Zsolnai, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
C2—C31.3948 (15)C7—O31.3074 (14)
C3—C41.393 (2)C9—N31.3518 (14)
C3—C71.5062 (15)C10—N31.3531 (14)
C7—O41.2187 (14)N3—O71.3335 (12)
C4—C3—C7118.13 (10)O3—C7—C3113.21 (9)
C2—C3—C7121.49 (10)O7—N3—C9121.12 (9)
O4—C7—O3125.76 (10)O7—N3—C10117.91 (9)
C4—C3—C7—O41.5 (2)C4—C5—N2—O57.8 (2)
C6—C1—N1—O29.7 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds