Download citation
Download citation
link to html
The title compound, V(MeCOCHCOMe)3 or [V(C5H7O2)3], has been prepared by an unusual route. Its structure, confirming its identity, is the same as that reported by Morosin & Montgomery [Acta Cryst. (1969), B25, 1354–1359] but enhanced in precision.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004391/ya6013sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004391/ya6013Isup2.hkl
Contains datablock I

CCDC reference: 162801

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.044
  • wR factor = 0.139
  • Data-to-parameter ratio = 25.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
ABSTM_02 Alert B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.445 0.928 Tmin' and Tmax expected: 0.832 0.942 RR' = 0.543 Please check that your absorption correction is appropriate.
Author response: ... The values quoted faithfully replicate those present in the output monitor file of the SADABS absorption correction program. That they differ appreciably from the SHELXL-97 theory values calculated from the dimensions of the crystal is neither surprising nor unusual.

Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 31.00 From the CIF: _reflns_number_total 5155 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 5518 Completeness (_total/calc) 93.42% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

There are at least two previous reports of the preparation of the title compound, (I), which is also known as tris(acetylacetonato)vanadium(III). Grdenic & Korper-Colig (1964) prepared it by reaction of VO(acac)2 with Zn and 2,4-pentanedione (Hacac). It has also been obtained (Morosin & Montgomery, 1969) by the reaction of V2(SO4)3 (obtained by the electrolytic reduction of VOSO4) with Hacac in sodium carbonate solution. Morosin & Montgomery described two crystalline forms of the material, a monoclinic β form [REFCODE in Cambridge Structural Database (Allen & Kennard, 1993): VAACAC01], and the orthorhombic α form (VAACAC) whose stucture was determined and refined on the basis of 3061 reflections with 1361 classed as observed [I>3σ(I)]. The improved precision of the rerefinement of the α form (I) presented here is attributed to a more extensive and better quality set of intensity data (see Tables) in conjunction with the use of up-to-date software (SHELXL97; Sheldrick, 1997).

Fig. 1 shows the molecule and atom labelling scheme [identical to that used by Morosin & Montgomery (1969)] and Table 1 compares selected bond distances and angles between their determination and this work.

Experimental top

Compound (I) was obtained from VO(acac)2 (0.400 g, 1.50 mmol) and a slight excess (ca 1.75 mmol) of K[SnPh3] prepared from Ph3SnH and KH, in tetrahydrofuran solution under an argon atmosphere. The deep-purple solution was stirred at room temperature for 1 h, concentrated, hexane added, and the mixture left in a freezer for 3 d. After filtering off an amorphous brown precipitate, the solution was left for a further period after which dark-orange brown crystals of (I) were deposited and collected [m. p. 460–461 K; literature 459–462 K (Morosin & Montgomery, 1969)].

Refinement top

Refinement was started on the basis of coordinates for non-H atoms extracted from the Cambridge Structural Database (Allen & Kennard, 1993) (VAACAC: Morosin & Montgomery, 1969) by means of the EPSRC's chemical database service at Daresbury (Fletcher et al., 1996). The non-standard space group setting and atom labels of the original determination were retained, but the cell dimensions were adjusted appropriately for the new intensity data. In the final stages, H atoms were placed in calculated positions (C—H = 0.96 and 0.93 Å for methyl and alkene H atoms, respectively) and refined in a riding-model approximation. Methyl groups were treated as rigid bodies. The incompleteness (92.95% complete) of the intensity data available for this rerefinement is due to the presence of a few defective frames in the raw intensity data.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of (I) showing the labelling scheme. Non-H atoms are shown as 50% probability ellipsoids. H atoms have been omitted for clarity.
Tris(2,4-pentanedionato-O,O')-vanadium(III) (alpha form) top
Crystal data top
[V(C5H7O2)3]Dx = 1.334 Mg m3
Dm = 1.33 Mg m3
Dm measured by flotation in CCl4/EtOH (Morosin & Montgomery, 1969)
Mr = 348.26Melting point = 460–461 K
Orthorhombic, PcabMo Kα radiation, λ = 0.71073 Å
a = 15.4466 (7) ÅCell parameters from 4494 reflections
b = 16.6228 (8) Åθ = 2.4–26.4°
c = 13.5016 (6) ŵ = 0.60 mm1
V = 3466.7 (3) Å3T = 297 K
Z = 8Block, dark orange–brown
F(000) = 14560.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1000 area-detector
diffractometer
5155 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 31.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2214
Tmin = 0.445, Tmax = 0.928k = 2324
28129 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
5155 reflections(Δ/σ)max = 0.003
205 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[V(C5H7O2)3]V = 3466.7 (3) Å3
Mr = 348.26Z = 8
Orthorhombic, PcabMo Kα radiation
a = 15.4466 (7) ŵ = 0.60 mm1
b = 16.6228 (8) ÅT = 297 K
c = 13.5016 (6) Å0.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 1000 area-detector
diffractometer
5155 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2251 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.928Rint = 0.055
28129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.94Δρmax = 0.29 e Å3
5155 reflectionsΔρmin = 0.56 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0027 (2)0.35220 (15)0.33680 (19)0.0682 (7)
C100.0267 (3)0.40889 (19)0.4181 (2)0.1098 (13)
H10A0.01920.38340.48130.165*
H10B0.08670.42190.40870.165*
H10C0.00720.45730.41570.165*
C120.04869 (19)0.33732 (18)0.2556 (2)0.0772 (9)
H120.10240.36260.25330.093*
C20.02683 (18)0.28758 (18)0.17693 (19)0.0631 (7)
C200.08692 (19)0.2776 (2)0.0909 (2)0.0928 (11)
H20A0.07200.31550.04000.139*
H20B0.14540.28690.11210.139*
H20C0.08190.22390.06520.139*
C30.09410 (19)0.07824 (17)0.3143 (2)0.0713 (8)
C300.0465 (3)0.0223 (2)0.3825 (3)0.1097 (13)
H30A0.02790.05130.44020.165*
H30B0.08420.02070.40210.165*
H30C0.00310.00060.34890.165*
C340.1382 (2)0.04789 (18)0.2328 (2)0.0874 (10)
H340.13230.00670.21910.105*
C40.1899 (2)0.09232 (18)0.1710 (2)0.0687 (8)
C400.2398 (2)0.0525 (2)0.0882 (2)0.1090 (12)
H40A0.23510.08430.02920.163*
H40B0.21650.00010.07620.163*
H40C0.29960.04790.10670.163*
C50.30280 (18)0.29429 (18)0.36737 (18)0.0641 (7)
C500.3605 (2)0.2859 (2)0.4569 (2)0.0983 (11)
H50A0.34400.32490.50590.147*
H50B0.41960.29480.43780.147*
H50C0.35460.23280.48390.147*
C560.3225 (2)0.34965 (19)0.2937 (2)0.0848 (9)
H560.37350.37890.30060.102*
C60.2732 (2)0.36462 (16)0.2120 (2)0.0715 (8)
C600.3030 (3)0.4242 (2)0.1347 (3)0.1221 (15)
H60A0.29600.40120.06990.183*
H60B0.36290.43680.14540.183*
H60C0.26910.47240.13950.183*
O10.07705 (12)0.32206 (10)0.35069 (12)0.0639 (5)
O20.04379 (11)0.24907 (11)0.17215 (12)0.0639 (5)
O30.09151 (13)0.15212 (11)0.33728 (13)0.0676 (5)
O40.20162 (11)0.16752 (11)0.17940 (12)0.0628 (5)
O50.23767 (12)0.24903 (11)0.36504 (11)0.0629 (4)
O60.20096 (12)0.33224 (10)0.19387 (12)0.0627 (5)
V10.14153 (3)0.24589 (2)0.26686 (3)0.04841 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.089 (2)0.0534 (15)0.0618 (16)0.0145 (15)0.0148 (15)0.0007 (13)
C100.145 (3)0.089 (2)0.095 (2)0.049 (2)0.016 (2)0.026 (2)
C120.070 (2)0.092 (2)0.0691 (18)0.0257 (17)0.0046 (14)0.0003 (16)
C20.0541 (16)0.0823 (18)0.0528 (15)0.0015 (14)0.0057 (12)0.0116 (14)
C200.0601 (18)0.156 (3)0.0627 (18)0.0012 (19)0.0039 (14)0.0033 (19)
C30.075 (2)0.0570 (16)0.082 (2)0.0139 (14)0.0026 (15)0.0083 (15)
C300.124 (3)0.076 (2)0.128 (3)0.030 (2)0.018 (2)0.029 (2)
C340.106 (3)0.0528 (16)0.103 (3)0.0063 (18)0.004 (2)0.0144 (17)
C40.0735 (19)0.0649 (18)0.0677 (18)0.0122 (15)0.0068 (14)0.0160 (14)
C400.122 (3)0.110 (3)0.095 (2)0.027 (2)0.010 (2)0.045 (2)
C50.0614 (17)0.0791 (19)0.0518 (14)0.0041 (15)0.0030 (12)0.0080 (14)
C500.087 (2)0.147 (3)0.0603 (18)0.002 (2)0.0179 (16)0.012 (2)
C560.079 (2)0.096 (2)0.0796 (19)0.0326 (19)0.0105 (17)0.0092 (18)
C60.079 (2)0.0649 (17)0.0703 (18)0.0147 (15)0.0067 (15)0.0115 (14)
C600.129 (3)0.119 (3)0.119 (3)0.044 (3)0.008 (2)0.054 (3)
O10.0699 (12)0.0649 (11)0.0570 (10)0.0080 (10)0.0041 (9)0.0123 (9)
O20.0572 (10)0.0844 (13)0.0502 (10)0.0034 (10)0.0023 (7)0.0079 (9)
O30.0838 (13)0.0585 (11)0.0606 (11)0.0119 (10)0.0159 (9)0.0029 (9)
O40.0683 (12)0.0633 (11)0.0568 (10)0.0062 (9)0.0126 (8)0.0058 (9)
O50.0677 (11)0.0739 (11)0.0471 (9)0.0018 (10)0.0016 (8)0.0092 (9)
O60.0695 (12)0.0643 (11)0.0545 (9)0.0074 (9)0.0014 (9)0.0149 (9)
V10.0532 (2)0.0484 (2)0.0436 (2)0.0010 (2)0.00513 (16)0.00006 (18)
Geometric parameters (Å, º) top
C1—O11.267 (3)C40—H40A0.9600
C1—C121.376 (4)C40—H40B0.9600
C1—C101.516 (3)C40—H40C0.9600
C10—H10A0.9600C5—O51.257 (3)
C10—H10B0.9600C5—C561.389 (4)
C10—H10C0.9600C5—C501.508 (4)
C12—C21.388 (4)C50—H50A0.9600
C12—H120.9300C50—H50B0.9600
C2—O21.266 (3)C50—H50C0.9600
C2—C201.497 (4)C56—C61.363 (4)
C20—H20A0.9600C56—H560.9300
C20—H20B0.9600C6—O61.263 (3)
C20—H20C0.9600C6—C601.511 (4)
C3—O31.267 (3)C60—H60A0.9600
C3—C341.390 (4)C60—H60B0.9600
C3—C301.501 (4)C60—H60C0.9600
C30—H30A0.9600O1—V11.9688 (17)
C30—H30B0.9600O2—V11.9793 (17)
C30—H30C0.9600O3—V11.9825 (17)
C34—C41.370 (4)O4—V11.9881 (16)
C34—H340.9300O5—V11.9912 (18)
C4—O41.268 (3)O6—V11.9683 (17)
C4—C401.510 (4)
O1—C1—C12124.7 (2)O5—C5—C56123.7 (3)
O1—C1—C10114.2 (3)O5—C5—C50116.0 (3)
C12—C1—C10121.0 (3)C56—C5—C50120.4 (3)
C1—C10—H10A109.5C5—C50—H50A109.5
C1—C10—H10B109.5C5—C50—H50B109.5
H10A—C10—H10B109.5H50A—C50—H50B109.5
C1—C10—H10C109.5C5—C50—H50C109.5
H10A—C10—H10C109.5H50A—C50—H50C109.5
H10B—C10—H10C109.5H50B—C50—H50C109.5
C1—C12—C2125.2 (3)C6—C56—C5125.3 (3)
C1—C12—H12117.4C6—C56—H56117.3
C2—C12—H12117.4C5—C56—H56117.3
O2—C2—C12123.3 (3)O6—C6—C56125.0 (3)
O2—C2—C20116.0 (2)O6—C6—C60114.5 (3)
C12—C2—C20120.7 (3)C56—C6—C60120.6 (3)
C2—C20—H20A109.5C6—C60—H60A109.5
C2—C20—H20B109.5C6—C60—H60B109.5
H20A—C20—H20B109.5H60A—C60—H60B109.5
C2—C20—H20C109.5C6—C60—H60C109.5
H20A—C20—H20C109.5H60A—C60—H60C109.5
H20B—C20—H20C109.5H60B—C60—H60C109.5
O3—C3—C34124.1 (3)C1—O1—V1128.90 (17)
O3—C3—C30115.7 (3)C2—O2—V1129.61 (17)
C34—C3—C30120.1 (3)C3—O3—V1129.20 (18)
C3—C30—H30A109.5C4—O4—V1129.24 (18)
C3—C30—H30B109.5C5—O5—V1129.00 (17)
H30A—C30—H30B109.5C6—O6—V1128.74 (17)
C3—C30—H30C109.5O6—V1—O193.14 (8)
H30A—C30—H30C109.5O6—V1—O290.73 (7)
H30B—C30—H30C109.5O1—V1—O288.18 (7)
C4—C34—C3124.9 (3)O6—V1—O3174.40 (8)
C4—C34—H34117.5O1—V1—O391.87 (8)
C3—C34—H34117.5O2—V1—O391.92 (8)
O4—C4—C34124.0 (3)O6—V1—O487.87 (7)
O4—C4—C40115.2 (3)O1—V1—O4177.41 (8)
C34—C4—C40120.7 (3)O2—V1—O489.42 (7)
C4—C40—H40A109.5O3—V1—O487.23 (8)
C4—C40—H40B109.5O6—V1—O588.07 (7)
H40A—C40—H40B109.5O1—V1—O588.73 (7)
C4—C40—H40C109.5O2—V1—O5176.62 (7)
H40A—C40—H40C109.5O3—V1—O589.54 (8)
H40B—C40—H40C109.5O4—V1—O593.69 (7)
O1—C1—C12—C20.3 (5)C6—O6—V1—O192.0 (2)
C10—C1—C12—C2178.9 (3)C6—O6—V1—O2179.8 (2)
C1—C12—C2—O21.0 (5)C6—O6—V1—O490.4 (2)
C1—C12—C2—C20178.3 (3)C6—O6—V1—O53.4 (2)
O3—C3—C34—C45.2 (5)C1—O1—V1—O691.9 (2)
C30—C3—C34—C4173.9 (3)C1—O1—V1—O21.3 (2)
C3—C34—C4—O42.2 (5)C1—O1—V1—O390.6 (2)
C3—C34—C4—C40175.9 (3)C1—O1—V1—O5179.9 (2)
O5—C5—C56—C62.7 (5)C2—O2—V1—O693.8 (2)
C50—C5—C56—C6177.1 (3)C2—O2—V1—O10.6 (2)
C5—C56—C6—O62.8 (5)C2—O2—V1—O391.2 (2)
C5—C56—C6—C60177.7 (3)C2—O2—V1—O4178.4 (2)
C12—C1—O1—V11.0 (4)C3—O3—V1—O1168.6 (2)
C10—C1—O1—V1179.73 (19)C3—O3—V1—O280.4 (2)
C12—C2—O2—V10.2 (4)C3—O3—V1—O49.0 (2)
C20—C2—O2—V1179.01 (19)C3—O3—V1—O5102.7 (2)
C34—C3—O3—V12.9 (5)C4—O4—V1—O6170.8 (2)
C30—C3—O3—V1177.9 (2)C4—O4—V1—O280.1 (2)
C34—C4—O4—V18.8 (4)C4—O4—V1—O311.9 (2)
C40—C4—O4—V1173.02 (19)C4—O4—V1—O5101.2 (2)
C56—C5—O5—V14.6 (4)C5—O5—V1—O61.7 (2)
C50—C5—O5—V1175.20 (19)C5—O5—V1—O191.4 (2)
C56—C6—O6—V15.8 (4)C5—O5—V1—O3176.7 (2)
C60—C6—O6—V1174.6 (2)C5—O5—V1—O489.5 (2)

Experimental details

Crystal data
Chemical formula[V(C5H7O2)3]
Mr348.26
Crystal system, space groupOrthorhombic, Pcab
Temperature (K)297
a, b, c (Å)15.4466 (7), 16.6228 (8), 13.5016 (6)
V3)3466.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.445, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
28129, 5155, 2251
Rint0.055
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 0.94
No. of reflections5155
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.56

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Comparison table of selected bond distances (Å) and angles (°) top
VAACACthis work
min.max.min.max.
V-O1.967 (8)1.995 (8)1.9688 (17)1.9912 (18)
C-O1.235 (14)1.268 (14)1.257 (3)1.268 (3)
endo C-C1.376 (19)1.408 (19)1.363 (4)1.390 (4)
C-Me1.497 (21)1.528 (21)1.497 (4)1.516 (3)
ligand bite87.5 (6)88.4 (6)87.23 (8)88.18 (7)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds